A note on a bivariate gamma distribution

Makoto Maejimaa,*, Yohei Uedaa

aDepartment of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Abstract

Vere-Jones (1967) introduced a bivariate generalization of gamma distributions and proved its infinite divisibility. Maejima and Ueda (2009) and others studied α-selfdecomposability, which is a generalization of selfdecomposability. In this paper, the (-2)-selfdecomposability of bivariate gamma distributions is shown.

Keywords: infinitely divisible distribution, bivariate gamma distribution, α-selfdecomposable distribution

2000 MSC: 60E07

1. Introduction and preliminaries

According to Vere-Jones (1967), one multivariate generalization of gamma distributions is the joint distribution of $W_d := (X_1^2, X_2^2, \ldots, X_d^2)$, where (X_1, X_2, \ldots, X_d) is a d-dimensional Gaussian random variable whose components $X_j, j = 1, 2, \ldots, d$, are 1-dimensional standard normal random variables. Vere-Jones (1967) proved that when $d = 2$, $W := W_2 = (X_1^2, X_2^2)$ is infinitely divisible. He actually gave the Lévy measure of W. Let σ be the correlation coefficient of X_1 and X_2. He treated the problem in terms of moment generating functions, but if we read it in terms of characteristic functions, his result is turned out to be the following. Let $S_n := (W_1 + W_2 + \cdots + W_n)/2$, where W_1, W_2, \ldots, W_n are independently identically distributed with the same law as that of W.

*Corresponding author.

Email addresses: maejima@math.keio.ac.jp (Makoto Maejima), ueda2008.jukuin.keio.ac.jp (Yohei Ueda)
(1) By (4) of Vere-Jones [1967], the density function \(f(x_1, x_2) \) of \(S_4 \) is expressed as

\[
f(x_1, x_2) = f(x_1) f(x_2) \exp\left\{ -\sigma^2(x_1 + x_2)/(1 - \sigma^2) \right\} \times (1 - \sigma^2)^{-1}(\sigma^2 x_1 x_2)^{-1/2} I_1 \left(2\sqrt{\sigma^2 x_1 x_2(1 - \sigma^2)} \right)
\]

for \(x_1 > 0 \) and \(x_2 > 0 \), where \(f(x) = xe^{-x}, x > 0 \). Here and in what follows, \(I_\nu \)'s are modified Bessel functions. (For modified Bessel functions, see, e.g., 8.4–8.5 of Gradshteyn and Ryzhik [2007].)

(2) For \(z \in \mathbb{R}^2 \),

\[
C(z) := \log E \left[e^{i\langle z, S_2 \rangle} \right] = \int_0^\infty \int_0^\infty \left(e^{i\langle z, (x_1, x_2) \rangle} - 1 \right) \frac{M(dx_1 dx_2)}{x_1^2 + x_2^2},
\]

where \(M(dx_1 dx_2) \)

\[
= \begin{cases}
\frac{\sigma^2(x_1^2 + x_2^2)}{(x_1 x_2)^{-1}} f(x_1, x_2) dx_1 dx_2 =: g(x_1, x_2) dx_1 dx_2, & \text{for } x_1 > 0, x_2 > 0, \\
 x_1 e^{-x_1/(1 - \sigma^2)} dx_1 \delta_0(dx_2), & \text{for } x_1 > 0, x_2 = 0, \\
 \delta_0(dx_1) x_2 e^{-x_2/(1 - \sigma^2)} dx_2, & \text{for } x_1 = 0, x_2 > 0.
\end{cases}
\]

(See p. 422 of Vere-Jones [1967].) We divide the integral into three parts:

\[
C(z) = \int_D + \int_{D_2} + \int_{D_3},
\]

where

\[
D_1 = \{(x_1, x_2): x_1 > 0, x_2 > 0\}, \\
D_2 = \{(x_1, x_2): x_1 > 0, x_2 = 0\}, \\
D_3 = \{(x_1, x_2): x_1 = 0, x_2 > 0\}.
\]

For the integral \(\int_{D_1} \), let us change variables as \((x_1, x_2) = (r \cos \theta, r \sin \theta)\). Write \(\xi = (\cos \theta, \sin \theta) \) on the unit circle \(\mathbb{S} \) in \(\mathbb{R}^2 \). Then we have

\[
\frac{\pi}{2} \int_{D_1} d\theta \int_0^\infty \left(e^{i\langle z, (r \cos \theta, r \sin \theta) \rangle} - 1 \right) \frac{1}{r^2} g(r \cos \theta, r \sin \theta) r dr \\
= \int_\mathbb{S} \lambda(d\xi) \int_0^\infty \left(e^{i\langle z, r \xi \rangle} - 1 \right) \frac{g(r \xi)}{r} dr,
\]

where

\[
\lambda(B) = \int_{\{\theta \in (0, \pi/2): (\cos \theta, \sin \theta) \in B\}} d\theta, \quad B \in \mathcal{B}(\mathbb{S}).
\]

2
2. Non-selfdecomposability of W unless X_1 and X_2 are independent

In general, we know the following, (see, e.g., Theorem 15.10 of [Sato (1999)]). Let μ be an infinitely divisible distribution on \mathbb{R}^d with the Lévy measure ν. Then, μ is selfdecomposable if and only if

$$\nu(B) = \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi) \frac{k_{\xi}(r)}{r} dr,$$

with a finite measure λ on the unit sphere S in \mathbb{R}^d and a nonnegative function $k_{\xi}(r)$ measurable in $\xi \in S$ and decreasing in $r > 0$. Thus, for checking the selfdecomposability, it is enough to check the behavior of $k_{\xi}(r)$ as a function of $r > 0$ for each ξ. Let $\hat{\mu}(z)$, $z \in \mathbb{R}^d$, be the characteristic function of a infinitely divisible distribution μ. For $t \geq 0$, we write μ^t for the distribution with characteristic function $\hat{\mu}(z)^t$ and call μ^t the t-fold convolution of μ. Then, note that selfdecomposability is closed under multiplying selfdecomposable random variables by constants and under t-fold convolution for $t > 0$. Hence the selfdecomposability of W is equivalent to that of S_2. By (1.3), if $\xi \neq (1,0)$ or $(0,1)$, equivalently if $0 < \theta < \pi/2$, then $k_{\xi}(r) = g(r\xi)$, which is not nonincreasing in $r > 0$ unless $\sigma = 0$. Thus, if $\sigma \neq 0$, then W is not selfdecomposable. If $\sigma = 0$, namely if the components of W are independent, then by (1.2), $k_{\xi}(r)$ is nonincreasing, and hence W is selfdecomposable.

3. Which class does the distribution of W belong to?

In [Maejima et al. (2010)] and [Maejima and Ueda (2010)], they defined wider classes than the class of selfdecomposable distributions as follows. Let $\alpha \in \mathbb{R}$. An infinitely divisible distribution μ on \mathbb{R}^d is said to be α-selfdecomposable, if any $b > 1$, there exists another infinitely divisible distribution ρ_b on \mathbb{R}^d satisfying

$$\hat{\mu}(z) = \hat{\mu}(b^{-1}z)^{b^\alpha} \hat{\rho}_b(z), \quad z \in \mathbb{R}^d. \quad (3.1)$$

Denote the totality of α-selfdecomposable distributions on \mathbb{R}^d by $L^{(\alpha)}(\mathbb{R}^d)$. Then by the definition, $L^{(0)}(\mathbb{R}^d)$ is the class of selfdecomposable distributions on \mathbb{R}^d and $L^{(-1)}(\mathbb{R}^d)$ is the so-called Jurek class of s-selfdecomposable distributions on \mathbb{R}^d. [Jurek (1988, 1989, 1992)] and [Jurek and Schreiber (1992)] studied the classes $\mathcal{U}_\beta(Q)$, $\beta \in \mathbb{R}$, of distributions on a real separable Banach
space \(E \), where \(Q \) is a linear operator on \(E \) with certain properties. These classes are equal to \(L(\alpha)(\mathbb{R}^d) \) if \(\beta = -\alpha, \ E = \mathbb{R}^d \) and \(Q \) is the identity operator. As to these classes, they studied the decomposability and stochastic integral characterizations, although some results are only for the case that \(Q \) is the identity operator. However, since, for \(0 < \alpha < 2 \), \(L(\alpha)(\mathbb{R}^d) \) contains all \(\alpha \)-stable distributions and any \(\mu \in L(\alpha)(\mathbb{R}^d) \) belongs to the normal domain of attraction of some \(\alpha \)-stable distribution, we adopt the parametrization in (3.1).

By the observations in Sections 1 and 2, the distribution of \(W \) is not only non-selfdecomposable but also not in a bigger class, the Jurek class. However, the following proposition hold. Note that, by (3.1), \(\alpha \)-selfdecomposability is closed under multiplying \(\alpha \)-selfdecomposable random variables by constants and under \(t \)-fold convolution for \(t > 0 \). Hence the \(\alpha \)-selfdecomposability of \(W \) is equivalent to that of \(S_2 \).

Proposition 3.1. Let \(\sigma \neq 0 \). Then

\[
\mathcal{L}(W) \begin{cases}
\in L(\alpha)(\mathbb{R}^2) & \text{for all } \alpha \leq -2, \\
\notin L(\alpha)(\mathbb{R}^2) & \text{for all } \alpha > -2.
\end{cases}
\]

Proof. In [Maejima et al. (2010)](cite), it was shown that when \(\alpha < 0, \mu \in L(\alpha)(\mathbb{R}^d) \) if and only if the Lévy measure \(\nu \) of \(\mu \) has the form

\[
\nu(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty 1_B(r\xi) r^{-\alpha-1} \ell_\xi(r) dr,
\]

where \(\lambda \) is a measure on \(\mathbb{S} \) and \(\ell_\xi(r) \) is a nonnegative function measurable in \(\xi \in \mathbb{S} \) and nonincreasing and right-continuous in \(r > 0 \). From the fact observed in Section 2,

\[
f_\xi(r) := \frac{k_\xi(r)}{r} = \frac{g(r\xi)}{r} = \frac{|\sigma|}{1 - \sigma^2} (\cos \theta \sin \theta)^{-1/2} e^{-r(1-\sigma^2)^{-1}(\cos \theta \sin \theta)} I_1 \left(\frac{2(\sigma^2 \cos \theta \sin \theta)^{1/2}}{1 - \sigma^2} r \right),
\]
where \(\xi = (\cos \theta, \sin \theta) \). Note that for all \(r > 0 \) and all \(\theta \in (0, \pi/2) \),

\[
rf'(r)/f_r(r) = -\frac{r}{1-\sigma^2}(\cos \theta + \sin \theta)
\]
\[
+ \left(\frac{2(\sigma^2 \cos \theta \sin \theta)^{1/2}}{1-\sigma^2}r\right) I_1'(\frac{2(\sigma^2 \cos \theta \sin \theta)^{1/2}}{1-\sigma^2}r) / I_1\left(\frac{2(\sigma^2 \cos \theta \sin \theta)^{1/2}}{1-\sigma^2}r\right)
\]
\[
\leq 1 + \frac{r}{1-\sigma^2} \left\{ 2(\sigma^2 \cos \theta \sin \theta)^{1/2} - \cos \theta - \sin \theta \right\}
\]
\[
\leq 1 - \frac{r}{1-\sigma^2} \left(\sqrt{\cos \theta} - \sqrt{\sin \theta} \right)^2 \leq 1,
\]

where we have used the inequality

\[
u I_1'(u)/I_1(u) \leq u + 1, \quad \text{for all } u > 0, \quad (3.2)
\]

which will be proved later. Then \(rf'_r(r) = f_r(r) \leq 0 \), namely, \(\frac{d}{dr} \{ r^{-1}f_r(r) \} \leq 0 \). Hence \(\ell_r(\xi) := r^{-1}f_r(r) \) is nonincreasing in \(r > 0 \) and

\[
\nu(B) = \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)f_r(r)dr = \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)r^{-(\alpha-2)}\ell_r(\xi)dr,
\]

which yields \(L(W) \in L^{(\alpha-2)}(\mathbb{R}^2) \). Since

\[
L^{(\alpha_1)}(\mathbb{R}^d) \supset L^{(\alpha_2)}(\mathbb{R}^d) \quad \text{for } \alpha_1 < \alpha_2
\]

(Corollary 1.1(b) of [Jurek, 1988] or Proposition 3.1 of [Maejima and Ueda, 2010]), we have \(L(W) \in L^{(\alpha)}(\mathbb{R}^2) \) for all \(\alpha \leq -2 \). Also take into account that

\[
r^{\alpha+1}f_r(r) = \frac{r^{\alpha+1}|\sigma|}{1-\sigma^2} (\cos \theta \sin \theta)^{-1/2} e^{-r(1-\sigma^2)^{-1}(\cos \theta + \sin \theta)} I_1\left(\frac{2(\sigma^2 \cos \theta \sin \theta)^{1/2}}{1-\sigma^2}r\right)
\]
\[
= \frac{r^{\alpha+2} \sigma^2}{(1-\sigma^2)^2} e^{-r(1-\sigma^2)^{-1}(\cos \theta + \sin \theta)} \sum_{m=0}^\infty \frac{(\cos \theta \sin \theta)^m}{m!(m+1)!} \left(\frac{\sigma}{1-\sigma^2}\right)^{2m} r^{2m},
\]

where we have used the series representation of \(I_1 \) given in 8.445 of [Gradshiteyn and Ryzhik, 2007]. If \(\alpha > -2 \), then the right-hand side of the equation above tends to 0 as \(r \to 0 \). Hence \(r^{\alpha+1}f_r(r) \) with \(\alpha > -2 \) is not nonincreasing and thus \(L(W) \notin L^{(\alpha)}(\mathbb{R}^2) \).

We finally prove \((3.2) \). Since \(uI_1'(u) - I_1(u) = uI_2(u) \) (8.484 of [Gradshiteyn and Ryzhik, 2007]), it is enough to show \(I_1(u) \geq I_2(u) \) for all \(u > 0 \).
Also it follows from the two recurrence formulae \(uI'_1(u) - I_1(u) = uI_2(u) \) and \(uI'_2(u) + 2I_2(u) = uI_1(u) \) (8.486 of [Gradshteyn and Ryzhik (2007)]) that

\[
\begin{align*}
u(I'_1(u) - I'_2(u)) + (u + 2)(I_1(u) - I_2(u)) &= 3I_1(u). \\
\end{align*}
\]

Then

\[
\frac{d}{du}\{u^2e^u(I_1(u) - I_2(u))\} = ue^u\{u(I'_1(u) - I'_2(u)) + (u + 2)(I_1(u) - I_2(u))\}
\]

\[= 3ue^uI_1(u) \geq 0.\]

Hence we have \(u^2e^u(I_1(u) - I_2(u)) \geq 0 \) for all \(u > 0 \), that is, \(I_1(u) \geq I_2(u) \) for all \(u > 0 \).

Acknowledgement

The authors would like to thank the referee for his/her useful suggestions.

References

Jurek, Z.J., Schreiber, B.M., 1992. Fourier transforms of measures from the classes \(\mathcal{U}_\beta \), \(-2 < \beta \leq -1\). J. Multivariate Anal. 41, 194–211.

