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Abstract
For a modular elliptic curve A = X0(49) and its quadratic twists A(M),

we give equivalent conditions such that the 2-Selmer group S2(A
(M)/Q) is

minimal, namely it is of order 2. One of these conditions is described by the
L-value L(A(M)/Q, 1). The other conditions are described by quadratic and
biquadratic residue symbol, so explicit and computable (and one can compute
the density of M). Also we prove the full Birch-Swinnerton-Dyer conjecture
when the equivalent conditions are satisfied. This generalizes a result by J.
Coates, Y. Li, Y. Tian and S. Zhai.

1 Introduction
Let E be an elliptic curve defined over Q, and L(E, s) the complex L-series of E.
For each square-free nonzero integer M 6= 1, we write E(M) for the twist of E by
the quadratic extension Q(

√
M)/Q. For the sake of simplicity, let E(1) = E.

Let A be the modular curve X0(49), which we view as an elliptic curve by
taking [∞] to be the origin of the group law. It is well known that A has complex
multiplication by the ring of integers OK = Z[ 1+

√
−7

2 ] of the field K = Q(
√
−7).

The elliptic curve A has a minimal Weierstrass equation given by

y2 + xy = x3 − x2 − 2x− 1.

We have A(Q) = {[∞], (2,−1)}. The Néron differential ω = dx/(2y + x) has the
fundamental real period Ω∞ = Γ(1/7)Γ(2/7)Γ(4/7)/2π

√
7. We have

L(A, 1)/Ω∞ =
1

2
.

For any square-free nonzero integer M , we write ψM for the Grössencharacter
of A(M)/K, and L(ψ̄M , s) for the corresponding Hecke L-series. Then we have
L(ψ̄M , s) = L(A(M), s). We define the algebraic part L(alg)(ψ̄M , 1) of the L-value
L(A(M), 1) by

L(alg)(ψ̄M , 1) =

{
L(ψ̄M , 1)

√
M/Ω∞, if M > 0,

L(ψ̄M , 1)
√
−M/7/Ω∞, if M < 0,

1
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which is a rational number.
J. Coates, M. Kim, Z. Liang and C. Zhao gave the definition of the adimissibility

for positive square-free integers ([2], Definition 4.4). We slightly generalize their
definition to all square-free nonzero integers.

Definition 1.1. A square-free nonzero integer M is said to be admissible (for A)
if we have M ≡ 1 mod 4 and M = cp1 · · · psq1 · · · qt (s, t ≥ 0, c = ±1), where pi
and qj are primes satisfying

(
−7
pi

)
= −1 for any 1 ≤ i ≤ s, and

(
−7
qj

)
=
(

−1
qj

)
= 1

for any 1 ≤ j ≤ t. For this M , we define r(M) = s + 2t, i.e. the number of prime
ideals dividing MOK .

J. Coates, Y. Li, Y. Tian and S. Zhai proved in [1] Theorem 1.2 the following
theorem on A(M) for admissible integers M .

Theorem 1.2. Let M be an admissible integer, and assume that we have
(

−7
p

)
=

−1 and
(

−1
p

)
= 1 for every prime divisor p of M . Let S2(A

(M)/Q) be the 2-Selmer

group of A(M)/Q (see (2.3)). Then, we have ord2(L
(alg)(ψ̄M , 1)) = r(M) − 1 and

#S2(A
(M)/Q) = 2. Also the full Birch-Swinnerton-Dyer conjecture is valid for the

elliptic curve A(M) over Q, that is,

L(alg)(ψ̄M , 1) =
#X(A(M)/Q)

∏
p|M cp

(#A(M)(Q))2
,

where X(AM/Q) is the Tate-Shafarevich group of A(M) over Q, and cp is the
Tamagawa number.

The aim of this paper is to generalize the above theorem by considering all admis-
sible integers not necessarily satisfying both

(
−7
p

)
= −1 and

(
−1
p

)
= 1. We deter-

mine all adimissible integers M such that the order of 2-Selmer group S2(A
(M)/Q)

is minimal, namely #S2(A
(M)/Q) = 2, and verify the full Birch-Swinnerton-Dyer

conjecture for these M (concerning the full Birch-Swinnerton-Dyer conjecture, see
Remark 1.6 (3)).

Definition 1.3. Let M be an admissible integer. Define

SM =


d ∈ Z

∣∣∣∣∣∣∣∣∣∣∣

d |M,d ≡ 1 mod 4(
−1
p

)
= −1 for any p | d with

(
−7
p

)
= −1(

M/d
p

)
=
(

−7
p

)
4

for any p | d with
(

−7
p

)
= 1(

d
p

)
= 1 for any p | Md with

(
−7
p

)
= 1


,

and

RM =

D ∈ Z

∣∣∣∣∣∣∣∣
D|M,D ≡ 1 mod 4

p | D for any p |M with
(

−7
p

)
=
(

−1
p

)
= −1(

−7
p

)
4
= −

(
D
p

)
for any p | MD with

(
−7
p

)
=
(

−1
p

)
= 1

 ,
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where
(

−7
p

)
4

denotes the biquadratic residue symbol when
(

−7
p

)
= 1. Define

T1 = {1}, and for any admissible integer M 6= 1, define TM inductively by

TM = {D ∈ RM |D 6=M,#TD is odd} .

Here, the set SM is related to the Selmer group S2(A
(M)/Q) of A(M) over Q.

The set TM is related to ord2(L
(alg)(ψ̄M , 1)).

The aim of the paper is to prove the following theorem.

Theorem 1.4. Let M be an admissible integer, and S2(A
(M)/Q) the 2-Selmer

group of A(M)/Q. Then, the following conditions are equivalent:

(i) #S2(A
(M)/Q) = 2.

(ii) ord2(L
(alg)(ψ̄M , 1)) = r(M)− 1.

(iii) #SM is odd.

(iv) SM = {1}.

(v) #TM is odd.

If these equivalent conditions are satisfied, the full Birch-Swinnerton-Dyer conjec-
ture is valid for the elliptic curve A(M).

Suppose that M is the prime number, M = p. The condition (iv) in Theorem
1.4 are equivalent to the following condition:

either −
(
−7

p

)
=

(
−1

p

)
= 1

or

(
−7

p

)
=

(
−1

p

)
= 1 and

(
−7

p

)
4

= −1.

The density of the primes p which satisfy this condition is 3/8.
The next theorem gives a simple condition on admissible integers M for which

one has #S2(A
(M)/Q) > 2.

Theorem 1.5. Let M be an admissible integer, and assume that there exists a
prime divisor p of M which satisfies

(
−7
p

)
=
(

−1
p

)
= −1. Then, we have TM = ∅,

and the equivalent conditions of Theorem 1.4 are NOT satisfied. And also we have
#S2(A

(M)/Q) > 2.

Remark 1.6. (1) If the condition of Theorem 1.2 is satisfied, namely −
(

−7
p

)
=(

−1
p

)
= 1 for every prime divisor p of M , then the condition (iv) holds. Thus

Theorem 1.4 generalizes Theorem 1.2.

(2) We prove #S2(A
(M)/Q) ≥ 2 in Section 2, and prove ord2(L

(alg)(ψ̄M , 1)) ≥
r(M)− 1 for any admissible integer M in Section 3. So the conditions (i) and
(ii) are the minimal case.
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(3) In [3] Theorem B, Cristian D.gonzalez-Aviles verified the full Birch-Swinnerton-
Dyer conjecture for A(M), when the value L(alg)(ψ̄M , 1) is not zero. On the other
hand, we can show by Theorem 1.4 that when L(alg)(ψ̄M , 1) = 0, the condition
(i) is not satisfied, thus we have
#S2(A

(M)/Q) > 2.

(4) Let E/Q be an elliptic curve with complex multiplication by K satisfying
L(E, 1) 6= 0. Then in [6], Rubin proves that the rank of E(Q) is 0. Let
ΩE be the period for E, X(E) the Tate-Shafarevich group, N the conductor,
and cp the Tamagawa factor for any prime p | N . Rubin also proves that, when
p ∤ #O×

K , the p-part of the Birch-Swinnerton-Dyer conjecture is valid, i.e,

ordp

(
L(E, 1)

ΩE

)
= ordp

(
#X(E)

∏
p|N cp

(#Etor(Q))2

)
.

Therefore, in order to prove that the full Birch-Swinnerton-Dyer conjecture is
valid for the elliptic curve A(M) when the equivalent conditions are satisfied,
we only have to show that the 2-part of the Birch-Swinnerton-Dyer conjecture
is valid.

Corollary 1.7. Let M = p1 . . . psq1 . . . qt > 0 be an admissible integer, where pi
and qj are as Definition 1.1. Let P = p1 . . . ps, and assume(

−1

pi

)
= 1 for any i,

(
P

qj

)
= −

(
−7

qj

)
4

for any j,

and (
qj
qk

)
= 1 for any j 6= k.

Then, the equivalent conditions (i)-(v) in Theorem 1.4 are satisfied, and conse-
quently the full Birch-Swinnerton-Dyer conjecture is valid for A(M)/Q.

We will prove this corollary in Section 4.
Fix s ≥ 0 and t > 0. By Chebotarev’s density theorem, for any s and t,

there exist infinitely many (p1, . . . , ps, q1, . . . , qt) which satisfy the assumptions of
Corollary 1.7, and thus, for these M = p1 . . . psq1 . . . qt, the full Birch-Swinnerton-
Dyer conjecture is valid for A(M)/Q. See Section 6 for numerical examples to which
one can apply Corollary 1.7.

The main part of Theorem 1.4 is the equivalence of (i), (iii) and (iv). We will
identify the 2-Selmer group S2(A

(M)/Q) with a subgroup of K×/K×2 by Kum-
mer theory. Then, by studying the local condition, we will prove the subgroup
S2(A

(M)/Q)∩Q×/(K×2 ∩Q×) corresponds to SM (Theorem 2.12), and prove the
equivalence of (i), (iii) and (iv) of Theorem 1.4 (Corollary 2.13).

We will prove the equivalence of (iii) and (v) of Theorem 1.4 by using the
following theorem:
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Theorem 1.8. Let M 6= 1 be an admissible integer. Then, the number
∑
D∈RM

#SD

is even.

In Section 2, we identify the 2-Selmer group S2(A
(M)/Q) with a subgroup of

K×/K×2. By studying the local condition, we determine the subgroup S2(A
(M)/Q)∩

Q×/(K×2∩Q×) of the 2-Selmer group (Proposition 2.11). Then we make a natural
bijection S2(A

(M)/Q) ∩ Q×/(K×2 ∩ Q×) ∼= SM (Theorem 2.12), and prove the
equivalence of (i) and (iii) of Theorem 1.4 (Corollary 2.13).

In Section 3, we define the “imprimitive” Hecke L-series LS(ψ̄M , 1) where M
is a divisor of an element M ∈ OK . We recall Zhao’s method (Proposition 3.1),
which considers the 2-adic vauation of the sum of LS(ψ̄M , 1)/Ω∞, where M runs
over divisors of M. In order to verify the relationship between the 2-adic valuation
of L(alg)(ψ̄M , 1)/Ω∞ and that of LS(ψ̄M , 1)/Ω∞, we study the 2-adic valuation of
the Euler factor of the Hecke L-series L(ψ̄M , 1). Then, we prove the equivalence of
(ii) and (v) of Theorem 1.4 by induction on r(M) (Proposition 3.4).

In Section 4, we prove the equivalence of (iii) and (v) of Theorem 1.4 assuming
Theorem 1.8, and complete the proof of Theorem 1.4.

Finally, in Section 5, we prove Theorem 1.8.
The author wishes to thank Professors Takeshi Saito and Masato Kurihara, for

giving him much helpful advice and ideas and pointing out mistakes during the
preparation of this paper.

2 2-Selmer groups
The aim of this section is to prove the equivalence of (i) and (iii) of Theorem 1.4.
For this aim, first, we consider the cohomology group of 2-torsion points of elliptic
curves and the 2-Selmer group.

Let G be a profinite group acting continuously on a free Z/4Z-module M of
rank 2. Assume that for a basis a, b of M , the image of G→ Aut(M) is a subgroup

of the group
{(

±1 0
0 ±1

)
,

(
0 ±1
±1 0

)}
⊆ Aut(M) = GL2(Z/4Z) of order 8.

We identify M̄ =M/2M with M [2] ⊆M and let H be the kernel of G→ Aut(M̄).

Lemma 2.1. The restriction map H1(G, M̄) → H1(H, M̄)G = HomG(H, M̄) is an
isomorphism.

Proof . If we have G = H, it is trivial. We prove this lemma when G 6= H.
Then M̄ is isomorphic to F2[G/H] as a G/H-module. So for any i > 0 we have
Hi(G/H, M̄) = 0, and the lemma follows from the inflation-restriction exact se-
quence.

By Lemma 2.1, we identify H1(G, M̄) with H1(H, M̄)G = HomG(H, M̄). The
exact sequence 0 → M̄ →M → M̄ → 0 defines a commutative diagram

M̄G

��

// H1(G, M̄)

��
M̄ // Hom(H,F2)⊗ M̄
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of boundary morphisms. We identify F2 with ±1 and let χa, χb ∈ Hom(H,F2)
denote the character of H defining the action on a and b.

Lemma 2.2. The lower horizontal arrow is the morphism sending ā to χa⊗ a and
b̄ to χb ⊗ b.

Proof . Since M is decomposed into the direct sum of a · Z/4Z and b · Z/4Z as an
H-module, the lemma follows.

Let F be a field of characteristic 6= 2, and E an elliptic curve over F . We assume
dimF2

E[2](F ) = 1. Let K = F (E[2]) and {P,Q} = E[2] − E[2](F ). Let G =
Gal(F̄ /F ) and M = E[4]. We assume that we can choose a basis P ′, Q′ ∈ E[4] such

that the image of the action G → Aut(E[4]) is
{(

±1 0
0 ±1

)
,

(
0 ±1
±1 0

)}
⊂

Aut(E[4]). Then the assumption at the beginning of this section is satisfied. We
have H = Gal(F̄ /K). We identify Hom(H,F2) ∼= K×/K×2, χ 7→ α, where ker(χ) =
Gal(F̄ /K(α)). Let F ′ be an extension of F . If F ′ ⊇ K, we identify

H1(F ′, E[2]) = (F ′×/F ′×2)⊗ E[2]

= (F ′×/F ′×2)2,
(2.1)

where the second identification is defined by

(F ′×/F ′×2)⊗ E[2] → (F ′×/F ′×2)2, α⊗ P + α′ ⊗Q 7→ (α, α′).

If F ′ ⊉ K, let K ′ = F ′K be a composite field, and σ ∈ Gal(K ′/F ′) the nontrivial
element. Then we identify

H1(F ′, E[2]) = ((K ′×/K ′×2)⊗ E[2])Gal(F̄ ′/F ′)

= K ′×/K ′×2,
(2.2)

where the second identification is

K ′×/K ′×2 → ((K ′×/K ′×2)⊗ E[2])Gal(F̄ ′/F ′), α 7→ α⊗ P + σ(α)⊗Q.

Now assume F = Q and K ⊈ R. We have the exact sequence of Galois modules

0 // E[2] // E(Q)
2 // E(Q) // 0

which leads to a short exact sequence

0 // E(Q)/2E(Q) // H1(Q, E[2]) // H1(Q, E)[2] // 0 .

This exact sequence has an analogue for Qp for any prime number p and for R.
Hence we obtain the following commutative diagram with exact rows

0 // E(Q)/2E(Q)

��

δ // H1(Q, E[2])

Res

��

// H1(Q, E)[2]

Res

��

// 0

0 // ∏
pE(Qp)/2E(Qp)

∏
p δp // ∏

pH
1(Qp, E[2]) // ∏

pH
1(Qp, E)[2] // 0.
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where the products run over all prime numbers p and p = ∞ (if p = ∞, we define
Q∞ = R). We define the 2-Selmer group of E over Q by

S2(E/Q) = ker

(
H1(Q, E[2]) →

∏
p

H1(Qp, E[2])

imδp

)
. (2.3)

Through the identification (2.2), we have S2(E/Q) ⊂ K×/K×2. By the identi-
fication (2.2), the cohomology group H1(R, E[2]) = C×/C×2 is trivial. Thus we
will consider only the case where p is a prime number. For any prime number p,
write Op for the ring of integers of Kp = QpK, and write Gp for the Galois group
Gal(Kp/Qp).

Lemma 2.3. (1) If p 6= 2 and K ⊈ Qp, then we have #(imδp) = 2.

(2) If p 6= 2 and K ⊆ Qp, then we have #(imδp) = 4.

(3) Assume that E has good reduction at 2. We have imδ2 ⊆ (O×
2 /O

×2
2 )⊗ E[2].

(4) If E has good reduction at p and p 6= 2, then we have imδp = ((O×
p /O

×2
p ) ⊗

E[2])Gp .

Proof . If p 6= 2, we have

#E(Qp)/2E(Qp) = #E[2](Qp) =

{
2 (if K ⊈ Qp),
4 (otherwise).

If E has good reduction at p 6= 2, since the multiplication-by-2 map E → E over
Op is finite and étale, we have imδp ⊆ ((O×

p /O
×2
p ) ⊗ E[2])Gp . If p = 2, the lemma

follows from Proposition 3.6 in [4].

Let K = Q(
√
−7) and E = A(M) where M is an admissible integer. We regard

as K ⊆ Q2 by choosing a square root of −7 congruent to 3 mod 8 in Q2. Making
a change of variables x = X/4 + 2, y = Y/8 − X/8 − 1, we obtain the following
equation for A:

Y 2 = X3 + 21X2 + 112X.

Let M 6= 1 be any square-free integer. Then the curve E = A(M) has an equation

E : y2 = x3 + 21Mx2 + 112M2x.

Let P = ((−21 +
√
−7)M/2, 0), Q = ((−21−

√
−7)M/2, 0) be a generator of E[2].

Lemma 2.4. (1) We have Q(E[4]) = Q(
√
M

√
−7,

√
−1).

(2) There exists an isomorphism E[4] ∼= (Z/4Z)2 of Z/4Z-module such that the im-

age of the natural action Gal(Q̄/Q) → Aut(E[4]) is the group
{(

±1 0
0 ±1

)
,

(
0 ±1
±1 0

)}
⊂

GL2(Z/4Z) of order 8.
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Proof . Let
P ′ = ((−7−

√
−7)M,

√
M

√
−7(

√
−7 + 7)),

and
Q′ = ((−7 +

√
−7)M,

√
M

√
−7

√
−1(−

√
−7 + 7)).

Then we have 2P ′ = P and 2Q′ = Q, and we have an isomorphism (Z/4Z)2 ∼= E[4]

defined by (a, b) 7→ aP ′+ bQ′. Thus we have Q(E[4]) = Q(
√
M

√
−7,

√
−1) and the

isomorphism satisfies the statement.

By this lemma, the module E[4] satisfies the assumptions at the beginning of
this section. By Lemma 2.2, the map E(K)/2E(K) → H1(K,E[2]) ⊆ (K×/K×2)2

maps P to (−M
√
−7, 1), since K(

√
−M

√
−7) = K(P ′). Similarly, Q is mapped to

(1,M
√
−7).

We identify S2(E/Q) with

ker

(
K×/K×2 →

∏
p

K×
p /K

×2
p ⊗ E[2]

imδp

)
.

Proposition 2.5. (1) We have (−3,−3) ∈ imδ2.

(2) We have imδ7 = {1,−M
√
−7} ⊆ K×

7 /K
×2
7 .

(3) If p |M and
(

−7
p

)
= −1, then we have imδp = {1,−M

√
−7}

⊆ K×
p /K

×2
p .

(4) If p |M and
(

−7
p

)
= 1, then we have

imδp = {(1, 1), (−M
√
−7, 1), (1,M

√
−7), (−M

√
−7,M

√
−7)}

⊆ (K×
p /K

×2
p )2.

Proof . (2)(3) We have P +Q ∈ E(Q) ⊆ E(Qp). Thus, we have

imδp ⊇ δp{O,P +Q}
= {1,−M

√
−7}.

Since −M
√
−7 is a prime element of Kp, we have −M

√
−7 6= 1 in K×

p /K
×2
p .

Therefore, by Lemma 2.3 (1), this inclusion must be an equality.

(4) If p |M and
(

−7
p

)
= 1, then we have P,Q ∈ E(K) ⊆ E(Qp). Thus, we have

imδp ⊇ δp{O,P,Q, P +Q}
= {(1, 1), (−M

√
−7, 1), (1,M

√
−7), (−M

√
−7,M

√
−7)}.

Since ±M
√
−7 are prime elements of Kp, we have ±M

√
−7 6= 1 in Q×

p /Q×2
p .

Therefore, by Lemma 2.3 (2), this inclusion must be an equality.
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(1)

[I] The case M ≡ 1 mod 8.
Since A(M) is isomorphic to A over Q2, we may assume M = 1. Let
R = (−1, 2

√
−23) ∈ A(Q2), and we will find a point R′ = (s, t) ∈

A(Q2(
√
−1)) such that 2R′ = ±R. By duplication formula for elliptic

curves, we have
s4 − 2 · 112s2 + 1122

4(s3 + 21s2 + 112s)
= −1.

Thus, we get

s4 + 4s3 − 140s2 + 448s+ 12544 = 0.

Let f(s) be the left-hand side. Then we have

f(72− 48
√
−1 + 64x)

8192
≡

√
−1x+

√
−1 mod (1 +

√
−1).

Therefore, by Hensel’s lemma, there exists an element α ∈ Z2[
√
−1] such

that the equation f(s) = 0 has a solution s = 72 − 48
√
−1 + 64α. For

this s, we have

t2 = s3 + 21s2 + 112s ≡ 26(−873− 12288
√
−1) mod 211.

By Hensel’s lemma again, there exists β ∈ Z2[
√
−1] such that this equa-

tion has a solution t = 104
√
−1+128β. When σ ∈ Gal(Q2(

√
−1)/Q2) is

nontrivial, the x-coordinate of R′ −R′σ is(
t+ tσ

s− sσ

)2

− 21− s− sσ ≡ −5 mod 16.

Since R′σ −R′ is an element of A[2], we have R′σ −R′ = Q, and

δ2(2R
′) = (1,−1).

Since we have imδ2 3 δ2(P +Q) = (−
√
−7,

√
−7),

δ2(2R
′ + P +Q) = (−

√
−7,−

√
−7) = (−3,−3).

[II] The case M ≡ 5 mod 8.
Since A(M) is isomorphic to A(5) over Q2, we may assume M = 5. Let
R = (−60, 4

√
−375) ∈ A(5)(Q2). As [I], we can prove that there exist

elements α, β ∈ Z2[(
√
−3 + 1)/2] such that R′ = (s, t) ∈ A(5)(Q2(

√
−3))

satisfies 2R′ = ±R, where

s = 58 + 18
√
−3 + 128α, t = 10− 6

√
−3 + 64β.

If σ ∈ Gal(Q2(
√
−3)/Q2) is nontrivial, then the x-coordinate of R′σ−R′

is congruent to 0 modulo 32. Thus we have R′ −R′σ = P +Q and then

δ2(2R
′) = (−3,−3).
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Corollary 2.6. For any prime number p, let Gal(K/Q) → Aut(H1(Qp, E[2]))
⊂ Aut((K×

p /K
×2
p )⊗E[2]) be the group action defined by the natural action Gal(K/Q) →

Aut(E[2]).

(1) If p 6= 2, 7, then imδp is stable by the action.

(2) The intersection (O×
7 /O

×2
7 ) ∩ imδ7 is trivial.

Proof . (1) If p | M , we have
(

−1
p

)
= 1 or

(
−7
p

)
= −1 since M is admissible. In

both cases, we have −1 ∈ K×2
p , and the statement follows from Proposition 2.5

(3) and (4). If p ∤ 14M , the statement is clear from Lemma 2.3 (4).

(2) This is clear from Proposition 2.5 (2).

Proposition 2.7. We regard the 2-Selmer group S2(E/Q) as a subgroup of K×/K×2.

(1) All elements of S2(E/Q) are represented by divisors of M
√
−7.

(2) We have S2(E/Q) = δ(E[2](Q)) if and only if the intersection S2(E/Q) ∩
Q×/(K×2 ∩Q×) is trivial.

Proof . (1) Let α be any element of S2(E/Q). Since OK is a principal ideal domain,
we may assume α is a square-free element of OK . By Lemma 2.3 (3) and (4),
we have imδp ⊆ (O×

p /O
×2
p )⊗E[2] for every prime p not dividing 7M . Therefore

α is a divisor of M
√
−7.

(2) If S2(E/Q) ⊉ δ(E[2](Q)), then there exists a square-free element α ∈ S2(E/Q)
which is not 1 or −M

√
−7, and which is a divisor of M

√
−7. If necessary, we

replace α with the square-free element β ∈ OK which satisfies β ≡ −M
√
−7α

mod K×2, we may assume α | M . If α is not a rational number, there exists
a prime p of K which satisfies p | (α) and p ∤ (ᾱ). Thus αᾱ 6= 1 in K×/K×2.
Since M is admissible and α is a divisor of M , by next lemma (Lemma 2.8),
we have α ≡ ±1 mod 4, and so αᾱ ≡ 1 mod 4. By Proposition 2.5 (1) and
Corollary 2.6, we have αᾱ ∈ S2(E/Q) ∩ Q×/(K×2 ∩ Q×), and this group is
nontrivial.

Lemma 2.8. For any integer M , the following conditions are equivalent:

(i) The integer M is admissible.

(ii) We can write M = π1 · · ·πn, where for any i, the prime elements πi of K
satisfy (πi,

√
−7) = 1 and πi ≡ 1 mod 4.

Proof . First, suppose that M = ±p1 · · · psq1 · · · qt is admissible. Then, for any
i, one of the elements ±pi is a prime element of K and is congruent to 1 modulo
4. For any j, we can write qj = ππ̄ since OK is a principal ideal domain and
NK/Q(α) > 0 for any α ∈ K×. Since (OK/4OK)× is represented by ±1 and ±

√
−7,
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we can assume π ≡ 1 or
√
−7 mod 4. If π ≡

√
−7 mod 4, we have qj = ππ̄ ≡ 7

mod 4, which is a contradiction. Thus π ≡ π̄ ≡ 1 mod 4. As a result, we can write
M = cπ1 · · ·πn, where c = ±1 and πi ≡ 1 mod 4 for any i. Since M ≡ 1 mod 4,
we have c = 1, and we get (ii).

Next, suppose that (ii) is satisfied. If we have πi ∈ Q, the prime number
p = |πi| satisfies

(
−7
p

)
= −1. If we have πi /∈ Q, the prime number q = πiπ̄i

satisfies
(

−7
q

)
= 1 and

(
−1
q

)
= 1. As a result, M is admissible.

Proposition 2.9. Assume p 6= 2. Let d ∈ Z be a divisor of M . The element
dP + dQ ∈ H1(Qp, E[2]) belongs to imδp if and only if the following conditions are
satisfied:

(i) When p |M and
(

−7
p

)
= −1, we have

(
−1
p

)
= −1 if p | d.

(ii) When p | M and
(

−7
p

)
= 1, we have

(
−7
p

)
4
=
(
M/d
p

)
if p | d and we have(

d
p

)
= 1 if p ∤ d.

(iii) When p = 7, we have
(
d
7

)
= 1.

When p | (M/d) and
(

−7
p

)
= −1, or when p ∤ 14M , we always have dP+dQ ∈ imδp.

Proof . (i) When p | M and
(

−7
p

)
= −1, the condition dP + dQ ∈ imδp is

satisfied if and only if

d = 1 or −M
√
−7 in K×

p /K
×2
p

by our assumption and Lemma 2.5 (3). We have d = 1 in K×
p /K

×2
p if and

only if p ∤ d. If p | d, applying the following lemma (Lemma 2.10) to the
element −M

√
−7/d, the condition d = −M

√
−7 in K×

p /K
×2
p is equivalent to

the condition
(

−1
p

)
= −1.

(ii) When p | M and
(

−7
p

)
= 1, the condition dP + dQ ∈ imδp is satisfied if and

only if
d = 1 or M

√
−7 in K×

p /K
×2
p

by Lemma 2.5 (4). If p ∤ d, the condition d = 1 in K×
p /K

×2
p is equivalent to(

d
p

)
= 1. Since

(
−7
p

)
= 1, we have

(
−1
p

)
= 1 because p is admissible. So if

p | d, the condition d = −M
√
−7 in K×

p /K
×2
p is equivalent to the condition(

−7
p

)
4
=
(
M/d
p

)
.

(iii) When p = 7, by Lemma 2.5 (2), the condition dP + dQ ∈ imδ7 is satisfied if
and only if

d = 1 in K×
7 /K

×2
7 ,
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that is,
(
d
7

)
= 1.

When p ∤ 14M , the prime p does not divide d, so by Lemma 2.3 (4), we have

dP + dQ ∈ ((O×
p /O

×2
p )⊗ E[2])Gp = imδp.

Lemma 2.10. Let q be an odd prime. Then we have

F×
q ∩ F×4

q2 =

{
F×2
q if q ≡ 1 mod 4,

F×
q if q ≡ −1 mod 4.

Proof . Identifying F×
q2 with Z/(q2 − 1)Z, the group F×

q is identified with (q +

1)Z/(q2 − 1)Z. So we have

F×
q ∩ F×4

q2 = (q + 1)Z/(q2 − 1)Z ∩ 4Z/(q2 − 1)Z

=

{
2(q + 1)Z/(q2 − 1)Z if q ≡ 1 mod 4,

(q + 1)Z/(q2 − 1)Z if q ≡ −1 mod 4,

and the lemma follows.

Proposition 2.11. Let M be an admissible integer. Then, a divisor d ∈ Z of M
is an element of the group S2(A

(M)/Q) ∩Q×/(K×2 ∩Q×) if and only if d satisfies
the following conditions:

(i) If p | d and
(

−7
p

)
= −1, then

(
−1
p

)
= −1.

(ii) If p | d and
(

−7
p

)
= 1, then

(
−7
p

)
4
=
(
M/d
p

)
.

(iii) If p | (M/d) and
(

−7
p

)
= 1, then

(
d
p

)
= 1.

(iv) d ≡ 1 mod 4.

Proof . By Proposition 2.9, we only have to show the following statement; if d
satisfies all of the conditions from (i) to (iii) of Proposition 2.11, then we have(
d
7

)
= 1 if and only if we have d ≡ 1 mod 4. For any such d, since d |M , we have

d = c
∏
i

pi
∏
j

(−qj)

where pi ≡ 1 mod 4, qj ≡ −1 mod 4, and c = ±1. By (i), for any i, the Legendre
symbol

(
−7
pi

)
is 1, so we have

(
pi
7

)
= 1. Since M is admissible, so for any j, the

Legendre symbol
( qj

7

)
is −1, so we have

(
−qj
7

)
= 1. As a result, we have

(
d
7

)
= 1

if and only if we have c = 1, i.e, d ≡ 1 mod 4.
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Theorem 2.12. Let M be an admissible integer, and we identify the 2-Selmer
group S2(A

(M)/Q) with the subgroup of K×/K×2. Let SM be the same as the
one introduced in Section 1. Then, the natural map from SM to S2(A

(M)/Q) ∩
Q×/(K×2 ∩Q×) is bijective.

Proof . This follows from Proposition 2.11.

Corollary 2.13. Let M be an admissible integer. Then, the following conditions
are equivalent:

(i) #S2(A
(M)/Q) = 2.

(ii) #SM is odd.

(iii) SM = {1}.

Proof . By Proposition 2.7 (ii), the condition #S2(A
(M)/Q) = 2 is satisfied if and

only if dimF2
S2(A

(M)/Q) ∩ Q×/(K×2 ∩ Q×) = 0. Therefore, the corollary follows
from Theorem 2.12.

3 2-adic valuation of L(alg)(ψ̄M , 1)

The aim of this section is to prove the equivalence of (ii) and (v) of Theorem 1.4.
In this section, first, we start by recalling Zhao’s method ([1] Section 4) without
proof.

Let π1, . . . , πm be any sequence of distinct prime elements of K such that, for
all 1 ≤ n ≤ m, we have (πn,

√
−7) = 1 and πn ≡ 1 mod 4. Define

M = π1 · · ·πm.

Let D be the set of all divisors of M, which are given by the product over all
elements of any subset of S = {π1, . . . , πm}. For any M ∈ D, we write LS(ψ̄M , s)
for the imprimitive Hecke L-series of ψ̄M , where by imprimitive we mean that the
Euler factors of the primes in the set S are omitted from its Euler product.

Proposition 3.1. If m ≥ 1, the number

2−m
∑
M∈D

LS(ψ̄M , 1)/Ω∞

is in J = K(
√
π1, · · · ,

√
πm) and integral at all places of J above 2.

Proof . By [1] Proposition 4.1 and the equation (4.5) in [1].

Proposition 3.2. With the above notation and assumption, we have

L(ψ̄M, 1)/Ω∞ ≡ 0 or 2m−1 mod 2mOJ.
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Proof . We prove this proposition by induction on m. If m = 0, then we have
M = 1 and the proposition is valid from the equation L(A, 1)/Ω∞ = 1

2 . Let m ≥ 1.
Assume that the proposition is true for any M ∈ D−{M}. For any M ∈ D−{M},
let SM = {π ∈ S | π ∤ M}. For any π ∈ SM , we have ψM (π) = ±π ≡ ±1 mod 4,
so 1− ψ̄M (π)

NK/Q(π)
≡ 0 or 2 mod 4. Then

LS(ψ̄M , 1)/Ω∞ = L(ψ̄M , 1)/Ω∞ ×
∏
π∈SM

(
1− ψ̄M (π)

NK/Q(π)

)
≡ 0 or 2m−1 mod 2m

by the induction hypothesis. By Proposition 3.1, we get

LS(ψ̄M, 1)/Ω∞ ≡ 0 or 2m−1 mod 2m.

As a result, the proposition is true for any M.

Fix any prime element of K above 2, and write ord2 for the order valuation at
this prime element. Then, this order is the extension of the 2-adic valuation.

Lemma 3.3. Let 0 6= D ∈ Z. Choose a prime number p which is prime to 14D,
and let π be a prime element of K dividing p which satisfies π ≡ 1 mod 4.

(1) We have ord2

(
1− ψ̄D(π)

NK/Q(π)

)
≥ 1.

(2) The following conditions are equivalent:

(i) ord2

(
1− ψ̄D(π)

NK/Q(π)

)
≥ 2.

(ii) The extension Kπ(
√
−1,

√
D
√
−7)/Kπ is trivial.

(iii) Either
(

−7
p

)
=
(

−1
p

)
= 1 and

(
−7
p

)
4
=
(
D
p

)
or
(

−7
p

)
=
(

−1
p

)
= −1.

Proof . (1) Define ζ = ±1 by ψD(π) = ζπ. Then we have

1− ψ̄D(π)

NK/Q(π)
= 1− 1

ζπ
≡

{
0 mod 4 if ζ = 1,

2 mod 4 if ζ = −1
(3.1)

and the statement follows.

(2) First, we prove that (i) is equivalent to (ii). By the equation (3.1), the condition
(i) is equivalent to ψD(π) ≡ π mod 4, i.e, ψD(π) ≡ 1 mod 4. Since A[4] is
a free OK/4OK-module of rank 1, (i) is further equivalent to the condition
that ψD(π) acts A(D)[4] trivially. By the definition of the Hecke character, it
is also equivalent to [π,K(A(D)[4])/K] = id, where [∗,K(A(D)[4])/K] is the
Artin map. Now by Lemma 2.4, we have K(A(D)[4]) = K(

√
−1,

√
D
√
−7).

Since p is prime to 14D, the extension Kπ(A
(D)[4])/Kπ is unramified. Thus

[π,K(A(D)[4])/K] = id if and only if Kπ(A
(D)[4]) and Kπ are the same.
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Next, we prove that (ii) is equivalent to (iii). When
(
p
7

)
= 1, then the residue

field of Kπ is Fp, so (ii) is satisfied if and only if Fp
(√

−1,
√
D
√
−7
)
= Fp. The

element
√
−1 belongs to Fp if and only if

(
−1
p

)
= 1, and the element

√
D
√
−7

belongs to Fp if and only if
(

−7
p

)
4
=
(
D
p

)
, so the lemma follows in this case.

When
(
p
7

)
= −1, then the residue field of Kπ is Fp2 , so (ii) is satisfied if and

only if Fp2
(√

−1,
√
D
√
−7
)

= Fp2 . By Lemma 2.10, it is equivalent to the

condition that
(

−1
p

)
= −1.

Proposition 3.4. Let M be an admissible integer, and TM as in Definition 1.1.
Then the following conditions are equivalent:

(i) ord2(L
(alg)(ψ̄M , 1)) = r(M)− 1.

(ii) #TM is odd.

Proof . We prove the proposition by induction on r(M) ≥ 0. When r(M) = 0,
then M = 1. Therefore, the proposition follows from the fact that #TM = 1 and
that L(alg)(ψ̄M , 1) = 1/2. Now we suppose that the proposition is true whenever
r(M) ≤ n− 1. When r(M) = n, let M = π1 · · ·πn and S = {π1, . . . πn}. Let D be
the set of divisors of M as defined at the beginning of Section 3. Then, by induction
hypothesis and Lemma 3.3, we have

TM =
{
D ∈ RM

∣∣∣D 6=M, ord2(L
(alg)(ψ̄D, 1)) = r(D)− 1

}

=

D ∈ Z

∣∣∣∣∣∣∣∣∣
D|M,D 6=M,D ≡ 1 mod 4
ord2(L

(alg)(ψ̄D, 1)) = r(D)− 1

ord2

(
1− ψ̄D(π)

NK/Q(π)

)
= 1

for any prime elements π |M/D with π ≡ 1 mod 4

 .

Since we have

LS(ψ̄D, 1)
√
D/Ω∞ =

L
(alg)(ψ̄D, 1)

∏
π|M/D

(
1− ψ̄D(π)

NK/Q(π)

)
, if M > 0,

√
−7L(alg)(ψ̄D, 1)

∏
π|M/D

(
1− ψ̄D(π)

NK/Q(π)

)
, if M < 0

by definition, we get

TM =

{
D ∈ Z

∣∣∣∣ D |M,D 6=M,D ≡ 1 mod 4
ord2(LS(ψ̄D, 1)/Ω∞) = r(M)− 1

}
.

By Lemma 2.8, we have D ∩ Z = {D ∈ Z|D ≡ 1 mod 4, D | M}. Therefore, by
Proposition 3.2, the number of elements of TM is odd if and only if

ord2

 ∑
D∈D∩Z,D ̸=M

LS(ψ̄D, 1)/Ω∞

 = r(M)− 1. (3.2)
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For any element α ∈ D and any prime element π of K prime to M
√
−7, we have

ψα(π) = ψ̄ᾱ(π̄). Thus, for any complex number s, we have

1− ψ̄α(π)NK/Q(π)
−s = 1− ψ̄ᾱ(π̄)NK/Q(π̄)−s̄.

Thus, we have
LS(ψ̄α, s) = LS(ψ̄ᾱ, s̄).

Since Ω∞ ∈ R, we get

LS(ψ̄α, 1)/Ω∞ = LS(ψ̄ᾱ, 1)/Ω∞.

By Proposition 3.2, we have LS(ψ̄α, 1)/Ω∞ ≡ 0 or 2r(M)−1 mod 2r(M). We have

ord2(LS(ψ̄α, 1)/Ω∞ + LS(ψ̄ᾱ, 1)/Ω∞) ≥ r(M). (3.3)

By the equation (3.2) and the inequality (3.3), the number of elements of TM is
odd if and only if

ord2

 ∑
α∈D,α̸=M

LS(ψ̄α, 1)/Ω∞

 = r(M)− 1.

By Proposition 3.1 and Proposition 3.2, this condition is equivalent to the condition
that ord2(L

(alg)(ψ̄M , 1)) = r(M)− 1.

4 Proof of Theorem 1.4
In this section, we assume that Theorem 1.8 is true, and prove Theorem 1.4 and
Thorem 1.5. Also we prove Corollary 1.7.

Proof of Theorem 1.4. We will prove the equivalence of the theorem by induction
on r(M). When r(M) = 0, then we have M = 1. We have L(alg)(ψ̄M , 1) = 1/2 and
#S2(A

(M)/Q) = 2, so the theorem follows. Now we suppose that Theorem 1.4 is
true for any D with r(D) ≤ n− 1. Using the induction hypothesis and Lemma 3.3,
we have

TM =
{
D ∈ RM

∣∣∣D 6=M,#S2(A
(D)/Q) = 2

}
.

By Corollary 2.13, we have

#TM ≡
∑

D∈RM ,D ̸=M

#SD mod 2.

By Theorem 1.8, we have #SM ≡ #TM mod 2. By Corollary 2.13 and Proposition
3.4, conditions (i)-(v) of Theorem 1.4 are equivalent.

Assume that A(M) satisfies these conditions. Since L(A(M), s) 6= 0, the p-part
of Birch-Swinnerton-Dyer conjecture for any odd prime p is valid by [6]. Since
#S2(A

(M)/Q) = 2 and #A(M)(Q)/2A(M)(Q) = 2, the Tate-Shafarevich group
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X(A(M)/Q) satisfies X(A(M)/Q)[2] = 0. If we write M = ±p1 · · · psq1 · · · qt as
Definition 1.1, the Tamagawa factor cp of A(M) at the bad prime p are given by
c7 = 2, cpi = 2 (1 ≤ i ≤ s), and cqj = 4 (1 ≤ j ≤ t). As a result, the 2-part of
Birch-Swinnerton-Dyer conjecture is valid from ord2(L

(alg)(ψ̄M , 1)) = r(M)−1.

Proof of Theorem 1.5. We will prove that, if M satisfies the condition of Theorem
1.5, we have TM = ∅ by induction on r(M) ≥ 1. When r(M) = 1, then M = −p
satisfies p ≡ −1 mod 4 and

(
−7
p

)
= −1. Therefore we get TM = ∅.

Now assume that p | M satisfies p ≡ −1 mod 4 and
(

−7
p

)
= −1. Assume

that, for any admissible integer D which satisfies p | D and r(D) < r(M), we
haveTD = ∅. When we have D ∈ RM and D 6= M , by the definition of RM , we
have p | D. Thus by induction hypothesis, we have TD = ∅, and D /∈ TM . As a
result, we get TM = ∅.

Proof of Corollary 1.7. It suffices to show that SM = {1}. By the definition of
SM , for any d ∈ SM , we have d | q1 . . . qt and d > 0. If qj | d, we have(
M/dP
qj

)
=
(
P
qj

)(
−7
qj

)
4
. However, by our assumption on M , we have

(
M/dP
qj

)
= 1

and
(
P
qj

)(
−7
qj

)
4
= −1, which is a contradiction. Therefore, we have SM = {1},

and the condition (iv) is satisfied, and by Theorem 1.4, the corollary follows.

5 Proof of Theorem 1.8
Let N denote the set of all square-free positive integers N 6= 1. We will prove the
following proposition to show Theorem 1.8.

Proposition 5.1. Assume that N = p1 · · · pn ∈ N . Let ϵ, η : {1, . . . , n} → {±1}
be maps, and define

TN,(ϵ,η) =


(a, b, c) ∈ N3

∣∣∣∣∣∣∣∣∣∣∣

abc = N(
b
pi

)
= ϵ(i) if pi | a(

a
pi

)
= η(i) if pi | b(

ab
pi

)
= −ϵ(i)η(i) if pi | c


.

Then, the number #TN,(ϵ,η) is even.

Proof of Theorem 1.8. Let R+ (resp. R−) denote the product of the prime divisors
of M which is inert in K and split (resp. inert) in Q(

√
−1). Let N = q1 . . . qn =

M/R+R−. Define ϵs,t and ηs for any divisor s of R− congruent to 1 modulo 4 and
for any divisor t of R+ congruent to 1 modulo 4 by

ϵs,t(i) =

(
tR−/s

qi

)(
−7

qi

)
4

, ηs(i) =

(
s

qi

)
.
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Then we have a map ∐
s|R−,t|R+,s,t≡1 mod 4

TN,(ϵs,t,ηs) →
∐

D∈RM

SD

defined by
TN,(ϵs,t,ηs) 3 (a, b, c) 7→ as ∈ SabtR− .

This map is bijective, since the map has the inverse map

SD 3 d 7→ (a, b, c) ∈ TN,(ϵs,t,ηs),

where a = gcd(N, d) > 0, b = gcd(N,D/d) > 0, c = N/ab, s = d/a, and t =
gcd(D/d,R+). By Proposition 5.1, the number #TN,(ϵs,t,ηs) is even. Since s and t
are arbitrary, the number

∑
D∈RM

#SD is also even.

Proof of Proposition 5.1. We prove the proposition by induction on n ≥ 1. When
n = 1, even numbers of ϵ(1), η(1), and −ϵ(1)η(1) are 1, so the proposition follows.
Now suppose that n ≥ 2, and assume that #TN,(ϵ,η) is even for all N̄ ∈ N with
n−1 prime divisors. Suppose that N is any element of N with n prime divisors. We
will prove #TN,(ϵ,η) is even for any ϵ, η by induction on k = #{i|ϵ(i) 6= η(i)} ≥ 0.

First, we assume that ϵ(i) = η(i) for i = 1, . . . , n. In this case, the involution
TN,(ϵ,η) → TN,(ϵ,η); (a, b, c) 7→ (b, a, c) has no fix point since (1, 1, N) /∈ TN,(ϵ,η).
Therefore #TN,(ϵ,η) is even.

Next, we assume that the proposition is true for k = l − 1(l ≥ 1), and that
#{i|ϵ(i) 6= η(i)} = l. Without loss of generality, we can suppose ϵ(n) 6= η(n). We
will prove the proposition for N and (ϵ, η). Let

ϵ′(i) =

{
−ϵ(i) (i = n),

ϵ(i) (otherwise).

Thus we have #{i|ϵ′(i) 6= η(i)} = l − 1. Let N̄ = N/pn. Let

T 1
N,(ϵ,η) = {(a, b, c) ∈ TN,(ϵ,η)|pn divides a},

T 2
N,(ϵ,η) = {(a, b, c) ∈ TN,(ϵ,η)|pn divides b},

and
T 3
N,(ϵ,η) = {(a, b, c) ∈ TN,(ϵ,η)|pn divides c}

for any ϵ, η. Thus TN,(ϵ,η) is the disjoint union of T 1
N,(ϵ,η), T

2
N,(ϵ,η), and T 3

N,(ϵ,η). Let

ϵ̄ = ϵ|{1,...,n−1}, η̄ = η|{1,...,n−1},

and
η̄′ : {1, . . . , n− 1} → {±1}, η̄′(i) = η(i)

(
pn
pi

)
.

Then, we have

T 1
N,(ϵ,η) =

{
(a, b, c) ∈ TN̄,(ϵ̄,η̄′)

∣∣∣∣( b

pn

)
= ϵ(n)

}
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and

T 1
N,(ϵ′,η) =

{
(a, b, c) ∈ TN̄,(ϵ̄,η̄′)

∣∣∣∣( b

pn

)
= −ϵ(n)

}
.

Therefore we have

T 1
N,(ϵ,η) t T

1
N,(ϵ′,η) = TN̄,(ϵ̄,η̄′).

By induction hypothesis on n, we have

#T 1
N,(ϵ,η) +#T 1

N,(ϵ′,η) = #TN̄,(ϵ̄,η̄′) ≡ 0 (mod 2).

Similarly, we have

#T 3
N,(ϵ,η) +#T 3

N,(ϵ′,η) = #TN̄,(ϵ̄,η̄) ≡ 0 (mod 2).

Also, we have T 2
N,(ϵ,η) = T 2

N,(ϵ′,η), so #T 2
N,(ϵ,η) + #T 2

N,(ϵ′,η) ≡ 0 mod 2. There-
fore, we get #TN,(ϵ,η) + #TN,(ϵ′,η) ≡ 0 mod 2. By the induction hypothesis in k,
#TN,(ϵ,η) is even.

As a result, #TN,(ϵ,η) is even for all (ϵ, η), and by induction, also it is even for
all N ∈ N and (ϵ, η).

6 Table
In this section, we give some numerical examples for which the conditions in corol-
lary 1.4 are satisfied, so for which the full Birch-Swinnerton-Dyer conjecture holds.
We made this table, referring to Table I in [2].

Table 1: The value of L(alg)(A(M), 1) and the biquadratic residue
symbol.

M L(alg)(A(M), 1) ord2(L
(alg)(A(M), 1)) r(M) power residue symbols

29 2 1 2
(−7
29

)
4
= −1

37 2 1 2
(−7
37

)
4
= −1

109 2 1 2
( −7
109

)
4
= −1

137 2 1 2
( −7
109

)
4
= −1

145 4 2 3
(−7
29

)
4
= −1 = −

(
5
29

)
233 18 1 2

( −7
109

)
4
= −1

265 36 2 3
(−7
53

)
4
= 1 = −

(
5
53

)
281 2 1 2

( −7
281

)
4
= −1

337 2 1 2
( −7
337

)
4
= −1

377 4 2 3
(−7
29

)
4
= −1 = −

(
13
29

)
389 18 1 2

( −7
389

)
4
= −1

401 18 1 2
( −7
401

)
4
= −1
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M L(alg)(A(M), 1) ord2(L
(alg)(A(M), 1)) r(M) power residue symbols

545 4 2 3
( −7
109

)
4
= −1 = −

(
5

109

)
565 4 2 3

( −7
113

)
4
= 1 = −

(
5

113

)
569 2 1 2

( −7
569

)
4
= −1

613 2 1 2
( −7
613

)
4
= −1

617 2 1 2
( −7
617

)
4
= −1

641 2 1 2
( −7
641

)
4
= −1

653 2 1 2
( −7
653

)
4
= −1

673 18 1 2
( −7
673

)
4
= −1

701 2 1 2
( −7
701

)
4
= −1

709 2 1 2
( −7
709

)
4
= −1

757 2 1 2
( −7
757

)
4
= −1

877 2 1 2
( −7
877

)
4
= −1

965 4 2 3
( −7
193

)
4
= 1 = −

(
5

193

)
977 18 1 2

( −7
977

)
4
= −1

985 36 2 3
( −7
197

)
4
= 1 = −

(
5

197

)
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