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In the proofs of Theorems 3.5, 3.6 in [2], we used Lemma 6.3 in [1], which
bounds the index of the Fitting ideal in terms of the class number. But the
proof of the lemma is not correct, more precisely, an exact sequence in the proof
of Lemma 6.4 in [1] (on page 64 line 19), does not hold in general. We thank
Takeshi Tsuji for giving us some comments on this.

In this erratum, we give, without using Lemma 6.3 in [1], a proof of Theorems
3.5, 3.6 in [2] (and also of Theorems 0.4, 0.6 in [1] whose proof used Lemma 6.3
in [1]).

For a discrete valuation ring R, we denote by ordR the normalized additive
valuation of R such that ordR(π) = 1 for a uniformizer π. For an R-module M ,
lengthR(M) denotes the length of M as an R-module. Let K/k be an abelian
extension as in §3 in [2]. Recall that we decomposed Gal(K/k) = ∆K × ΓK
where #∆K is prime to p, and ΓK is a p-group. For an arbitrary character ψ of
ΓK we denote by Kψ the fixed subfield of K by Kerψ, and by Oψ the discrete
valuation ring Zp[Imageψ] on which ΓK acts via ψ. Define Aψ := (AKψ )

ψ =
AKψ⊗Zp[ΓK ]Oψ, which is an Oψ[∆K ]-module. We also use the notation ψ for the
ring homomorphisms induced by ψ; ψ : Zp[Gal(K/k)] → Oψ[∆K ], ψ : Zp[ΓK ] →
Oψ, etc. For a character χ of ∆K and Zp[Gal(K/k)]-module M , we also use the
notationMχ, defined byMχ =M⊗Zp[∆K ]Oχ, which is now an Oχ[ΓK ]-module.
For a character χ of ∆K and a character ψ of ΓK , we regard χψ as a character of
Gal(K/k), and define Aχψ by Aχψ = Aψ ⊗Oψ[∆K ]Oχψ = (AKψ )

ψ ⊗Oψ[∆K ]Oχψ,
which is an Oχψ-module. This module also coincides with (AKψ )

χ⊗Oχ[ΓK ]Oχψ.
We begin with the following proposition.
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Proposition 0.1. We assume that an abelian extension K/k satisfies the same
conditions as that of Proposition 3.4 in [2]; namely, we assume that for every
prime p of k above p, p is unramified in K and the ramification index of p over
Q is odd, and that the µ-invariant of the cyclotomic Zp-extension of K is zero,
and that K/k satisfies the condition (Ap) (The condition (Ap) means that ΓK is
of the form ΓK = Pl1 ×· · ·×Plr where li’s are all ramifying primes of k in K/k
and Pli is the p-component of the inertia group of li for each i). In addition,
we also assume that K does not contain a primitive p-th root of unity. Let ψ be
a character of ΓK such that for every i with 1 ≤ i ≤ r, ψ|Pli

, the restriction of
ψ to Pli , is injective (faithful). Note that K/Kψ is an unramified extension.

For any ψ ∈ Γ̂K as above and any odd character χ ∈ ∆̂K , we have

lengthOχψ A
χψ = ordOχψ

(
L(0, (χψ)−1)

)
.

In particular, we also have

ψ
(
FittOχ[ΓK ](A

χ
Kχ

)
)
=

(
ψ(θχKχ/k)

)
.

where Kχ is the fixed subfield of K by Kerχ.

Proof. By Proposition 3.4 in [2], we have

FittOχ[ΓK ](A
χ
K) ⊂

(
ΘK/k ⊗ Zp

)χ
(1)

for all odd characters χ ∈ ∆̂K . Since [K : Kχ] is prime to p, as we mentioned
in the second paragraph of page 565 in [2], the usual norm argument shows
that AχK ≃ AχKχ and

(
ΘK/k ⊗ Zp

)χ
=

(
ΘKχ/k ⊗ Zp

)χ
. Furthermore, since

ΓKχ = ΓK and Kχ/Kχψ is an unramified extension, we have AχψKχ ≃ AχψKχψ by

Lemma 1.2 in [2] and
(
ΘKχ/k ⊗ Zp

)χψ
=

(
θχψKχψ/k

)
=

(
L(0, (χψ)−1)

)
. There-

fore, taking ψ of (1), we have, for all odd characters χ ∈ ∆̂K , FittOχψ (A
χψ) ⊂(

L(0, (χψ)−1)
)
, equivalently

lengthOχψ (A
χψ) ≥ ordOχψ

(
L(0, (χψ)−1)

)
. (2)

Changing subscripts, we may assume that Pl1 ≃ Z/pn1Z, . . . , Plr ≃ Z/pnrZ
and n1 ≥ . . . ≥ nr. We put F = Kψ, and K(∆) = KΓK , the fixed subfield of K

by ΓK . Since Imageψ = µpn1 ⊂ Q
×
p , we have ΓF := Gal(F/K(∆)) ≃ Z/pn1Z.

Let γ be a generator of ΓF and F1 the fixed subfield of F by ⟨γpn1−1⟩, namely
the unique subfield of F/K(∆) such that [F : F1] = p. We will show that the
following sequence is exact:

0 −→ AχF1
−→ AχF −→ AχψF −→ 0.

In fact, since F does not contain a primitive p-th root of unity by our as-
sumption, the natural map A−

F1
→ A−

F is injective, and therefore the map

AχF1
→ AχF is also injective. By the definition of ψ-quotient, we have AχψF ≃

AχF /(1 + γp
n1−1

+ γ2p
n1−1

+ · · · + γ(p−1)pn1−1

)AχF = AχF /NGal(F/F1)A
χ
F , which

implies that the map AχF → AχψF is surjective. Since the norm map A−
F → A−

F1
is
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surjective (cf. Lemma 1.2 in [2]), we have Image(AχF1
→ AχF ) = NGal(F/F1)A

χ
F .

This shows the exactness at the middle term of the above sequence.
Since Aχψ ≃ AχψF , the above exact sequence implies that

lengthOχ(A
χψ) = lengthOχ(A

χ
F )− lengthOχ(A

χ
F1
).

For two characters χ1, χ2 ∈ ∆̂K , we denote χ1 ∼ χ2 if these are Qp-conjugate
(cf. page 555 in [2]). Until the end of the proof of this proposition, we use the
following notation:

∑
χ (resp.

∑
χ/∼) means the sum which is taken over all odd

characters of ∆K (resp. taken over the equivalence classes of all odd characters
of ∆K). We also use the notations

⊕
χ,

⊕
χ/∼ in a similar way. We have the

isomorphisms A−
F ≃

⊕
χ/∼A

χ
F and A−

F1
≃

⊕
χ/∼A

χ
F1

because the order of ∆K

is prime to p. Put fχ := [Qp(Imageχ) : Qp] for each odd character χ ∈ ∆̂K ,
and denote by ordp the normalized valuation on Qp such that ordp(p) = 1. By
the analytic class number formula, we have∑

χ/∼

fχ lengthOχψ (A
χψ)

=
∑
χ/∼

fχ lengthOχ(A
χψ) =

∑
χ/∼

fχ

(
lengthOχ(A

χ
F )− lengthOχ(A

χ
F1
)
)

=
∑
χ/∼

(
ordp(♯A

χ
F )− ordp(♯A

χ
F1
)
)
= ordp(♯A

−
F )− ordp(♯A

−
F1
)

=
∑
χ

pn1∑
i=1

(i,p)=1

ordp(L(0, (χψ
i)−1)) =

∑
χ/∼

fχ(p− 1)pn1−1 ordp(L(0, (χψ)
−1))

=
∑
χ/∼

fχ ordOχψ (L(0, (χψ)
−1)).

This equality and the inequality (2) show that

lengthOχψ (A
χψ) = ordOχψ

(
L(0, (χψ)−1)

)
for each odd character χ ∈ ∆̂K .

Corollary 3.3 in [2]. In the proof of this corollary, Lemma 6.3 in [1] was not
used, so the proof need not be changed. But it refers to Theorem 0.4 in [1]
whose proof used Lemma 6.3 in [1]. So we give a correct proof of Theorem 0.4
here.

Proof of Theorem 0.4 in [1]. Let K be an imaginary abelian number field such
that no prime of K+ above p splits in K/K+. It is enough to show the equalities

FittOχ[ΓK ](A
χ
K) = (ΘK/Q ⊗ Zp)

χ (3)

for all odd characters χ ∈ ∆̂K . As we mentioned in the proof of Proposition
0.1, we know that AχK ≃ AχKχ and (ΘK/k ⊗ Zp)

χ = (ΘKχ/k ⊗ Zp)
χ. Therefore,

the equality (3) is equivalent to the equality

FittOχ[ΓK ](A
χ
Kχ

) = (ΘKχ/Q ⊗ Zp)
χ. (4)
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For χ ̸= ω, by Corollary 0.10 in [1] and Lemma 3.2 in [2], we obtain the equality
(4) using the same argument as in the paragraph following Lemma 3.2 in [2] (on
page 562). For χ = ω, by Lemma 2.3 in [1], we may assume that Kω/Q satisfies
the condition (A), and can apply Proposition 2.4 (2) in [2] to get the equality
(4).

Proof of Theorem 3.6 in [2]. Let K/k be an abelian extension satisfying the
same conditions as that of Theorem 3.6 in [2], which are exactly the same as
the conditions of Proposition 0.1 above. We have to prove that

FittOχ[ΓK ](A
χ
K) =

(
ΘK/k ⊗ Zp

)χ
for all odd characters χ ∈ ∆̂K . Each of these equalities is equivalent to the
equality

FittOχ[ΓK ](A
χ
Kχ

) =
(
ΘKχ/k ⊗ Zp

)χ
as we mentioned above. By Proposition 3.4 in [2], we have

FittOχ[ΓK ](A
χ
Kχ

) ⊂
(
ΘKχ/k ⊗ Zp

)χ
(5)

for all odd characters χ ∈ ∆̂K (Note that all χ’s are different from the Te-
ichmüller character because µp ̸⊂ K by our assumption).

We show the other inclusion(
ΘKχ/k ⊗ Zp

)χ ⊂ FittOχ[ΓK ](A
χ
Kχ

). (6)

By the definition of Stickelberger ideal, we know easily that
(
ΘKχ/k ⊗ Zp

)χ
is generated by {νKχ/F (θ

χ
F/k) |F ∈ MKχ/k} (see page 47 in [1] for the defi-

nition of MKχ/k). Since [K(∆) : k] is prime to p, we know that θχK(∆)/k
∈

FittOχ[ΓK(∆)
](A

χ
K(∆)

). By induction, we may assume that θχF/k ∈ FittOχ[ΓF ](A
χ
F )

for any F ∈ MKχ/k, F ̸= Kχ. We have to show that νKχ/F (θ
χ
F/k) ∈ FittOχ[ΓK ](A

χ
Kχ

).

By the condition (Ap), we can reduce to the case that there is a prime v of k such
that the only primes above v are ramified in Kχ/F . In this case, the inclusion
νKχ/F

(
FittOχ[ΓF ](A

χ
F )

)
⊂ FittOχ[ΓK ](A

χ
Kχ

) can be proved by the same argu-

ment as that on page 62 in [1]. This proves that νKχ/F (θ
χ
F/k) ∈ FittOχ[ΓK ](A

χ
Kχ

).

Thus it suffices to prove θKχ/k ∈ FittOχ[ΓK ](A
χ
Kχ

). Since Kχ/k satisfies
the assumptions of Proposition 0.1, applying this proposition, for the charac-
ter ψ ∈ Γ̂K as in the proposition we have ψ(θχKχ/k) = ψ(x) for some x ∈
FittOχ[ΓK ](A

χ
Kχ

). By the inclusion (5), we can write x = αθχKχ/k + y for some

α ∈ Oχ[ΓK ] and y ∈ ⟨{νKχ/F (θ
χ
F/k) |F ∈ MKχ/k, F ̸= Kχ}⟩Oχ[ΓK ]. Since ψ is

faithful on Pli for all i, we have ψ(y) = 0, and therefore ψ(θχKχ/k) = ψ(x) =

ψ(α)ψ(θχKχ/k). Since ψ(θχKχ/k) = L(0, (χψ)−1) ̸= 0, we obtain ψ(α) = 1. This

implies that α is a unit of the local ring Oχ[ΓK ]. Note that y ∈ FittOχ[ΓK ](A
χ
Kχ

)

as we showed in the previous paragraph. We conclude that θχKχ/k = α−1(x−y) ∈
FittOχ[ΓK ](A

χ
Kχ

). This completes the proof of the inclusion (6).

Proof of Theorem 3.5 in [2]. Let K/Q be an abelian extension satisfying the
same conditions as that of Theorem 3.5. Namely, we assume that K/Q satisfies
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the condition (A) (see page 554 in [2]), and that p is tamely ramified in K. We

have to show (4) for all odd characters χ ∈ ∆̂K .
For an odd character χ such that p is ramified in K(∆),χ/Q, the argument

explained in the 4th paragraph on page 565 in [2] (in the proof of Theorem 3.5)
shows that the equality (4) holds.

For an odd character χ such that p is unramified in K(∆),χ/Q, we have
one-sided inclusion FittOχ[ΓK ](A

χ
Kχ

) ⊂ (ΘKχ ⊗ Zp)
χ as we explained in the

3rd paragraph on page 565 in [2]. Since µp ̸⊂ Kχ in this case, we can apply
Proposition 0.1 to the abelian extension Kχ/Q and obtain the other inclusion,
using the same argument as the proof of Theorem 3.6 we just gave above.

Proof of Theorem 0.6 in [1]. Lemma 6.3 in [1] was used only to prove Theorems
0.4 and 0.6 in [1] by the first named author. We gave a correct proof of Theorem
0.4 above. Theorem 0.6 in [1] follows from Theorem 3.5 in [2] (as a special case).
So both Theorems 0.4 and 0.6 in [1] are now proved.

Remark. The proof given in this erratum was obtained in 2012. We explained
this proof to several people at that time. But since we were asked similar
questions several times, we have decided to publish this erratum.
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