THE GENERALIZED LANGEVIN EQUATION
AND AN EXAMPLE OF TYPE G DISTRIBUTIONS

MAKOTO MAEJIMA AND YOHEI NIYAMA
(DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY)

1. THE GENERALIZED LANGEVIN EQUATION AND
 GENERALIZED ORNSTEIN-UHLENBECK PROCESSES

\[Y_n = A_n Y_{n-1} + B_n, \quad n = 1, 2, \ldots, \]

where \((A_n, B_n)\) are independent and identically distributed \(\mathbb{R}^2\)-valued random variables, and obtained conditions under which \(Y_n\) converges in law to a random variable \(Y\) as \(n \to \infty\). This limit, if it exists, is the solution of \(Y = A_1 Y + B_1\), where \(Y\) and \((A_1, B_1)\) are independent. Here and below \(\overset{d}{=}\) means equivalence in law.

As a continuous analogue of (1.1), we introduce

\[dY_t = -\lambda Y_{t-} dt + Y_{t-} dL^{(1)}_t + dL^{(2)}_t, \quad t \geq 0, \]

where \(\lambda > 0\) and \(\{(L^{(1)}_t, L^{(2)}_t), t \geq 0\}\) is an \(\mathbb{R}^2\)-valued Lévy process. The stochastic differential equation (1.2) extends simultaneously the Langevin equation and the Black-Scholes equation. When \(L^{(1)}_t \equiv 0\), (1.2) is the Langevin equation driven by \(\{L^{(2)}_t\}\), and when \(L^{(2)}_t \equiv 0\), (1.2) is the Black-Scholes equation driven by \(\{L^{(1)}_t\}\). We call (1.2) the generalized Langevin equation.

A similar stochastic differential equation can be found in Carmona et al. [1]. Namely, they mentioned

\[dX_t = (1/2 - r) X_{t-} dt + X_{t-} dB_t + d\eta_t, \]

where \(\{B_t\}\) is a Brownian motion, \(\{\eta_t\}\) is a compound Poisson process and they are independent. Actually, they studied the generalized Ornstein-Uhlenbeck process

\[X_t = e^{-\xi_t} \left(x + \int_0^t e^{\xi_s} d\eta_s \right), \quad t \geq 0, \quad x \in \mathbb{R}, \]

associated to a given \(\mathbb{R}^2\)-valued Lévy process \((\xi_t, \eta_t)\), and showed that an example (1.4) with \(\xi_t = -B_t + rt\) and \(\eta_t\) a compound Poisson process, is the solution of the
stochastic differential equation (1.3). Generalized Ornstein-Uhlenbeck processes have recently been studied also by Erickson and Maller [3] and Lindner and Maller [5].

Here we restrict ourselves to the case where \(L_t^{(1)} = B_t \) (Brownian motion), \(L_t^{(2)} = L_t \) (Lévy process) and they are independent. Namely,

\[
dY_t = -\lambda Y_t \, dt + \sigma Y_t \, dB_t + dL_t, \quad t \geq 0,
\]

where \(\lambda, \sigma > 0 \). Then, an explicit solution of (1.5) is the following.

Theorem 1.1. A unique solution of the generalized Langevin equation (1.5), where \(\{B_t\} \) and \(\{L_t\} \) are independent, is

\[
Y_t = e^{-U_t} \left(Y_0 + \int_0^t e^{U_s} \, dL_s \right),
\]

where

\[
U_t = -\sigma B_t + \left(\lambda + 2^{-1} \sigma^2 \right) t,
\]

For the proof, it is enough to apply Theorem 52 of Chapter V in Protter [6]. We are interested in the limit of \(Y_t \) when \(t \to \infty \).

Theorem 1.2. If \(E[\log^+ |L_1|] < \infty \), then \(Y_t \) converges in law to \(Y = \int_0^\infty e^{-U_s} \, dL_s \).

For the proof, it is enough to check two conditions in Theorem 3.1 of Carmona et al. [1], namely, (i) \(e^{-U_t} = \exp\{\sigma B_t - (\lambda + 2^{-1} \sigma^2) t\} \to 0 \) a.s. and (ii) \(\int_0^\infty e^{-U_s} \, dL_s \) is well-defined and almost surely finite. However, both are easy to be seen due to the law of the iterated logarithm for \(\{B_t\} \), which is, almost surely for some \(c_1, c_2 > 0 \), \(e^{-c_1 t} < e^{U_t} < e^{-c_2 t} \) for large \(t \). Thus (i) is trivial. Also, Sato and Yamazato [10] showed that if \(E[\log^+ |L_1|] < \infty \) then \(\int_0^\infty e^{-c_s} \, dL_s \) is well-defined, which proves (ii).

2. **An example**

We are interested in the infinite divisibility of the limiting random variable \(Y \) above, and give an example for it.

We start with the notion of “type S” of infinitely divisible random variables. We say that a real-valued random variable \(Z_\alpha, 0 < \alpha \leq 2 \), is symmetric \(\alpha \)-stable if \(E[e^{i\alpha Z_\alpha}] = e^{-c|\alpha|^\alpha} \), \(c > 0 \). A real-valued random variable \(X \) is called a scaling mixture of symmetric \(\alpha \)-stable, if

\[
E[e^{i\alpha Z_\alpha}] = \int_0^\infty e^{-1|\alpha|^\alpha u} H(du),
\]

where

\[
H(du) = ||\alpha||^\alpha u^{\alpha-1} |\alpha|^{-\alpha} \varphi(u) du,
\]

\(\varphi(u) \) is a density function.
where H is a probability measure on $[0, \infty)$. An equivalent statement is that

\begin{equation}
X \overset{d}{=} V^{1/\alpha} Z_{\alpha},
\end{equation}

where Z_{α} is symmetric α-stable, V is a positive random variable independent of Z_{α} with $\mathcal{L}(V) = H$. Here $\mathcal{L}(V)$ means the law of V.

Definition 2.1. Let $0 < \alpha \leq 2$. A real-valued random variable X is said to be of type S_{α}, if it satisfies (2.1) with an infinitely divisible $V > 0$. If X is of type S_{α} for some $\alpha \in (0, 2]$, it is called of type S. If $\alpha = 2$, it is of type G. (For type G distributions, see, e.g., Maejima and Rosiński [6] and the references therein.)

Proposition 2.2. For any $0 < \alpha < 2$, a type S_{α} random variable is of type G and thus infinitely divisible.

This statement follows from the fact that iteration of subordination is again subordination, (see Sato [9], Theorem 30.4).

Theorem 2.3. Let Y be the random variable given in Theorem 1.2. If $\{L_t\}$ is a symmetric α-stable Lévy process $\{S_t\}$, $0 < \alpha \leq 2$, then Y is of type S_{α}, and thus infinitely divisible.

Proof. It is known that for any $a \in \mathbb{R}, a \neq 0, b > 0$,

\begin{equation}
\int_0^\infty e^{\alpha B_t - bt} \, dt \overset{d}{=} 2 \left(a^2 \Gamma_{2\alpha-2} \right)^{-1},
\end{equation}

where Γ_γ is the gamma random variable with parameter $\gamma > 0$. (Dufresne [2].) It is also known that the reciprocal of gamma random variable is infinitely divisible. Now, we have

\begin{equation}
E \left[\exp (i\theta Y) \right] = E \left[\exp \left(i\theta \int_0^\infty e^{-V_s} \, dS_s \right) \right] = E_U \left[E_S \left[\exp \left(i\theta \int_0^\infty e^{-V_s} \, dS_s \right) \right] \right].
\end{equation}

where E_U and E_S are the expectations with respect to $\{U_t\}$ and $\{S_t\}$, respectively. Since

\begin{equation}
E \left[\exp \left\{ i\theta \int_0^\infty f_s \, dS_s \right\} \right] = \exp \left\{ -|\theta|^\alpha \int_0^\infty |f_s|^\alpha \, ds \right\}
\end{equation}
(see, e.g., Samorodnitsky-Taqqu [8]), we have

\[
E[e^{i\theta Y}] = E_U \left[\exp \left(-|\theta|^\alpha \int_0^\infty e^{-\alpha u^\alpha} du \right) \right]
\]

\[
= E_U \left[\exp \left(-|\theta|^\alpha \int_0^\infty \exp \left(\alpha \sigma B_u - \alpha (\lambda + 2^{-1} \sigma^2) u \right) du \right) \right]
\]

\[
= E_U \left[\exp \left(-|\theta|^\alpha 2 \left(\frac{\alpha^2 \sigma^2 \Gamma \frac{2\lambda + 2 - 1}{\alpha^2 \sigma^2}}{\alpha^2 \sigma^2} \right)^{-1} \right) \right].
\]

If we put

\[
H(dx) = P \left(2 \left(\frac{\alpha^2 \sigma^2 \Gamma \frac{2\lambda + 2 - 1}{\alpha^2 \sigma^2}}{\alpha^2 \sigma^2} \right)^{-1} \in dx \right),
\]

then

\[
E[e^{i\theta Y}] = \int_0^\infty e^{-|\theta|^\alpha u} H(du),
\]

where, as we have seen, \(H \) is the distribution function of a positive infinitely divisible random variable. Thus, \(Y \) is of type \(S_\alpha \), and hence infinitely divisible.

\[\square\]

References

