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Abstract. It is known that in many cases distributions of exponential integrals

of Lévy processes are infinitely divisible and in some cases they are also selfdecom-

posable. In this paper, we give some sufficient conditions under which distributions

of exponential integrals are not only seldecomposable but furthermore are gener-

alized gamma convolutions. We also study exponential integrals of more general

independent increment processes. Several examples are given for illustration.

1. Introduction

Let (ξ, η) = {(ξt, ηt), t ≥ 0} be a bivariate càdlàg independent increment process.

In most cases, (ξ, η) is assumed as a bivariate Lévy process, but we also treat more

general cases where ξ or η is a compound sum process, which is not necessarily a

Lévy process but is another typical independent increment process. Our concern in

this paper is to examine distributional properties of the exponential integral

(1.1) V :=

∫

(0,∞)

e−ξt−dηt,

provided that this integral converges almost surely. More precisely, we are interested

in when L(V ), the law of V , is selfdecomposable and moreover is a generalized gamma

convolution.

We say that a probability distribution µ on R (resp. an R-valued random variable

X) is selfdecomposable, if for any b > 1 there exists a probability distribution µb (resp.
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a random variable Yb independent of X) such that

µ = Db−1(µ) ∗ µb, (resp. X
d
= b−1X + Yb),

where Da(µ) means the distribution induced by Da(µ)(aB) := µ(B) for B ∈ B(R), ∗
is the convolution operator and

d
= denotes equality in distribution. Every selfdecom-

posable distribution is infinitely divisible. Some well-known distributional properties

of non-trivial selfdecomposable distributions are absolute continuity and unimodality,

(see Sato [17] p.181 and p.404).

First we review existing results on L(V ). Bertoin et al. [3] (in the case when

η = {ηt} is a one-dimensional Lévy process) and Kondo et al. [11] (in the case when

η is a multi-dimensional Lévy process) showed that if ξ = {ξt} is a spectrally negative

Lévy process satisfying limt→∞ ξt = +∞ a.s. and if the integral (1.1) converges a.s.,

or equivalently, if
∫
R
log+ |y|νη(dy) < ∞ for the Lévy measure νη of η1, then L(V ) is

selfdecomposable.

On the other hand, there is an example of non-infinitely divisible L(V ), which is

due to Samorodnitsky, (see Klüppelberg et al. [10]). In fact if (ξt, ηt) = (St + at, t),

where {St} is a subordinator and a > 0 some constant, then the support of L(V ) is
bounded so that L(V ) is not infinitely divisible.

Recently, Lindner and Sato [13] considered the exponential integral∫
(0,∞)

exp (−(log c)Nt−) dYt =
∫
(0,∞)

c−Nt−dYt, c > 0, where {(Nt, Yt)} is a bivari-

ate compound Poisson process whose Lévy measure is concentrated on (1, 0), (0, 1)

and (1, 1), and showed a necessary and sufficient condition for the infinite divisibil-

ity of L(V ). They also pointed out that L(V ) is always c−1-decomposable, namely

there exists a probability distribution ρ such that µ = Dc−1(µ) ∗ ρ. Note that a c−1-

decomposable distribution is not necessarily infinitely divisible, unless ρ is infinitely

divisible. In their second paper (Lindner and Sato [14]), they also gave a condition un-

der which L(V ), generated by a bivariate compound Poisson process {(Nt, Yt)} whose

Lévy measure is concentrated on (1, 0), (0, 1) and (1, c−1), is infinitely divisible.

For other distributional properties of exponential integrals, like the tail behavior,

see, e.g.Maulik and Zwart [15], Rivero [16] and Behme [2].

In this paper we focus on “Generalized Gamma Convolutions” (GGCs, for short)

to get more explicit distributional informations of V than selfdecomposability.
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Throughout this paper, we say that for r > 0 and λ > 0 a random variable γr,λ

has a gamma(r, λ) distribution if its probability density function f on (0,∞) is

f(x) =
λr

Γ(r)
xr−1e−λx.

A gamma(1, λ) distribution is an exponential distribution with parameter λ > 0.

When we do not have to emphasize the parameters (r, λ), we just write γ for a

gamma random variable.

The class of GGCs is defined to be the smallest class of distributions on the pos-

itive half line that contains all gamma distributions and is closed under convolution

and weak convergence. By including gamma distributions on the negative real axis,

we obtain the class of distributions on R which will be called “Extended Generalized

Gamma Convolutions” (EGGCs, for short). We refer to Bondesson [5] and Steutel

and van Harn [18] for many properties of GGCs and EGGCs with relations among

other subclasses of infinitely divisible distributions.

One well-known concrete example of exponential integrals is the following. When

(ξt, ηt) = (Bt + at, t) with a standard Brownian motion {Bt} and a drift a > 0, the

law of (1.1) equals L (1/(2γ)) which is GGC (and thus is selfdecomposable).

When choosing ξ to be deterministic, i.e. (ξt, ηt) = (t, ηt), the exponential in-

tegral (1.1) is defined and is an EGGC if and only if η admits a finite log-moment

(needed for the convergence) and L(η1) is included in the Goldie-Steutel-Bondesson

Class, a superclass of EGGC as defined e.g. in Barndorff-Nielsen et al. [1]. This fact

follows directly from [1, Eq. (2.28)]. In the same paper the authors characterized

the class of GGCs by using stochastic integrals with respect to Lévy processes as

follows. Let e(x) =
∫∞

x
u−1e−udu, x > 0, and let e∗(·) be its inverse function. Then

L
(∫

(0,∞)
e∗(s)dηs

)
is GGC if η is a Lévy process and L(η1) has a finite log-moment.

In this paper, via concrete examples, we investigate distributional properties of

exponential integrals connected with GGCs.

The paper is organized as follows. In Section 2 we give some preliminaries. In

Section 3 we consider exponential integrals for two independent Lévy processes ξ and

η such that ξ or η is a compound Poisson process, and construct concrete examples

related to our question. In the special case that both ξ and η are compound Poisson

processes, we also allow dependence between the two components of (ξ, η). In Section

4 we consider exponential integrals for independent increment processes such that ξ
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and η are independent and one is a compound sum process (which is not necessarily

a Lévy process) while the other is a Lévy process.

2. Preliminaries

The class of all infinitely divisible distributions on R (resp. R+) is denoted by

I(R) (resp. I(R+)). We denote the class of selfdecomposable distributions on R

(resp. R+) by L(R) (resp. L(R+)). The class of EGGCs on R (resp. GGCs on

R+) is denoted by T (R) (resp. T (R+)). The moment generating function of a ran-

dom variable X and of a distribution µ are written as LX and Lµ, respectively. If X

is positive and µ has support in R+, LX and Lµ coincide with the Laplace transforms.

We are especially interested in distributions on R+. The class T (R+) is charac-

terized by the Laplace transform as follows: A probability distribution µ is GGC if

and only if there exist a ≥ 0 and a measure U satisfying
∫

(0,1)

| log x−1|U(dx) <∞ and

∫

(1,∞)

x−1U(dx) <∞,

such that the Laplace transform Lµ(z) can be uniquely represented as

(2.1) Lµ(u) =

∫

[0,∞)

e−uxµ(dx) = exp

{
−au+

∫

(0,∞)

log

(
x

x+ u

)
U(dx)

}
.

Another class of distributions which we are interested in is the class of distribu-

tions onR+ whose densities are hyperbolically completely monotone (HCM, for short).

Here we say that a function f(x) on (0,∞) with values in R+ is HCM if for every

u > 0, the mapping f(uv)·f(u/v) is completely monotone with respect to the variable

w = v + v−1, v > 0. Examples of HCM functions are xβ (β ∈ R), e−cx (c > 0) and

(1+cx)−α (c > 0, α > 0). The class of all distributions on R+ whose probability den-

sities are HCM is denoted by H(R+). Note that H(R+) ⊂ T (R+) ⊂ L(R+) ⊂ I(R+).

For illustration we give some examples. Log-normal distributions are in H(R+)

[5, Example 5.2.1]. So these are also GGCs. Positive strictly stable distributions

with Laplace transform L(u) = exp(−uα) for α ∈ {1/2, 1/3, . . .} are in H(R+) [5,

Example 5.6.2] while they are GGCs for all α ∈ (0, 1] [18, Proposition 5.7]. Let

Y = exp(γr,λ) − 1. If r ≥ 1, then L(Y ) is in H(R+), but if r < 1, L(Y ) is not in

H(R+) [5, p. 88]. But L(Y ) or equivalently L(exp(γr,λ)) is always in T (R+), indepen-

dent of the value of r [5, Theorem 6.2.3]. Remark that by treating H(R+) we cannot

replace exp(γr,λ)−1 by exp(γr,λ). Namely, set r = 1 and observe that the probability
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density function λ(x + 1)−λ−11[0,∞)(x) is HCM, but the probability density function

λx−λ−11[1,∞)(x) is not HCM. It follows from this that L(exp(γ1,λ) − 1) is in H(R+)

but L(exp(γ1,λ)) is not in H(R+).

In addition, we also investigate the modified HCM class denoted by H̃(R), which

gives some interesting examples of L(V ) on R. The class H̃(R) is characterized to be

the class of distributions of random variables
√
XZ, where L(X) ∈ H(R+) and Z is

a standard normal random variable (see Bondesson [5, p. 115]). By the definition,

any distribution in H̃(R) is a type G distribution, which is the distributon of the

variance mixture of a standard normal random variable. Note that H(R+) 6⊆ H̃(R)

and H̃(R) ⊂ T (R). As will be seen in Proposition 2.1, there are nice relations between

H̃(R) and T (R) in common with those of H(R+) and T (R+).

Here we state some known facts that we will use later.

Proposition 2.1 (Bondesson [5] and Steutel and van Harn [18]).

(1) A continuous function L(u), u > 0, with L(0+) = 1 is HCM if and only if it is

the Laplace transform of a GGC.

(2) If L(X) ∈ H(R+), L(Y ) ∈ T (R+) and X and Y are independent, then L(XY ) ∈
T (R+).

(3) Suppose that L(X) ∈ H(R+), L(Y ) ∈ T (R) and that X and Y are independent.

If L(X) is symmetric, then L(
√
XY ) ∈ T (R).

(4) Suppose that L(X) ∈ H̃(R) and L(Y ) ∈ T (R) and that X and Y are independent.

If L(Y ) is symmetric, then L(XY ) ∈ T (R).

(5) If L(X) ∈ H̃(R), then L(|X|q) ∈ H(R+) for all |q| ≥ 2, q ∈ R. Furthermore,

L(|X|qsign(X)) ∈ H̃(R) for all q ∈ N, q 6= 2, but not always for q = 2.

Remark 2.2. Notice that the distribution of a sum of independent random variables

with distributions in H(R+) does not necessarily belong to H(R+). See Bondesson

[5], p.101.

Some distributional properties of GGCs are stated in the following proposition

[5, Theorems 4.1.1. and 4.1.3.].

Proposition 2.3.

(1) The probability density function of a GGC without Gaussian part satisfying 0 <
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∫
(0,∞)

U(du) = β < ∞ with the measure U as in (2.1) admits the representation

xβ−1h(x), where h(x) is some completely monotone function.

(2) Let f be the probability density of a GGC distribution without Gaussian part

satisfying 1 <
∫
(0,∞)

U(du) = β ≤ ∞. Let k be an integer such that k < β − 1. Then

the density f is continuously differentiable any times on (0,∞), and at 0 at least k

times differentiable with f (j)(0) = 0 for j ≥ k.

Examples of GGCs and the explicit calculation of their Lévy measure are found

in Bondesson [5] and James et al. [8].

Necessary and sufficient conditions for the convergence of (1.1) for bivariate Lévy

processes were given by Erickson and Maller [6]. More precisely, in their Theorem 2.1,

they showed that V converges a.s. if and only if for some ǫ > 0 such that Aξ(x) > 0

for all x > ǫ it holds

(2.2) lim
t→∞

ξt = ∞ a.s. and

∫

(eǫ,∞)

(
log y

Aξ(log y)

)
|νη((dy,∞)) + νη((−∞,−dy)| <∞.

Here Aξ(x) = aξ + νξ((1,∞)) +
∫
(1,x]

νξ((y,∞))dy while (ΣX , νX , aX) denotes the

Lévy-Khintchine triplet of an infinitely divisible random variable X .

3. Exponential integrals for Compound Poisson Processes

In this section we study exponential integrals of the form (1.1), where either ξ or

η is a compound Poisson process and the other is an arbitrary Lévy process. First we

assume the two processes to be independent, later we also investigate the case that

(ξ, η) is a bivariate compound Poisson processes.

3.1. Independent component case. We start with a general lemma which gives a

sufficient condition for distributions of perpetuities to be GGCs.

Lemma 3.1. Suppose A and B are two independent random variables such that

L(A) ∈ H(R+) and L(B) ∈ T (R+). Let (Aj, Bj), j = 0, 1, 2, . . . be i.i.d. copies of

(A,B). Then, given its a.s. convergence, the distribution of the perpetuity Z :=
∑∞

k=0

(∏k−1
i=0 Ai

)
Bk belongs to T (R+). Furthermore, if L(A) ∈ H̃(R), L(B) ∈ T (R)

and L(B) is symmetric, then L(Z) ∈ T (R).
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Proof. If we put

Zn :=

n∑

k=0

(
k−1∏

i=0

Ai

)
Bk,

then we can rewrite

Zn = B0 + A0(B1 + A1(B2 + · · ·+ An−2(Bn−1 + An−1Bn) · · · )).

Since An−1 and Bn are independent, L(An−1) ∈ H(R+) and L(Bn) ∈ T (R+), we get

L(An−1Bn) ∈ T (R+) by Proposition 2.1. Further Bn−1 and An−1Bn are independent

and both distributions belong to T (R+) and hence L(Bn−1 + An−1Bn) ∈ T (R+). By

induction, we can conclude that L(Zn) ∈ T (R+). Since the class T (R+) is closed

under weak convergence, the first part follows immediately. A similar argument with

(4) in Proposition 2.1 gives the second part. �

Case 1: The process ξ is a compound Poisson process

Proposition 3.2. Suppose that the processes ξ and η are independent Lévy processes

and further that ξt =
∑Nt

i=1Xi is a compound Poisson process with i.i.d. jump heights

Xi, i = 1, 2, . . . such that 0 < E[X1] < ∞, L(e−X1) ∈ H(R+) and η has finite log-

moment E log+ |η1| and it holds L(ητ ) ∈ T (R+) for an exponential random variable

τ independent of η having the same distribution as the waiting times of N . Then the

integral (1.1) converges a.s. and

L
(∫

(0,∞)

e−ξt−dηt

)
∈ T (R+).

Furthermore, if L(e−X1) ∈ H̃(R), L(ητ ) ∈ T (R) and L(ητ ) is symmetric, then L(V ) ∈
T (R).

Proof. Convergence of the integral follows from (2.2).

Set T0 = 0 and let Tj , j = 1, 2, . . . be the time of the j-th jump of {Nt, t ≥ 0}.
Then we can write

∫

(0,∞)

e−ξt−dηt =

∞∑

j=0

∫

(Tj ,Tj+1]

e−
∑j

i=1
Xidηt =

∞∑

j=0

e−
∑j

i=1
Xi

∫

(Tj ,Tj+1]

dηt

=:

∞∑

j=0

(
j∏

i=1

Ai

)
Bj ,

where Ai = e−Xi and Bj =
∫
(Tj ,Tj+1]

dηt
d
= ηTj+1−Tj

. Now Lemma 3.1 yields the

conclusion. �
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In the following we first give some examples for possible choices of ξ fulfilling the

assumptions of Proposition 3.2 and then continue with examples for η. Hence any

combination of them yields an exponential integral which is a GGC.

Example 3.3 (The case when X1 is a normal random variable with positive mean).

We see that L(e−X1) is log-normal and hence is in H(R+).

Example 3.4 (The case when X1 is the logarithm of the power of a gamma random

variable). Let Y = γr,λ and X1 = c log Y for c ∈ R. Recall that L(log Y ) ∈ T (R)

and so L(cX1) = L(log Y c) ∈ T (R) for c ∈ R. Note that E[X1] = cψ(λ), where ψ(x)

the derivative of log Γ(x). If we take c ∈ R such that cψ(λ) > 0, we conclude that

L(e−X1) = L(γ−c
r,λ) ∈ H(R+).

Example 3.5 (The case when X1 is logarithm of some positive strictly stable random

variable). Let X1 = log Y be a random variable, where Y is a positive stable random

variable with parameter 0 < α < 1. Then X1 is in the class of EGGC when α =

1/n, n = 2, 3, . . . (see Bondesson [5, Example 7.2.5]) and

E[euX1 ] = E[Y u] =
Γ(1− u/α)

Γ(1− u)
.

It follows that E[X1] = − 1
α
ψ(1)+ψ(1) = (1−1/α)ψ(1) > 0 and L(e−X1) = L(Y −1) ∈

H(R+) by [5, Example 5.6.2].

Example 3.6 (The case when X1 is the logarithm of the ratio of two exponential

random variables). Let X1 = log(Y1/Y2), where Yj, j = 1, 2, are independent expo-

nential random variables with parameters λj > 0, j = 1, 2. The density function of

X1 is given by [5, Example 7.2.4]

f(x) =
1

B(λ1, λ2)

e−λ1x

(1 + e−x)λ1+λ2
, x ∈ R,

where B(·, ·) denotes the Beta-function. Now if E[X1] > 0 we can set X1 to be a

jump distribution of ξ. It is easy to see that L(e−X1) = L(Y2/Y1) ∈ H(R+) since

L(Yj) ∈ H(R+).

Example 3.7 (The case when η is nonrandom). When ηt = t, it holds that L(ητ ) =
L(τ) ∈ T (R+).

Example 3.8 (The case when η is a stable subordinator). The Laplace transform of

B := ητ with τ = γ1,λ is given by (see e.g. Steutel and van Harn [18, p.10])

LB(u) =
λ

λ− logLη(u)
.
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Now consider η to be a stable subordinator without drift. Then the Laplace transform

of η1 is given by Lη1(u) = exp{−uα}. Therefore we have

LB(u) =
λ

λ+ uα
.

This function is HCM, since λ
λ+u

is HCM by the definition and due to the fact that

the composition of an HCM function and xα, |α| ≤ 1, is also HCM (see [5, p. 68]).

Thus the Laplace transform of B is HCM by Proposition 2.1 and we conclude that

L(ητ ) is GGC.

Remark that if η admits an additional drift term, the distribution L(B) is not

GGC. This result was pointed out by Kozubowski [12].

Example 3.9 (The case when η is an inverse Gaussian Lévy process). We suppose

η to be an inverse Gaussian subordinator with parameters β > 0 and δ > 0. The

Laplace transform of ηt is

Lηt(u) = exp
(
−δt(

√
β2 + 2u− β)

)
.

Now by choosing the parameters satisfying λ ≥ δβ, we have, for B = ητ ,

LB(u) =
λ

λ− δβ + δ
√
β2 + 2u

.

This function is HCM by argumentation as in Example 3.8 with α = 1/2 and using

Property xi) in [5, p. 68].

Remark 3.10. Although the Lévy measure of ητ is known explicitly, it is an open

question whether the parameter of the exponentially distributed random variable τ

has an influence on the GGC-property of ητ , or not. Examples 3.7 and 3.8 lead to the

conjecture that there is no influence. So far, no counterexamples to this conjecture

are known to the authors.

Case 2: The process η is a compound Poisson process

In the following we assume the integrator η to be a compound Poisson process,

while ξ is an arbitrary Lévy process, independent of η. We can argue similarly as

above to obtain the following result.

Proposition 3.11. Let ξ and η be independent and assume ηt =
∑Nt

i=1 Yi to be a

compound Poisson process with i.i.d. jump heights Yi, i = 1, 2, . . .. Suppose that
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E[ξ1] > 0, E log+ |η1| < ∞, L(Y1) ∈ T (R+) and L(e−ξτ ) ∈ H(R+) for an exponen-

tially distributed random variable τ independent of ξ having the same distribution as

the waiting times of N . Then the integral (1.1) converges a.s. and it holds that

L
(∫

(0,∞)

e−ξt−dηt

)
∈ T (R+).

Furthermore, if L(e−ξτ ) ∈ H̃(R), L(Y1) ∈ T (R) and L(Y1) is symmetric, then L(V ) ∈
T (R).

Proof. Convergence of the integral is guaranteed by (2.2). Now set T0 = 0 and let

Tj , j = 1, 2, . . . be the jump times of {Nt, t ≥ 0}. Then we have
∫

(0,∞)

e−ξt−dηt =
∞∑

j=1

e−ξTjYj =
∞∑

j=1

e−(ξTj−ξTj−1
) · · · e−(ξT1−ξT0 )Yj

=
∞∑

j=1

(
j∏

i=1

e−(ξTi−ξTi−1
)

)
Yj =:

∞∑

j=1

(
j∏

i=1

Ai

)
Bj,

where Ai = e−(ξTi−ξTi−1
) d
= e−ξTi−Ti−1 and Bj = Yj. Remark that the proof of Lemma

3.1 remains valid even if the summation starts from j = 1. Hence the assertion follows

from Lemma 3.1. �

3.2. Dependent component case. In this subsection, we generalize a model of

Lindner and Sato [13] and study to which class L(V ) belongs.

Let 0 < p < 1. Suppose that (ξ, η) is a bivariate compound Poisson process with

parameter λ > 0 and normalized Lévy measure

ν(dx, dy) = pδ0(dx)ρ0(dy) + (1− p)δ1(dx)ρ1(dy),

where ρ0 and ρ1 are probability measures on (0,∞) and [0,∞), respectively, such

that ∫

(1,∞)

log ydρ0(y) <∞ and

∫

(1,∞)

log ydρ1(y) <∞.

For the bivariate compound Poisson process (ξ, η) we have the following representation

(see Sato [17] p.18):

(ξt, ηt) =
Nt∑

k=0

Sk =

(
Nt∑

k=0

S
(1)
k ,

Nt∑

k=0

S
(2)
k

)
,
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where S
(1)
0 = S

(2)
0 = 0 and

{
Sk =

(
S
(1)
k , S

(2)
k

)}∞

k=1
is a sequence of two-dimensional

i.i.d. random variables. It implies that the projections of the compound Poisson pro-

cess on R
2 are also compound Poisson processes. Precisely in the given model, since

P(S
(1)
1 = 0) = p and P(S

(1)
1 = 1) = 1− p, the marginal process ξ is a Poisson process

with parameter (1 − p)λ > 0. Note that S
(1)
k and S

(2)
k may be dependent for any

k ∈ N. In this case, ρi(B) is equal to P(S
(2)
k ∈ B|S(1)

k = i) for i = 0, 1 and B ∈ B(R).

Example 3.12. In Lindner and Sato [13] the authors considered the bivariate com-

pound Poisson process with parameter u + v + w, u, v, w ≥ 0 and normalized Lévy

measure

ν(dx, dy) =
v

u+ v + w
δ0(dx)δ1(dy)+

u+ w

u+ v + w
δ1(dx)

(
u

u+ w
δ0(dy) +

w

u+ w
δ1(dy)

)
.

So in their setting p = v
u+v+w

, ρ0 = δ1 and ρ1 =
u

u+w
δ0 +

w
u+w

δ1.

In the following theorem, we give a sufficient condition for L(V ), given by (1.1)

with (ξ, η) as described above, to be GGC.

Theorem 3.13. If the function
(1−p)Lρ1

(u)

1−pLρ0
(u)

is HCM, then L(V ) is GGC.

Proof. Define Tξ and M to be the first jump time of the Poisson process ξ and the

number of the jumps of the bivariate compound Poisson process (ξ, η) before Tξ,

respectively. Due to the strong Markov property of the Lévy process (ξ, η), we have
∫

(0,∞)

exp(−ξs−)dηs =
∫

(0,Tξ]

exp(−ξs−)dηs +
∫

(Tξ ,∞]

exp(−ξs−)dηs

= ηTξ
+

∫

(0,∞)

exp(−ξTξ+s−)dηs+Tξ

= ηTξ
+ exp(−ξTξ

)

∫

(0,∞)

exp(−(ξTξ+s− − ξTξ
))d((η(s+Tξ) − ηTξ

) + ηTξ
)

d
= ηTξ

+ e−1

∫

(0,∞)

exp(−ξ̃s−)dη̃s,

where the process (ξ̃, η̃) is independent of {(ξt, ηt), t ≤ Tξ} and has the same law as

(ξ, η). Therefore, we have

Lµ(u) = Lµ(e
−1u)Lρ(u),(3.1)

with µ = L(V ) and ρ denoting the distribution of ηTξ
. Thus µ is e−1-decomposable

and it follows that

Lµ(u) =
∞∏

n=0

Lρ(e
−nu).

11



In the given setting, we have

ηTξ
=

(
M∑

k=0

S
(2)
k

)
+ S

(2)
M+1,

where M is geometrically distributed with parameter p, namely,

P(M = k) = (1− p)pk for any k ∈ N0.

Hence we obtain

Lρ(u) = E
[
exp(−uηTξ

)
]

= E

[
E

[
exp

(
−u
(

M∑

k=0

S
(2)
k + S

(2)
M+1

))∣∣∣M
]]

= E
[
(Lρ0(u))

M
Lρ1(u)

]

= (1− p)Lρ1(u)
∞∑

k=0

(pLρ0(u))
k

=
(1− p)Lρ1(u)

1− pLρ0(u)
.

The class of HCM functions is closed under scale transformation, multiplication and

limit. Therefore Lµ(u) is HCM if Lρ(u) is HCM and hence µ is GGC if ρ is GGC by

Proposition 2.1 (6). As a result, µ is GGC if
(1−p)Lρ1

(u)

1−pLρ0
(u)

is HCM. �

A distribution with the Laplace transform (1−p)
1−pLρ0

(u)
is called a compound geo-

metric distribution. It is compound Poisson, because every geometric distribution is

compound Poisson with Lévy measure given by

νp({k}) = − 1

log(1− p)

1

k + 1
pk+1, k ∈ N

(see p. 147 in Steutel and van Harn [18]). Since HCM functions are closed under

multiplication we have the following.

Corollary 3.14. If ρ1 and the compound geometric distribution of ρ0 are GGCs, then

so is L(V ).

In addition, we observe the following.

Corollary 3.15.

(1) For any c > 1, the distribution µc = L
(∫

(0,∞)
c−ξs−dηs

)
is c−1-selfdecomposable.

Thus in the non-degenerate case it is absolutely continuous or continuous singular

(Wolfe [19]) and Theorem 3.13 holds true also for µc instead of µ.

12



(2) If ρ1 is infinitely divisible, then µc is also infinitely divisible.

(3) Let B(R+) be the Goldie-Steutel-Bondesson class, which is the smallest class that

contains all mixtures of exponential distributions and is closed under convolution and

weak convergence.

If (1−p)
1−pLρ0

(u)
is the Laplace transform of a distribution in B(R+), then µc is in B(R+).

Moreover µc will be a c−1-semi-selfdecomposable distribution.

About the definition and basic properties of semi-selfdecomposable distributions,

see [17]. The proof of (1) is obvious. For (2) remark that a distribution with Laplace

transform (1−p)
1−pLρ0

(u)
as compound Poisson distribution is always infinitely divisible.

Hence only ρ1 has influence on that property. The proof of (3) follows from the

characterization of the class B(R+) in Chapter 9 of [5] and our proof of Theorem

3.13.

Example 3.16. Let ρ1 be a GGC, i.e. Lρ1(u) is HCM. Then if (1−p)
1−pLρ0

(u)
is HCM, µ is

found to be GGC. For example, if ρ0 is an exponential random variable with density

f(x) = be−bx, b > 0, then 1
1−pLρ0

(u)
is HCM. To see this, for u > 0, v > 0, write

1

1− pLρ0(uv)

1

1− pLρ0(u/v)
=

1 + u
b
(v + v−1) + u2

b2

(1− p)2 + u
b
(v + v−1)(1− p) + u2

b2

=
1

1− p
+

p+
(
1− 1

1−p

)
u2

b2

(1− p)2 + u
b
(v + v−1)(1− p) + u2

b2

.

This is nonnegative and completely monotone as a function of v + v−1.

Example 3.17. In the case of Example 3.12, the Lévy measure of µc is

νµc
=

∞∑

n=0

∞∑

m=1

amδc−nm,

where am = 1
m
(qm−(−r/p)m). This Lévy measure is not absolutely continuous. Thus

µc is never GGC for any parameters u, v, w and c.

4. Exponential integrals for independent increment processes

We say that a process X = {Xt =
∑Mt

i=1Xi, t ≥ 0} is a compound sum process,

if the {Xi} are i.i.d. random variables, {Mt, t ≥ 0} is a renewal process and they

are independent. When {Mt} is a Poisson process, X is nothing but a compound

Poisson process and is a Lévy process. Unless {Mt} is a Poisson process, X is no

13



Lévy process. In this section we consider the case when either ξ or η is a com-

pound sum process and the other is an arbitrary Lévy process. Although (ξ, η) is

not a Lévy process, the exponential integral (1.1) can be defined and its distribution

can be infinitely divisible and/or GGC in many cases as we will show in the following.

Case 1: The process ξ is a compound sum process

First we give a condition for the convergence of the exponential integral (1.1)

when (ξ, η) is not a Lévy process.

Proposition 4.1. Suppose that (ξt, ηt)t≥0 is a stochastic process where ξ and η are

independent, η is a Lévy process and ξt =
∑Mt

i=1Xi is a compound sum process with

i.i.d. jump heights Xi, i = 1, 2, . . . and i.i.d. waiting times Wi. Then (1.1) converges

in probability to a finite random variable if and only if

(4.1) ξt → ∞ a.s. and

∫

(1,∞)

(
log q

Aξ(log q)

)
P (|ηW1

| ∈ dq) <∞

for Aξ(x) =
∫
(0,x)

P (X1 > u)du.

Proof. As argued in the proof of Proposition 3.2, we can rewrite the exponential

integral as perpetuity
∫

(0,∞)

e−ξt−dηt =

∞∑

j=0

(
j∏

i=1

Ai

)
Bj ,

where Ai = e−Xi and Bj
d
= ηWj

. By Theorem 2.1 of [7] the above converges a.s. to a

finite random variable if and only if
∏n

i=1Ai → 0 a.s. and
∫

(1,∞)

(
log q

A(log q)

)
P (|B1| ∈ dq) <∞

for A(x) =
∫
(0,x)

P (− logA1 > u)du. Using the given expressions for A1 and B1 in

our setting we observe that this is equivalent to (4.1). It remains to show that a.s.

convergence of the perpetuity implies convergence in probability of (1.1). Therefore

remark that ∫

(0,t]

e−ξs−dηs =

∫

(0,TMt
]

e−ξs−dηs + e
−ξTMt (ηt − ηTMt

)

where the first term converges to a finite random variable while the second converges

in probability to 0 since supt∈[TMt
,TMt+1

) |ηt − ηMt
| d
= supt∈[0,W1) |ηt|. �

Now we can extend Proposition 3.2 in this new setting as follows.
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Proposition 4.2. Suppose that the processes ξ and η are independent and that ξt =∑Mt

i=1Xi is a compound sum process with i.i.d. jump heights Xi, i = 1, 2, . . . and

i.i.d. waiting times Wi, i = 1, 2, . . . such that (4.1) is fulfilled. Suppose that L(e−X1) ∈
H(R+) and L(ητ ) ∈ T (R+) for τ being a random variable with the same distribution

as W1 and independent of η. Then

L
(∫

(0,∞)

e−ξt−dηt

)
∈ T (R+).

Furthermore, if L(e−X1) ∈ H̃(R), L(ητ ) ∈ T (R) and L(ητ ) is symmetric, then L(V ) ∈
T (R).

In the following we give some examples fulfilling the assumptions of Proposition

4.2.

Example 4.3 (The case when η is non-random and L(W1) is GGC). For the case

ηt = t, L(ητ ) belongs to T (R+) if and only if L(τ) does. Hence for all waiting times

which are GGC and for a suitable jump heights of ξ, we have L(V ) ∈ T (R+).

Example 4.4 (The case when η is a stable subordinator and L(W1) is GGC). Con-

sider η to be a stable subordinator having Laplace transform Lη(u) = exp{−uα} with

0 < α < 1. Then the Laplace transform of B := ητ is given by LB(u) = Lτ (u
α). This

function is HCM if and only if τ is GGC, since by Proposition 2.1, Lτ is HCM and

hence also its composition with xα. Thus whenever L(τ) = L(W1) is GGC, L(ητ ) is
GGC, too, fulfilling the assumption of Proposition 4.2.

Example 4.5 (The case when η is a standard Brownian motion and L(W1) is GGC).

Given that η is a standard Brownian motion, η1 has characteristic function Eeizη1 =

exp(−z2/2), which yields LB(u) = Lτ (u
2/2). We can not see L(B) ∈ T (R+) from

this, and in fact L(B) is in T (R) but not in T (R+) (see Bondesson [5, p. 117]). Then

using that η is symmetric, we can apply (4) in Proposition 2.1 and conclude that

L(V ) ∈ T (R) for suitable jump heights of ξ.

Example 4.6 (The case when η is a Lévy subordinator and L(W1) is a half normal

distribution). The 1/2-stable subordinator η and the standard half normal random

variable τ have densities, respectively, given by,

fηt(x) =
t

2
√
π
x−3/2e−t2/2x and fτ (x) =

√
2

π
e−x2/2, x > 0.
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These yield the density function of ητ as

fητ (x) =

∫
fηy(x)fτ (y)dy =

1√
2π

x−1/2

1 + x
.

Interestingly, this is an F distribution (see Sato [17, p.46]) and since a random variable

with an F distribution is constricted to be the quotient of two independent gamma

random variables, we have that L(ητ ) ∈ T (R+).

Case 2: The process ηt is a compound sum process

Again we start with a condition for the convergence of (1.1). It can be shown

similar to Proposition 4.1.

Proposition 4.7. Suppose ξ to be a Lévy process and that ηt =
∑Mt

i=1 Yi is a compound

sum process with i.i.d. jump heights Yi, i = 1, 2, . . . and i.i.d. waiting times Ui, i =

1, 2, . . .. Then (1.1) converges a.s. to a finite random variable if and only if

(4.2) ξt → ∞ a.s. and

∫

(1,∞)

(
log q

Aη(log q)

)
P (|Y1| ∈ dq) <∞

for Aη(x) =
∫
(0,x)

P (ξU1
> u)du.

In the same manner as before we can now extend Proposition 3.11 to the new

setting and obtain the following result.

Proposition 4.8. Let ξ and η be independent and assume ηt =
∑Mt

i=1 Yi to be a

compound renewal process with i.i.d. jump heights Yi, i = 1, 2, . . . and i.i.d. waiting

times Ui such that (4.2) holds. Suppose that L(Y1) ∈ T (R+) and L(e−ξτ ) ∈ H(R+)

for a random variable τ having the same distribution as U1 and being independent of

ξ. Then

L
(∫

(0,∞)

e−ξt−dηt

)
∈ T (R+).

Furthermore, if L(e−ξτ ) ∈ H̃(R), L(Y1) ∈ T (R) and L(Y1) is symmetric, then L(V ) ∈
T (R).

The following is a very simple example fulfilling the assumptions in Proposition

4.8.

Example 4.9 (The case when η is a random walk and ξ is a standard Brownian

motion with drift). Suppose ξt = Bt + at is a standard Brownian motion with drift

a > 0 and U1 is degenerated at 1. Then L(e−ξτ ) = L(e−ae−B1) is a scaled log-normal
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distribution and hence in H(R+). So for all GGC jump heights L(Y1), the exponential
integral is GGC.
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Lévy noise. (submitted).

[3] J. Bertoin, A. Lindner and R. Maller. On continuity properties of the law of
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