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1. Introduction

Let I(Rd) denote the set of all infinitely divisible distributions on Rd. The char-

acteristic function µ̂(z), z ∈ Rd, of an infinitely divisible distribution µ ∈ I(Rd) has

the Lévy-Khintchine representation as follows:

µ̂(z) = exp

{
−1

2
〈z, Az〉+ i〈γ, z〉+

∫

Rd

(
ei〈z,x〉 − 1− i〈z, x〉

1 + |x|2
)

ν(dx)

}
, z ∈ Rd,

where A is a symmetric nonnegative-definite d×d matrix, γ ∈ Rd, and ν is a measure

on Rd satisfying

ν({0}) = 0 and

∫

Rd

(|x|2 ∧ 1)ν(dx) < ∞.

(A, ν, γ) is uniquely determined by µ and is called the triplet of µ. ν = νµ is called the

Lévy measure of µ. Isym(Rd) will denote the subset of I(Rd) consisting of symmetric

distributions.

The polar decomposition of Lévy measures on Rd is the following: Let ν be the

Lévy measure of some µ ∈ I(Rd) with 0 < ν(Rd) ≤ ∞. Then there exist a measure
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λ on S = {ξ ∈ Rd : |ξ| = 1} with 0 < λ(S) ≤ ∞ and a family {νξ : ξ ∈ S}
of measures on (0,∞) such that νξ(B) is measurable in ξ for each B ∈ B((0,∞)),

0 < νξ((0,∞)) ≤ ∞ for each ξ ∈ S and that

ν(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr), B ∈ B(Rd \ {0}).

Here λ and {νξ} are uniquely determined by ν up to multiplication of a measurable

function c(ξ) and c(ξ)−1 with 0 < c(ξ) < ∞. We say that ν has the polar decom-

position (λ, νξ) and νξ is called the radial component of ν. (See, e.g. [2] Lemma

2.1.)

We also define the cumulant function Cµ(z) of µ ∈ I(Rd) as follows: Cµ(z)

is the unique complex-valued continuous function on Rd satisfying Cµ(0) = 0 and

µ̂(z) = eCµ(z).

We can characterize five classes of infinitely divisible distributions in terms of νξ:

(i) Class U(Rd) (Jurek class, see [4].)

νξ(dr) = lξ(r)dr and lξ(r) is nonincreasing.

(ii) Class B(Rd) (Goldie–Steutel–Bondesson class, see, e.g. [2].)

νξ(dr) = lξ(r)dr and lξ(r) is completely monotone.

(iii) Class L(Rd) (Class of selfdecomposable distributions, see, e.g. [8].)

νξ(dr) = kξ(r)r
−1dr and kξ(r) is nonincreasing.

(iv) Class T (Rd) (Thorin class, see, e.g. [2].)

νξ(dr) = kξ(r)r
−1dr and kξ(r) is completely monotone.

(v) Class G(Rd) (Class of type G distributions, see [3].)

νξ(dr) = gξ(r
2)dr and gξ(r) is completely monotone; in this case we also assume

that µ is symmetric.

Let Ilog(Rd) = {µ ∈ I(Rd) :
∫
|x|>2

log |x|µ(dx) < ∞} and let φ(x) = (2π)−1/2e−x2/2

denote the standard normal density on R.

Being motivated by the relations among classes (i)–(v), it is natural to introduce

and consider the following new class.

Definition 1.1 (Class M(Rd)). µ ∈ M(Rd) if and only if µ ∈ Isym(Rd) with

νξ(dr) = gξ(r
2)r−1dr and gξ(r) is completely monotone. (1.1)

It is easy to see that M(Rd) ⊂ L(Rd) ∩ G(Rd), i.e., the elements of M(Rd) are

type G selfdecomposable distributions. In Theorem 3.1 below we will prove that this

inclusion is strict. The purpose of this paper is to characterize the class M(Rd) by
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stochastic integrals with respect to Lévy processes, and compare it with other known

classes.

2. Characterization of the class M(Rd) by stochastic integrals with

respect to Lévy processes

Throughout this paper, L(X) denotes the law of a random variable X on Rd.

Let m(x) =
∫∞

x
φ(s)s−1ds, x > 0, and denote its inverse by m∗(t), that is, t = m(x)

if and only if x = m∗(t).

Theorem 2.1. (i) Let µ ∈ I(Rd). Then the stochastic integral
∫ ∞

0

m∗(t)dX
(µ)
t

exists if and only if µ ∈ Ilog(Rd), where {X(µ)
t } is a Lévy process on Rd with L(X

(µ)
1 ) =

µ.

Proof of “if” part. For the proof, we need the following lemma, which is a special

case of Proposition 5.5 of [9].

Lemma 2.2. Let {X(µ)
t } be a Lévy process on Rd and f(t) a real-valued measurable

function on [0,∞). Let (A, ν, γ) be the triplet of µ. Then
∫∞

0
f(t)dX

(µ)
t exists if the

following conditions are satisfied:
∫ ∞

0

f(t)2dt < ∞, (2.1)

∫ ∞

0

dt

∫

Rd

(|f(t)x|2 ∧ 1)ν(dx) < ∞, (2.2)

∫ ∞

0

∣∣∣∣f(t)γ + f(t)

∫

Rd

x

(
1

1 + |f(t)x|2 −
1

1 + |x|2
)

ν(dx)

∣∣∣∣ dt < ∞. (2.3)

For the proof of “if” part, it is enough to show that f(t) = m∗(t) satisfies (2.1)−
(2.3) in Lemma 2.2 for every µ ∈ Ilog(Rd). Note that m(+0) = ∞ and m(∞) = 0.

Since
∫ ∞

0

m∗(t)2dt =

∫ ∞

0

sφ(s)ds < ∞,

we have (2.1).
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As to (2.2), we have
∫ ∞

0

dt

∫

Rd

(|m∗(t)x|2 ∧ 1)ν(dx)

= −
∫ ∞

0

dm(s)

∫

Rd

(|sx|2 ∧ 1)ν(dx)

=

∫ ∞

0

φ(s)s−1ds

(∫

|x|≤1/s

|sx|2ν(dx) +

∫

|x|>1/s

ν(dx)

)

=: (I1 + I2),

say. Here

I1 =

∫

Rd

|x|2ν(dx)

∫ 1/|x|

0

sφ(s)ds

=

(∫

|x|≤1

+

∫

|x|>1

)
|x|2ν(dx)

∫ 1/|x|

0

sφ(s)ds

=: I11 + I12,

say, and

I11 ≤
∫

|x|≤1

|x|2ν(dx)

∫ ∞

0

sφ(s)ds < ∞,

I12 ≤
∫

|x|>1

|x|2ν(dx)

∫ 1/|x|

0

sds ≤ 2−1

∫

|x|>1

ν(dx) < ∞.

Also,

I2 =

∫

Rd

ν(dx)

∫ ∞

1/|x|
φ(s)s−1ds

=

(∫

|x|≤1

+

∫

|x|>1

)
ν(dx)

∫ ∞

1/|x|
φ(s)s−1ds

=: I21 + I22,

say, and

I21 ≤ C1

∫

|x|≤1

x2ν(dx) < ∞,

I22 ≤
∫

|x|>1

ν(dx)

{∫ 1

1/|x|
s−1ds +

∫ ∞

1

φ(s)s−1ds

}

=

∫

|x|>1

(log |x|+ C2)ν(dx) < ∞,

since µ ∈ Ilog(Rd), where C1, C2 > 0. This shows (2.2).
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For (2.3), we have
∫ ∞

0

∣∣∣∣m∗(t)γ + m∗(t)
∫

Rd

x

(
1

1 + |m∗(t)x|2 −
1

1 + |x|2
)

ν(dx)

∣∣∣∣ dt

≤ −|γ|
∫ ∞

0

sdm(s)−
∫ ∞

0

∣∣∣∣s
∫

Rd

x

(
1

1 + |sx|2 −
1

1 + |x|2
)

ν(dx)

∣∣∣∣ dm(s)

=: I3 + I4,

say, where

I3 ≤ |γ|
∫ ∞

0

φ(s)ds < ∞,

I4 ≤
∫ ∞

0

φ(s)ds

∣∣∣∣
∫

Rd

(
x|x|2|s2 − 1|

(1 + |sx|2)(1 + |x|2)
)

ν(dx)

∣∣∣∣

≤
∫ ∞

0

|s2 − 1|φ(s)ds

∫

Rd

|x|3
(1 + |sx|2)(1 + |x|2)ν(dx)

=

∫ ∞

0

|s2 − 1|φ(s)ds

(∫

|x|≤1

+

∫

|x|>1

) |x|3
(1 + |sx|2)(1 + |x|2)ν(dx)

=: I41 + I42,

say. Here

I41 ≤
∫ ∞

0

|s2 − 1|φ(s)ds

∫

|x|≤1

|x|3
1 + |x|2ν(dx) < ∞,

and

I42 ≤
∫

|x|>1

|x|3
1 + |x|2ν(dx)

∫ ∞

0

s2 + 1

1 + |sx|2φ(s)ds

=

∫

|x|>1

|x|3
1 + |x|2ν(dx)

(∫ 1

0

+

∫ ∞

1

)
s2 + 1

1 + |sx|2φ(s)ds

=: I421 + I422,

say. Furthermore,

I421 ≤
∫

|x|>1

|x|3
1 + |x|2ν(dx)

∫ 1

0

1

1 + |sx|2ds

≤
∫

|x|>1

|x|2
1 + |x|2ν(dx)

∫ ∞

0

1

1 + t2
dt < ∞,

and

I422 ≤
∫

|x|>1

|x|3
(1 + |x|2)2

ν(dx)

∫ ∞

1

(s2 + 1)φ(s)ds < ∞.

Thus we have (2.3). This completes the proof of “if” part. ¤
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Proof of “only if” part. Suppose
∫∞

0
m∗(t)dX

(µ)
t exists and let ν̃ be its Lévy measure.

We have ∫

|x|>1

ν̃(dx) =

∫ ∞

0

dt

∫
1{|m∗(t)x|>1}(x)ν(dx)

= −
∫ ∞

0

dm(s)

∫
1{|x|>1/s}(x)ν(dx)

= −
∫

Rd

ν(dx)

∫ ∞

1/|x|
dm(s)

≥
∫

|x|>1

ν(dx)

∫ ∞

1/|x|
φ(s)s−1ds

≥
∫

|x|>1

ν(dx)(C1 log |x|+ C2),

for some C1, C2 > 0. Thus, µ ∈ Ilog(Rd). This competes the proof of “only if”

part. ¤

Definition 2.3. For any µ ∈ Ilog(Rd), define the mapping M by

Mµ = L
(∫ ∞

0

m∗(t)dX
(µ)
t

)
.

The statement (i) below is one of the main results in this paper.

Theorem 2.4. (i)

M(Rd) = M(Ilog(Rd)) ∩ Isym(Rd).

(ii) Let ν and ν̃ be the Lévy measures of µ ∈ Ilog(Rd) and Mµ, respectively. Then

ν̃(B) =

∫ ∞

0

ν(s−1B)φ(s)s−1ds, B ∈ B(Rd \ {0}).

Proof.

We will first prove (ii). By a general result on stochastic integral with respect to

Lévy process, we have

ν̃(B) =

∫ ∞

0

dt

∫

Rd

1B(xm∗(t))ν(dx)

= −
∫ ∞

0

dm(s)

∫

Rd

1B(xs)ν(dx)

=

∫ ∞

0

ν(s−1B)φ(s)s−1ds.

Now we consider part (i). Let µ ∈ Ilog(Rd) and µ̃ = Mµ. Let ν and ν̃ be the

Lévy measures of µ and µ̃, respectively. Then (ii) holds. Thus, if ν = 0, then ν̃ = 0
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and µ̃ ∈ M(Rd). Assume that ν 6= 0 and ν has the polar decomposition (λ, νξ). Then,

for any nonnegative measurable function f ,
∫

Rd

f(x)ν̃(dx) =

∫ ∞

0

φ(s)s−1ds

∫

Rd

f(sx)ν(dx)

=

∫ ∞

0

φ(s)s−1ds

∫

S

λ(dξ)

∫ ∞

0

f(srξ)νξ(dr)

=

∫

S

λ(dξ)

∫ ∞

0

νξ(dr)

∫ ∞

0

φ(s/r)f(sξ)s−1ds

=

∫

S

λ(dξ)

∫ ∞

0

f(sξ)g̃ξ(s
2)s−1ds,

where

g̃ξ(x) =

∫ ∞

0

φ(x1/2/r)νξ(dr) = (2π)−1/2

∫ ∞

0

e−x/(2r2)νξ(dr).

Define a measure Q̃ξ by

Q̃ξ(B) = (2π)−1/2

∫ ∞

0

1B(1/(2r2))νξ(dr), B ∈ B((0,∞)).

Then Q̃ξ(B) is measurable in ξ and

g̃ξ(x) =

∫ ∞

0

e−xuQ̃ξ(du) for x > 0.

Hence g̃ξ is completely monotone. Letting λ̃ = λ and ν̃ξ(dr) = g̃ξ(r
2)r−1dr, we see

that (λ̃, ν̃ξ) is a polar decomposition of ν̃ and that µ̃ ∈ M(Rd). Thus, M(Ilog(Rd)) ∩
Isym(Rd) ⊂ M(Rd).

Conversely, suppose that µ̃ ∈ M(Rd) with triplet (Ã, ν̃, γ̃). If ν̃ = 0, then µ̃ = Mµ

with some Ã and γ̃. Suppose that ν̃ 6= 0. Then, in a polar decomposition (λ̃, ν̃ξ)

of ν̃, we have ν̃ξ(dr) = g̃ξ(r
2)r−1dr, where g̃ξ(x) is completely monotone in x and

measurable in ξ. Thus there are measures Q̃ξ on (0,∞) satisfying

g̃ξ(x) =

∫ ∞

0

e−xuQ̃ξ(du)

such that Q̃ξ(B) is measurable in ξ for each B ∈ B((0,∞)). Now define

νξ(B) = (2π)1/2

∫ ∞

0

1B((2u)−1/2)Q̃ξ(du).

Then νξ is a measure on (0,∞) for each ξ and
∫ ∞

0

f(r)νξ(dr) = (2π)1/2

∫ ∞

0

f((2u)−1/2)Q̃ξ(du)

for all nonnegative measurable functions f on (0,∞).
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Let λ = λ̃. Then∫

S

λ(dξ)

∫ ∞

0

(r2 ∧ 1)νξ(dr) = (2π)1/2

∫

S

λ̃(dξ)

∫

(0,∞)

((2u)−1 ∧ 1)Q̃ξ(du)

= (2π)1/2

∫

S

λ̃(dξ)

(∫ 1/2

0

Q̃ξ(du) +

∫ ∞

1/2

(2u)−1Q̃ξ(du)

)
< ∞,

where the finiteness of the integral is assured by
∫ ∞

0

(r2 ∧ 1)g̃ξ(r
2)r−1dr < ∞,

which can be shown by a standard calculation based on the fact that g̃ξ is the Laplace

transform of Q̃ξ. Define ν by

ν(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr) for B ∈ B(Rd \ {0}).

Then ν is the Lévy measure of an infinitely divisible distribution and we can check
∫ ∞

0

φ(s)s−1ds

∫

Rd

f(sx)ν(dx) =

∫

Rd

f(x)ν̃(dx)

for all nonnegative measurable functions f on Rd. This relation can be checked as

follows:∫

Rd

f(x)ν̃(dx) =

∫

S

λ̃(dξ)

∫ ∞

0

f(rξ)ν̃ξ(dr)

=

∫

S

λ̃(dξ)

∫ ∞

0

f(rξ)g̃ξ(r
2)r−1dr

=

∫

S

λ̃(dξ)

∫ ∞

0

f(rξ)r−1dr

∫ ∞

0

e−r2uQ̃ξ(du)

= (2π)−1/2

∫

S

λ̃(dξ)

∫ ∞

0

f(rξ)r−1dr

∫ ∞

0

e−r2/(2u2)νξ(du)

= (2π)−1/2

∫

S

λ̃(dξ)

∫ ∞

0

e−r2/(2u2)r−1dr

∫ ∞

0

f(rξ)νξ(du)

= (2π)−1/2

∫ ∞

0

e−y2/2y−1dy

∫

S

λ̃(dξ)

∫ ∞

0

f(yuξ)νξ(du)

=

∫ ∞

0

φ(s)s−1ds

∫

Rd

f(sx)ν(dx).

Define A and γ suitably and let µ be a distribution with the triplet (A, ν, γ). Then

Mµ = µ̃, namely L
(∫∞

0
m∗(t)dX

(µ)
t

)
= µ̃. Thus by Theorem 2.1, we see that µ ∈

Ilog(Rd) and that µ̃ ∈M(Ilog(Rd)). Since µ̃ ∈ Isym(Rd), µ̃ ∈M(Ilog(Rd)) ∩ Isym(Rd).

This completes the proof of Theorem 2.4. ¤
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3. Relations of M(Rd) with other classes (I)

We have the following relations of M(Rd) with other classes.

Theorem 3.1. We have

T (Rd) ∩ Isym(Rd) $M(Rd) $ L(Rd) ∩G(Rd).

Proof.

(i) We first show that M(Rd) $ L(Rd) ∩ G(Rd). Note that r−1/2 is completely

monotone and the product of two completely monotone functions is also completely

monotone. Thus by the definition of M(Rd), it is clear that M(Rd) ⊂ L(Rd)∩G(Rd).

To show that M(Rd) 6= L(Rd)∩G(Rd), it is enough to construct µ ∈ I(Rd) such that

µ ∈ L(Rd) ∩G(Rd) but µ /∈ M(Rd).

First consider the case d = 1. Let

ν(dr) = g(r2)r−1dr, r > 0.

For our purpose, it is enough to construct a function g : (0,∞) → (0,∞) such that

(1) r−1/2g(r) is completely monotone on (0,∞), (meaning that the corresponding µ

belongs to G(R)),

(2) g(r2) or, equivalently, g(r) is nonincreasing on (0,∞), (meaning that the corre-

sponding µ belongs to L(R)), and

(3) g(r) is not completely monotone on (0,∞), (meaning that the corresponding µ

does not belong to M(R)). Put

g(r) = r−1/2
(
e−0.9r − e−r + 0.1e−1.1r

)
, r > 0.

(1) We have

r−1/2g(r) = r−1
(
e−0.9r − e−r + 0.1e−1.1r

)
=

∫ 1

0.9

e−rudu + 0.1

∫ ∞

1.1

e−rudu,

which is a sum of two completely monotone functions, and thus r−1/2g(r) is completely

monotone.

(2) Put

k(r) = e−0.9r − e−r + 0.1e−1.1r, r > 0.
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If k(r) is nonincreasing, then so is g(r) = r−1/2k(r). To show it, we have

k′(r) = −0.9e−0.9r + e−r − 0.11e−1.1r = −0.9e−1.1r

[(
e0.1r − 1

1.8

)2

− 0.604

3.24

]

≤ −0.9e−1.1r

[(
1− 1

1.8

)2

− 0.604

3.24

]
= −0.01e−1.1r < 0, r > 0.

(3) To show (3), we see that

k(r) =

∫ ∞

0

e−ruQ(du),

where Q is a signed measure such that Q = Q1 + Q2 + Q3 and

Q1({0.9}) = 1, Q2({1}) = −1, Q3({1.1}) = 0.1.

On the other hand

r−1/2 = π−1/2

∫ ∞

0

e−ruu−1/2du =:

∫ ∞

0

e−ruR(du),

where

R(du) = (πu)−1/2du.

Thus

g(r) =

∫ ∞

0

e−ruR(du)

∫ ∞

0

e−rvQ(dv) =

∫ ∞

0

e−rwU(dw),

where

U(B) =

∫ ∞

0

Q(B − y)R(dy).

We are going to show that U is a signed measure, namely, for some interval (a, b), U ((a, b)) <

0. If so, g is not completely monotone. We have

U ((a, b)) = π−1/2

∫ ∞

0

Q ((a− y, b− y)) y−1/2dy

=π−1/2

3∑
i=1

∫ ∞

0

Qi ((a− y, b− y)) y−1/2dy

=π−1/2

[∫ b−0.9

a−0.9

y−1/2dy −
∫ b−1

a−1

y−1/2dy + 0.1

∫ b−1.1

a−1.1

y−1/2dy

]

=2π−1/2
[(√

b− 0.9−√a− 0.9
)
−

(√
b− 1−√a− 1

)
+ 0.1

(√
b− 1.1−√a− 1.1

)]
.

Take (a, b) = (1.15, 1.35). Then

U ((1.15, 1.35))

= 2π−1/2
[
(
√

0.45−
√

0.25)− (
√

0.35−
√

0.15) + 0.1(
√

0.25−
√

0.05)
]

< −0.01π−1/2 < 0.
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This concludes that g is not completely monotone.

A d–dimensional example of µ ∈ I(Rd) such that µ ∈ L(Rd) ∩ G(Rd) but µ /∈
M(Rd) is given by taking ν(dr) for the radial component of a Lévy measure. This

completes the proof of M(Rd) $ L(Rd) ∩G(Rd).

(ii) We next show that T (Rd)∩ Isym(Rd) $M(Rd). Since M(Rd) ⊂ Isym(Rd), we

consider only µ ∈ Isym(Rd). We need the following lemma.

Lemma 3.2. (See Feller [3], p.441, Corollary 2.) Let φ be a completely monotone

function on (0,∞) and let ψ be a nonnegative function on (0,∞) whose derivative is

completely monotone. Then φ(ψ) is completely monotone.

If µ ∈ T (Rd) ∩ Isym(Rd), then the radial component of the Lévy measure of µ

has the form νξ(dr) = kξ(r)r
−1dr, where kξ is completely monotone. By the lemma

above and the fact that ψ(r) = r1/2 has a completely monotone derivative, then

gξ(r) := kξ(r
1/2) is completely monotone. Thus νξ(dr) can be read as gξ(r

2)r−1dr,

where gξ is completely monotone, concluding that µ ∈ M(Rd).

To show that T (Rd) ∩ Isym(Rd) 6= M(Rd), it is enough to find a completely

monotone function gξ such that kξ(r) = gξ(r
2) is not completely monotone. However,

the function gξ(r) = e−r has such a property. Although e−r is completely monotone,

(−1)2 d2

dr2 e
−r2

< 0 for small r > 0. This completes the proof of that T (Rd)∩Isym(Rd) $
M(Rd). ¤

Additional remark. The argument above also gives us the following result between

classes B(Rd) and G(Rd), namely,

B(Rd) ∩ Isym(Rd) $ G(Rd).

4. Relations of M(Rd) with other classes (II)

To give more relation of M(Rd) with other classes, we introduce two mappings.

Definition 4.1.

Φ : Ilog(Rd) → I(Rd), Φµ = L
(∫ ∞

0

e−tdX
(µ)
t

)
,

G : I(Rd) → Isym(Rd), Gµ = L
(∫ 1

0

h∗(t)dX
(µ)
t

)
,

h∗(t) is the inverse function of h(x) =
∫∞

x
φ(u)du, x ∈ R.

11



Remark 4.2 (known). (i) Φµ is a selfdecomposable distribution and Gµ is a type G

distribution. L(Rd) = Φ(Ilog(Rd)) and G(Rd) = G(I(Rd)) = G(Isym(Rd)). (See, e.g.

[4] and [6].)

(ii) Φ(B(Rd) ∩ Ilog(Rd)) = T (Rd). (See [1].)

(iii) νGµ(B) = E[νµ(Z−1B)], B ∈ B(Rd \ {0}). (See [1] and [7].)

Theorem 4.3. (i) Let µ ∈ I(Rd). Then Gµ ∈ Ilog(Rd) if and only if µ ∈ Ilog(Rd).

(ii) Let

a(s) = 2

∫ ∞

s

u−1du

∫ ∞

u

φ(v)dv, s > 0,

and define the inverse function s = a∗(t) by t = a(s). Then the stochastic integral
∫ ∞

0

a∗(t)dX
(µ)
t

exists if and only if µ ∈ Ilog(Rd).

(iii) If µ ∈ Ilog(Rd) ∩ Isym(Rd), then

ΦGµ = GΦµ = L
(∫ ∞

0

a∗(t)dX
(µ)
t

)

and the Lévy measure ν̃ of L
(∫∞

0
a∗(t)dX

(µ)
t

)
is

ν̃(B) =

∫ ∞

0

ν(s−1B)φ(s)s−1ds,

where ν is the Lévy measure of µ.

(iv)

M(Rd) % GΦ(Ilog(Rd)) = G(L(Rd)) = Φ(G(Rd) ∩ Ilog(Rd)).

Proof of (i). The proof of Theorem C (i) in [2] also works here. ¤

Proof of (ii). It is almost the same as that of Theorem 2.1, if we replace φ(s)s−1 by

s−1
∫∞

s
φ(v)dv. So, we omit it. ¤

Proof of (iii). Recall that for µ ∈ Ilog(Rd)

CΦµ(z) =

∫ ∞

0

Cµ(ze−t)dt.

and for µ ∈ I(Rd).

CGµ(z) =

∫ 1

0

Cµ(zh∗(s))ds.

12



Let µ ∈ Ilog(Rd). We have, for z ∈ Rd,

CΦGµ(z) =

∫ ∞

0

CGµ(e−tz)dt =

∫ ∞

0

dt

∫ 1

0

Cµ(h∗(s)e−tz)ds

CGΦµ(z) =

∫ 1

0

CΦµ(h∗(s)z)ds =

∫ 1

0

ds

∫ ∞

0

Cµ(e−th∗(s)z)dt.

We claim that∫ ∞

0

dt

∫ 1

0

|Cµ(h∗(s)e−tz)|ds =

∫ ∞

0

dt

∫ ∞

−∞
|Cµ(ue−tz)|φ(u)du < ∞. (4.1)

Note that Gµ is symmetric and it is unchanged even if we replace µ by µ̄(B) =

2−1(µ(B) + µ(−B)). (See [6].) Hence, without loss of generality, we assume µ is

symmetric. Thus to show (4.1), it is enough to show that∫ ∞

0

dt

∫ ∞

0

|Cµ(ue−tz)|e−u2/2du < ∞. (4.2)

However, in [2] (Equation (4.5)), it was shown that∫ ∞

0

e−udu

∫ ∞

0

|Cµ(ue−tz)|dt < ∞.

A similar calculation works also for getting (4.2). Thus

CΦGµ(z) =

∫ ∞

0

dt

∫ 1

0

Cµ(ze−th∗(s))ds

= −
∫ ∞

0

dt

∫ ∞

−∞
Cµ(ze−tv)dh(v)

=

∫ ∞

0

dt

∫ ∞

0

Cµ(ze−tv)2φ(v)dv

= 2

∫ ∞

0

φ(v)dv

∫ ∞

0

Cµ(ze−tv)dt

= 2

∫ ∞

0

φ(v)dv

∫ v

0

Cµ(zs)s−1ds

= 2

∫ ∞

0

Cµ(zs)s−1ds

∫ ∞

s

φ(v)dv,

where the change of the order of integrals is assured by (4.1) and (4.2). Thus we have

CΦGµ(z) = −
∫ ∞

0

Cµ(zs)da(s),

and hence

CΦGµ(z) =

∫ ∞

0

Cµ(za∗(t))dt.

The form of ν̃ is a direct consequence of a general result on the Lévy measure of

stochastic integral with respect to Lévy process. This concludes the proof of (iii). ¤
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Proof of (iv). We first show that the radial component of the Lévy measure of ΦGµ

satisfies (1.1). We have

ν̃(B) = νΦGµ(B) =

∫ ∞

0

νGµ(etB)dt

=

∫ ∞

0

dt

∫

S

λ(dξ)

∫ ∞

0

1etB(rξ)gξ(r
2)dr,

where λ is a probability measure appearing in the polar decomposition of ν and gξ is

the radial component of νµ. Then

ν̃(B) =

∫

S

λ(dξ)

∫ ∞

0

gξ(r
2)dr

∫ ∞

0

1B(e−trξ)dt

=

∫

S

λ(dξ)

∫ ∞

0

gξ(r
2)dr

∫ r

0

1B(yξ)y−1dy

=

∫

S

λ(dξ)

∫ ∞

0

1B(yξ)y−1dy

∫ ∞

y

gξ(r
2)dr

=:

∫

S

λ(dξ)

∫ ∞

0

1B(yξ)ν̃ξ(dy),

where

ν̃ξ(dy) =

(
y−1

∫ ∞

y

gξ(r
2)dr

)
dy.

This ν̃ξ satisfies
∫∞

0
(1 ∧ y2)ν̃ξ(dy) < ∞. For

∫ ∞

0

(1 ∧ y2)ν̃ξ(dy)

=

∫ 1

0

ydy

∫ ∞

y

gξ(r
2)dr +

∫ ∞

1

y−1dy

∫ ∞

y

gξ(r
2)dr

=

∫ 1

0

gξ(r
2)dr

∫ r

0

ydy +

∫ ∞

1

gξ(r
2)dr

∫ 1

0

ydr +

∫ ∞

1

gξ(r
2)dr

∫ r

1

y−1dy < ∞,

where the last integral is finite because ν is the Lévy measure of a µ ∈ Ilog(Rd). Put

g̃ξ(x) =

∫ ∞

x1/2

gξ(r
2)dr

We then have
d

dx
g̃ξ(x) = −2−1x−1/2gξ(x)

Since gξ and x−1/2 are completely monotone, x−1/2gξ(x) is completely monotone.

Thus g̃ξ is completely monotone. Hence

ν̃ξ(dy) = g̃ξ(y
2)y−1dy,

where g̃ξ is completely monotone. Thus the Lévy measure of µ̃ is that of ΦGµ and

thus µ̃ belongs to the class M(Rd). Thus M(Rd) ⊃ G(L(Rd)).
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The last equality is a consequence of (i) and (iii). Namely, by (i),

G(Ilog(Rd)) = G(Rd) ∩ Ilog(Rd).

Thus by (iii).

ΦG(Ilog(Rd)) = Φ(G(Rd)∩Ilog(Rd)) =

{
L

(∫ ∞

0

a∗(t)dX
(µ)
t

)
, µ ∈ Ilog(Rd) ∩ Isym(Rd)

}
.

It remains to show M(Rd) 6= G(L(Rd)). It is enough to show it for d = 1.

Consider a Lévy measure ν(dr) = φ(r)|r|−1dr. Then the corresponding infinitely

divisible distribution µ belongs to M(R). Suppose µ ∈ G(L(R)). Then, by (iii), ν

also satisfies

ν(B) =

∫ ∞

0

ν0(s
−1B)h(s)s−1ds,

where h(s) =
∫∞

s
φ(x)dx and ν0 is a symmetric Lévy measure. Consider B ∈

B((0,∞)). Then we have

ν(B) =

∫ ∞

0

∫

R
1B(sx)ν0(dx)h(s)s−1 ds

=

∫ ∞

0

∫ ∞

0

1B(r)h(rx−1)r−1 drν0(dx).

Thus

ν(dr) =

(∫ ∞

0

h(rx−1)ν0(dx)

)
r−1dr, r > 0.

By our assumption, for any r > 0,

φ(r) =

∫ ∞

0

h(rx−1) ν0(dx).

Let h > 0 and consider

1

h
(φ(r + h)− φ(r)) =

∫ ∞

0

1

h

(
h((r + h)x−1)− h(rx−1)

)
ν0(dx). (4.3)

We have

|h((r + h)x−1)− h(rx−1)| = φ((r + θh)x−1)hx−1 ≤ φ(rx−1)hx−1,

where 0 < θ < 1. Thus we can interchange the limit as h → 0 and the integral in

(4.3), and we get

−rφ(r) = −
∫ ∞

0

φ(rx−1)x−1 ν0(dx), for any r > 0.

Changing variable from r to r1/2, we get

r1/2φ(r1/2) =

∫ ∞

0

φ(r1/2x−1)x−1 ν0(dx).

15



The right hand side is completely monotone, but the left had side is not. This

contradicts our assumption that µ ∈ G(L(R)). The proof of (iv) is now completed. ¤

5. More about the classes M(R) and G(L(R)) when d = 1

We first note that

G(L(Rd)) = {µ ∈ Isym(Rd) : νµ(B) = E[ν0(Z
−1B)], B ∈ B(Rd \ {0}), (5.1)

for the Lévy measure ν0 of µ0 ∈ L(Rd)}.
This follows from Remark 4.2 (iii). When d = 1, we also know that µ is of type G if

and only if µ = L(V 1/2Z) for some infinitely divisible nonnegative random variable

V independent of the standard normal random variable Z. That is, µ is a variance

mixture of normal distributions. The goal here is to characterize the distribution of

the random variance V in the case of µ ∈ M(R). We begin with the following.

Proposition 5.1. µ ∈ G(L(R)) if and only if µ = L(V 1/2Z) with L(V ) ∈ L(R+).

Proof. The “only if” part: Suppose µ ∈ G(L(R)). Since µ ∈ G(R), there exists V

such that µ = L(V 1/2Z) and L(V ) ∈ I(R+). Also from (5.1), there exists a Lévy

measure ν0 of an element in L(R) such that νµ(B) = E[ν0(Z
−1B)]. It is known ([5])

that for every x > 0,

ν0([x,∞)) = 2−1νV ([x2,∞)). (5.2)

Since ν0 is the Lévy measure of some µ0 ∈ L(R),

ν0(dx) = k0(x)x−1dx, x > 0, (5.3)

for some nonincreasing function k0. It follows from (5.2) and (5.3) that∫ ∞

x

k0(y)y−1dy = 2−1

∫ ∞

x2

νV (dy), x > 0.

By the change of variables u = y2 on the left hand side above, we have

2−1

∫ ∞

x2

k0(u
1/2)u−1du = 2−1

∫ ∞

x2

νV (dy), x > 0.

Thus, we have

νV (dy) = k1(y)y−1dy,

where k1(y) = k0(y
1/2) is nonincreasing. Hence L(V ) ∈ L(R+).

The “if” part: Suppose µ = L(V 1/2Z) and L(V ) ∈ L(R+). Then there exits a

nonincreasing function k1(y) such that

νV (dy) = k1(y)y−1dy.
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Then by (5.2), ∫ ∞

x

ν0(dy) = 2−1

∫ ∞

x2

k1(y)y−1dy

=

∫ ∞

x

k1(u
2)u−1du, x > 0.

Thus, ν0(dy) = k0(y)y−1dy, where k0(y) = k1(y
2) is nonincreasing. Hence ν0 is the

Lévy measure of some µ0 ∈ L(R). Since νµ(B) = E[ν0(Z
−1B)], where ν0 is defined

by (5.2) from νV , we have µ ∈ G(L(R)). This completes the proof. ¤

We have the following.

Theorem 5.2. µ ∈ M(R) if and only if µ = L(V 1/2Z), where L(V ) ∈ I(R+) has an

absolutely continuous Lévy measure νV of the form

νV (dr) = `(r)r−1 dr, r > 0. (5.4)

The function ` is given by

`(r) =

∫ ∞

r

(x− r)−1/2 ρ(dx), (5.5)

where ρ is a measure on (0,∞) satisfying the integrability condition
∫ 1

0

x1/2 ρ(dx) +

∫ ∞

1

(1 + log x)x−1/2 ρ(dx) < ∞. (5.6)

Proof. (i) The “only if” part: Suppose µ ∈ M(R). Since M(R) ⊂ G(R), we have

µ = L(V 1/2Z) for some V ∈ I(R+). Thus, we get for z ∈ R,

E
[
eizV 1/2Z

]
= E

[
e−V z2/2

]

= exp

{
−2−1Az2 +

∫ ∞

0+

(e−vz2/2 − 1) νV (dv)

}

= exp

{
−2−1Az2 +

∫ ∞

0+

νV (dv)

∫ ∞

−∞
(eizv1/2u − 1)φ(u) du

}

= exp

{
−2−1Az2 +

∫ ∞

−∞
(eizx − 1)dx

∫ ∞

0+

φ(v−1/2x)v−1/2 νV (dv)

}
,

where A ≥ 0. Therefore, the Lévy measure νµ of µ is of the form

νµ(dx) =

(∫ ∞

0+

φ(v−1/2x)v−1/2 νV (dv)

)
dx. (5.7)

By the definition, µ ∈ M(R) if and only if νµ(dx) = |x|−1g(x2)dx, where g is com-

pletely monotone. Thus, g can be written as

g(r) =

∫ ∞

0

e−ry/2 Q(dy), r > 0,
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for some measure Q on (0,∞). By (5.7), we get
∫ ∞

0+

φ(v−1/2x)v−1/2 νV (dv) = |x|−1g(x2). (5.8)

Since

r−1/2 = (2π)−1/2

∫ ∞

0

e−rw/2w−1/2 dw, r > 0,

we obtain

r−1/2g(r) = (2π)−1/2

∫ ∞

0

∫ ∞

0

e−r(w+y)/2w−1/2 dwQ(dy)

= (2π)−1/2

∫ ∞

0

Q(dy)

∫ ∞

y

e−ru/2(u− y)−1/2 du

= (2π)−1/2

∫ ∞

0

e−ru/2du

∫ u

0

(u− y)−1/2 Q(dy).

Taking x = r1/2 > 0 in (5.8), we get

(2π)−1/2

∫ ∞

0+

e−r/2vv−1/2 νV (dv) = (2π)−1/2

∫ ∞

0

e−ru/2du

∫ u

0

(u− y)−1/2 Q(dy). (5.9)

Let

ρ(dx) = −x1/2Q(d(x−1)).

Then `(r) in (5.5) becomes

`(r) = −
∫ ∞

r

(x− r)−1/2x1/2Q(d(x−1))

=

∫ r−1

0

(y−1 − r)−1/2y−1/2Q(dy)

=

∫ r−1

0

(1− yr)−1/2Q(dy)

= r−1/2

∫ r−1

0

(r−1 − y)−1/2Q(dy).

Thus by (5.9),
∫ ∞

0+

e−r/2vv−1/2 νV (dv) =

∫ ∞

0

e−ru/2u−1/2`(u−1) du

or ∫ ∞

0+

e−r/2vv−1/2 νV (dv) =

∫ ∞

0

e−r/2vv−3/2`(v) dv, r > 0.

Therefore

v−1/2 νV (dv) = v−3/2`(v) dv, v > 0,

which yields (5.4).
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The integrability condition (5.6) for ρ is obtained from the fact that

∞ >

∫

R
(x2 ∧ 1) νµ(dx) =

∫

R
(|x| ∧ |x|−1)g(x2)dx.

For, this yields that

∫ 1

0

xdx

∫ ∞

0

e−x2y/2 Q(dy) < ∞ and

∫ ∞

1

x−1dx

∫ ∞

0

e−x2y/2 Q(dy) < ∞,

and hence

∫ ∞

0

[
y−1(1− e−y/2) + 2−1

∫ ∞

y

u−1e−u/2 du

]
Q(dy) < ∞.

It is obvious that the above condition is equivalent to

∫ 1

0

(1 + log y−1)Q(dy) +

∫ ∞

1

y−1Q(dy) < ∞. (5.10)

On the other hand,

∫ 1

0

x1/2ρ(dx) = −
∫ 1

0

xQ(d(x−1)) =

∫ ∞

1

y−1Q(dy)

and

∫ ∞

1

(1 + log x)x−1/2ρ(dx) = −
∫ ∞

1

(1 + log x)Q(d(x−1)) =

∫ 1

0

(1 + log y−1)Q(dy).

Thus, we get (5.6) from (5.10). The “only if” part is thus proved.

(ii) The “if” part. Suppose µ = L(V 1/2Z) and the Lévy measure νV of V satisfies

(5.4)–(5.6).

We first claim that the integrability condition (5.6) implies that νV is really a

Lévy measure on (0,∞) of a positive infinitely divisible random variable, namely it

satisfies
∫ ∞

0

(r ∧ 1)νV (dr) < ∞. (5.11)

We have

∫ ∞

0

(r ∧ 1)νV (dr) =

∫ 1

0

rνV (dr) +

∫ ∞

1

νV (dr).
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As to the first integral, we have
∫ 1

0

rνV (dr) =

∫ 1

0

`(r)dr =

∫ 1

0

dr

∫ ∞

r

(x− r)−1/2ρ(dx)

=

∫ 1

0

ρ(dx)

∫ x

0

(x− r)−1/2dr +

∫ ∞

1

ρ(dx)

∫ 1

0

(x− r)−1/2dr

= 2

∫ 1

0

x1/2ρ(dx) + 2

∫ ∞

1

(
x1/2 − (x− 1)1/2

)
ρ(dx)

≤ 2

∫ 1

0

x1/2ρ(dx) + C

∫ ∞

1

x−1/2ρ(dx),

where C > 0 is a constant. Next, as to the second integral,
∫ ∞

1

νV (dr) =

∫ ∞

1

r−1`(r)dr

=

∫ ∞

1

r−1dr

∫ ∞

r

(x− r)−1/2ρ(dx)

=

∫ ∞

1

ρ(dx)

∫ x

1

r−1(x− r)−1/2dr

=

∫ ∞

1

2x−1/2 log(x1/2 + (x− 1)1/2)ρ(dx).

Therefore, (5.6) implies (5.11). Furthermore, as we have already seen, νµ is expressed

as in (5.7). So, to complete the proof, it is enough to show that when we put

g(x2) = |x|
∫ ∞

0

φ(v−1/2x)v−1/2νV (dv),

then g(r) is completely monotone on (0,∞). However, for that, it is enough to follow

the proof of the “only if” part from the bottom to the top. This concludes the

proof. ¤

Example 5.3. Suppose that the measure ρ in Theorem 5.2 has the density and for

some 0 < α < 1,

ρ(dx) = x−α−1/2dx.

This ρ satisfies the integrability condition (5.6). Then `(r) in (5.5) turns out to be

`(r) = Kr−α, where K =

∫ ∞

1

(u− 1)−1/2u−α−1/2du < ∞.

Thus, νV in (5.4) is the Lévy measure of a positive α-stable distribution, and thus

µ ∈ G(L(R)) $M(R).

20



Example 5.4. (Another example of µ such that µ ∈ M(R) but µ /∈ G(L(R)).) Let ρ

in (5.5) satisfy (5.6) and that

ρ([r1, r2]) = 0 for some 0 < r1 < r2 < ∞
and ρ((r2,∞)) > 0. Then the resulting µ belongs to M(R). However,

`(r1) =

∫ ∞

r1

(x− r1)
−1/2ρ(dx) =

∫ ∞

r2

(x− r1)
−1/2ρ(dx)

<

∫ ∞

r2

(x− r2)
−1/2ρ(dx) = `(r2).

Thus `(r) is not a nonincreasing function so that L(V ) /∈ L((0,∞)). It follows from

Proposition 5.1 that µ = L(V 1/2Z) /∈ G(L(R)).
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