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In this paper, we study the Fitting ideals of Selmer groups over finite subextensions in

the cyclotomic Zp-extension of Q of an elliptic curve over Q. Especially, we present a

proof of the “weak main conjecture” à la Mazur and Tate for elliptic curves with good

(supersingular) reduction at an odd prime p. We also prove the “strong main conjecture”

suggested by the second named author under the validity of the ±-main conjecture and

the vanishing of a certain error term. The key idea is the explicit comparison among

“finite layer objects”, “±-objects”, and “fine objects” in Iwasawa theory. The case of good

ordinary reduction is also treated.

1 Introduction

1.1 Overview

The main aim of this paper is to understand Selmer groups of an elliptic curve with

supersingular reduction at p over finite subextensions in the cyclotomic Zp-extension

of Q by using ±-Iwasawa theory à la Kobayashi–Pollack. Let E be an elliptic curve over

Q with good reduction at an odd prime p. We assume that ap(E) �≡ 1 (mod p) throughout

this article.
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2 C.-H. Kim and M. Kurihara

The ±-Iwasawa theory is developed to understand Iwasawa theory for elliptic

curves at supersingular primes (with assumption ap(E) = 0). In the supersingular

setting, the usual Selmer groups over Zp-extensions and p-adic L-functions do not

behave well as in the classical framework of Iwasawa theory. Introducing ±-Selmer

groups and ±-p-adic L-functions, Kobayashi [12] and Pollack [25] could apply the

standard techniques of Iwasawa theory of elliptic curves with ordinary reduction to

the supersingular setting.

On the other hand, Mazur–Tate conjectures [20] and the refined Iwasawa theory à

la the second named author ([13], [14], and [15]) focus on understanding Iwasawa theory

over finite abelian extensions over Q.

In general, the refined Iwasawa theory (at finite layers) is regarded as a more

delicate subject than the usual Iwasawa theory (at the infinite layer) since neither we

can directly apply the theory of Iwasawa modules to finite layer objects nor we can

ignore “finite errors”. It is well known that the structure of group rings at finite layers

is much more complicated than that of the Iwasawa algebra.

In this article, we consider the subextensions in the cyclotomic Zp-extension

whose Galois group is cyclic of p-power order and only one prime ramifies. Thus, this

case can be regarded as the simplest one, but the full understanding of the following

conjectures is still deep. Their precise formulations are given in Section 1.2.

Conjecture 1.1 (Mazur–Tate’s weak main conjecture, Conjecture 1.4). Assume that E

has no rational p-torsion. Then the Mazur–Tate element of E at a finite layer is contained

in the Fitting ideal of the dual Selmer group of E over the finite extension.

Conjecture 1.2 (The strong main conjecture, Conjecture 1.6). Assume that E has no

rational p-torsion and p does not divide the Tamagawa number of E. Then the Mazur–

Tate element of E at a finite layer and the traces of the Mazur–Tate elements of E at all

the lower layers generate the Fitting ideal of the dual Selmer group of E over the finite

extension.

In the case of good ordinary reduction with non-anomalous prime p (i.e.,

ap(E) �≡ 1 (mod p)), both conjectures follow from several standard ingredients in

Iwasawa theory, including the Iwasawa main conjecture, the non-existence of proper

�-submodules of finite index in the Selmer groups over the Iwasawa algebra �, and the

control theorem. Although this case is more or less well known to experts, the argument

is not explicitly written in the literature. Thus, we give a proof for the case of good

ordinary reduction in Section 2. We note that in this case the Fitting ideal of the Selmer

group is principal.
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On Refined Conjectures on Selmer Groups 3

In the case of good supersingular reduction, the situation becomes much more

complicated. Actually, the Fitting ideal of the Selmer group is never principal in this

case. Very fortunately, we are able to strengthen the argument of the good ordinary

reduction case by making an explicit comparison between Selmer groups and ±-Selmer

groups in finite layers. This approach allows us to obtain the weak main conjecture. The

proof is given in Section 4. We obtain Theorem 1.14 in this way.

Concerning the strong main conjecture, we prove it in Theorem 1.20 under

certain assumptions including the validity of the ±-main conjecture. We also provide

many examples that satisfy these assumptions in Example 1.21, so we have many

examples for which the strong main conjecture holds. Especially, if the fine Selmer

group over the Zp-extension is “all Mordell-Weil” described in Example 1.21, then we

can prove the strong main conjecture. More generally, even without the assumptions

imposed in Theorem 1.20, we are able to prove a slightly weaker version of the strong

main conjecture in Theorem 1.18. In the weaker version, the statement involves an error

term.

In the proof of Theorem 1.18, we make an explicit comparison between

Selmer groups and fine Selmer groups in finite layers. This comparison is related

to the finite layer version of the construction of algebraic p-adic L-functions à la

Perrin-Riou. See [27, 2.4.3 Proposition] and [28, §3.1] for example. The error term

in Theorem 1.18 occurs in this finite layer comparison. Indeed, the assumptions in

Theorem 1.20 are strong enough to force the error term to vanish. As a result, we

deduce a “lower bound” of Selmer groups over finite extensions from the Iwasawa

main conjecture and some Fitting ideal techniques described in Appendix A. The

proof of Theorem 1.18 is given in Section 5, and the proof of Theorem 1.20 is given

in Section 6.

It seems that our approach does not work directly if p | ap(E) but ap(E) �= 0

since the �/�-Iwasawa theory à la Sprung [33] does not behave well in finite layers. See

[33, Open Problem 7.22] for details.

In the rest of this section, we introduce various conjectures we are interested

in and state our main results and their applications. In Section 2, we review the case

for elliptic curves with good ordinary reduction and give a proof of the weak and

strong main conjectures for this case in Theorem 1.14. In Section 3, we review relevant

±-Iwasawa theory for elliptic curves. In Section 4, we prove the weak main conjecture

for elliptic curves with supersingular reduction in Theorem 1.14. In Section 5, we

prove the slightly weaker version of the strong main conjecture for elliptic curves in

Theorem 1.18. In Section 6, we prove the strong main conjecture for elliptic curves under
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4 C.-H. Kim and M. Kurihara

certain assumptions in Theorem 1.20. In Appendix A, we study refined techniques on

Fitting ideals.

1.2 Conjectures

We recall various conjectures on the arithmetic of elliptic curves.

1.2.1 Birch and Swinnerton-Dyer conjecture

One of the leading problems of modern number theory is the following conjecture.

Conjecture 1.3 (Birch and Swinnerton-Dyer). Let E be an elliptic curve over Q. Then

rkZE(Q) = ords=1L(E, s).

We recall the formulation of the refinements and variants of Conjecture 1.3.

1.2.2 Setting the stage

Let p be an odd prime. Fix embeddings ιp : Q ↪→ Qp and ι∞ : Q ↪→ C. Let E be an elliptic

curve over Q of conductor N with (N, p) = 1. Let

ρ : Gal(Q/Q) → AutFp
(E[p]) � GL2(Fp)

be the mod p representation arising from the p-torsion points on E. For a prime �

dividing N, let E0(Q�) be the preimage of the nonsingular locus of Ẽ(F�). Then the

Tamagawa number of E is defined by Tam(E) := ∏
�|N c�, where c� = [E(Q�) : E0(Q�)].

Let n ≥ 1 be an integer and Qn the subextension of Q in Q(μpn+1) with

Gal(Qn/Q) � Z/pnZ. Let Q∞ = ⋃
n≥1 Qn be the cyclotomic Zp-extension of Q. Let

	n := Gal(Q∞/Qn) and 	 := Gal(Q∞/Q). Let �n := Zp[Gal(Qn/Q)] = Zp[	/	n] and

� := lim←−n
�n = Zp�Gal(Q∞/Q)� = Zp�	�. Let ωn = ωn(X) := (1 + X)pn − 1. Fix a generator

γ of Gal(Q∞/Q) and take a generator γn of Gal(Qn/Q) as the image of γ . Then we have

isomorphisms

�n � Zp[X]/
(
ωn(X)

)
, � � Zp�X�

by sending the generators to 1 + X. Via the latter isomorphism, we also regard ωn ∈ �.
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On Refined Conjectures on Selmer Groups 5

Let �n(1 + X) = ωn/ωn−1, where �n is the pn-th cyclotomic polynomial. Let

ω±
0 (X) := X, ω̃±

0 (X) := 1, and

ω+
n = ω+

n (X) := X ·
∏

2≤m≤n,m: even

�m(1 + X), ω−
n = ω−

n (X) := X ·
∏

1≤m≤n,m: odd

�m(1 + X),

ω̃+
n = ω̃+

n (X) :=
∏

2≤m≤n,m: even

�m(1 + X), ω̃−
n = ω̃−

n (X) :=
∏

1≤m≤n,m: odd

�m(1 + X).

Then we have ωn(X) = ω±
n (X) · ω̃∓

n (X), respectively. We also regard ω±
n , ω̃±

n as ele-

ments in �n or � via fixed isomorphisms. Also, we identify �n = Zp[Gal(Qn/Q)] �
Zp[Gal(Qn,p/Qp)] if necessary. Here, Qn,p is the completion of Qn at the prime above p.

Let f ∈ S2(	0(N)) be the newform attached to E by [2, Theorem A]. Let G′
n+1 :=

Gal(Q(μpn+1)/Q)/{±1} � (
Z/pn+1Z

)×
/{±1} and denote by σa the element corresponding

to a ∈ (
Z/pn+1Z

)×
/{±1}. We define

θ ′
n+1( f ) :=

∑
a∈(Z/pn+1Z)

×
/{±1}

[
a

pn+1

]+
· σa ∈ Zp

[
G′

n+1

]
.

Here,
[a

b

]+
is defined by

2π

∫ ∞

0
f

(a

b
+ iy

)
dy =

[a

b

]+ · �+
E +

[a

b

]− · �−
E ,

where �±
E are the Néron periods of E. We write �E = �+

E . The Mazur–Tate element

θn( f ) of f at Qn is defined by the image of θ ′
n+1( f ) in �n. For simplicity, we assume that

ρ is irreducible, and then we do not have to care about the integrality of Mazur–Tate

elements and the Manin constant issue. See [13, page 200–201].

We also define

δ̃n :=
∑

a∈(Z/nZ)×

([ a

n

]+ ·
∏
�|n

logF�
(a)

)
∈ Fp,

where n is the square-free product of Kolyvagin primes,
[ a

n

]+ is the mod p reduction

of
[ a

n

]+, and logF�
(a) is the mod p reduction of the discrete logarithm of a modulo �

(with a fixed primitive root modulo �, indeed). Here, a prime � is a Kolyvagin prime if

(�, Np) = 1, � ≡ 1 (mod p), and a�(E) ≡ � + 1 (mod p). These δ̃n’s were used to study

the structure of Selmer groups in [16]. In addition, the non-vanishing of δ̃n for some n
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6 C.-H. Kim and M. Kurihara

implies the Iwasawa main conjecture for elliptic curves with any type of good reduction

([10, Theorem 1.1]).

Let � be a finite set of places of Q including p, ∞, and the bad reduction

primes of E, and Q� be the maximal extension of Q unramified outside �. We define

the Selmer group of E over Qn by

Sel(Qn, E[p∞]) := ker

(
H1(

Q�/Qn, E[p∞]
) →

∏
v

H1
(
Qn,v, E[p∞]

)
E(Qn,v) ⊗ Qp/Zp

)
,

where H1(Q�/Qn, E[p∞]) := H1(Gal(Q�/Qn), E[p∞]) is the Galois cohomology group, v

runs over all the (finite) places of Qn dividing the places in �, and Qn,v is the completion

of Qn at v. We also define the Selmer group of E over Q∞ by

Sel
(
Q∞, E[p∞]

)
:= lim−→

n
Sel

(
Qn, E[p∞]

)
.

It is well known that these Selmer groups are independent of the choice of � ([22,

Corollary I.6.6]).

We recall the notion of Fitting ideals for the convenience of readers. For a ring

R and a finitely presented R-module M, take a presentation

where h ∈ Mr×s(R). Then the Fitting ideal FittR(M) of M over R is defined to be the ideal

of R generated by the determinants of the r × r-minors of the matrix h. It is well known

that the Fitting ideal is independent of the choice of a presentation of M.

For a Zp-module M, let M∨ := HomZp
(M,Qp/Zp).

1.2.3 Mazur–Tate’s refined conjecture

In [20], Mazur and Tate gave the following conjecture, which implies Conjecture 1.15.

Conjecture 1.15 is a refinement of the Birch and Swinnerton-Dyer conjecture

(Conjecture 1.3) in some sense. As we said in Section 1.1, ap(E) �≡ 1 (mod p) is always

assumed.

Conjecture 1.4 ([20, Conjecture 3, “weak main conjecture”]).

θn( f ) ∈ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.
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On Refined Conjectures on Selmer Groups 7

Remark 1.5. Note that the original statement covers general abelian extensions of Q as

we mentioned in Section 1.1. There are other approaches towards Conjecture 1.4 due to

Bley–Macias Castillo [1, Theorem 2.12] assuming the p-part of the relevant equivariant

Tamagawa number conjecture, Emerton–Pollack–Weston [3] using the p-adic local

Langlands correspondence as well as Kato’s zeta elements and Popescu using the theory

of 1-motives. We are informed that T. Kataoka proved the weak main conjecture over

more general abelian extensions under certain assumptions by developing equivariant

±-Iwasawa theory for elliptic curves and by adapting our strategy in his Ph.D. thesis.

1.2.4 The (refined)2 conjecture

Comparing with Conjecture 1.4, the second named author proposed the following more

refined conjecture, which we call the “strong main conjecture”. (cf. [20, Remark after

Conjecture 3].) This conjecture can be regarded as a refinement of the Iwasawa main

conjecture. As we said in Section 1.1, ap(E) �≡ 1 (mod p) is always assumed.

Conjecture 1.6 ([13, Conjecture 0.3, “strong main conjecture"]). Let E be an elliptic

curve over Q with good reduction at an odd prime p. If E(Q)[p] is trivial and p � Tam(E),

then (
θn( f ), νn−1,n

(
θn−1( f )

)) = Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

Here, νn−1,n is the trace map �n−1 → �n defined by σ �→ ∑
τ �→σ τ for σ ∈ Gal(Qn−1/Q),

where τ runs over all elements of Gal(Qn/Q) projecting to σ .

Remark 1.7. This conjecture explains the growth of Sel(Qn, E[p∞]) as n goes to infinity.

The second named author proved Conjecture 1.6 for the “most basic” case

(cf. [6, §5]) using Kato’s zeta elements.

Theorem 1.8 ([13, Theorem 0.1.(4)]). If we further assume

(1) E has good supersingular reduction at p,

(2) p does not divide
L(E, 1)

�E
, and

(3) ρ is surjective

as well as the assumptions of Conjecture 1.6, then Conjecture 1.6 is true.

Remark 1.9. Note that ap(E) = 0 is not assumed in Theorem 1.8. In [26, Theorem

1.1.(3)], R. Pollack proved an algebraic analogue of Theorem 1.8 using a formal group

argument assuming ap(E) = 0. His work does not require the surjectivity of ρ.
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8 C.-H. Kim and M. Kurihara

Remark 1.10. For the case of p = 2, Conjecture 1.6 may not hold. See [26, Remark 1.2]

and [17] for details.

Pollack reformulates Conjecture 1.6 in terms of his signed p-adic L-functions

under the assumption ap(E) = 0. See Section 3.1 for the characterization of the ±-p-adic

L-functions L±
p (Q∞, f ). We recall a proposition of Pollack, which shows us the connection

between Mazur–Tate elements and ±-p-adic L-functions.

Proposition 1.11 ([25, Proposition 6.18]).

θn( f ) ≡ ω̃∓
n · L∓

p (Q∞, f ) (mod ωn)

in �n if n is even/odd, respectively.

Then, as ideals of �, the following equality holds:

(
ωn, θn( f ), νn−1,n

(
θn−1( f )

)) =
(
ωn, ω̃+

n · L+
p (Q∞, f ), ω̃−

n · L−
p (Q∞, f )

)
.

Thus, assuming ap(E) = 0, Conjecture 1.6 is equivalent to the following conjecture.

Conjecture 1.12 ([25, Conjecture 6.19]). We assume ap(E) = 0 as well as the conditions

in Conjecture 1.6. Then

(
ω̃+

n · L+
p (Q∞, f ) (mod ωn), ω̃−

n · L−
p (Q∞, f ) (mod ωn)

)
= Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

Remark 1.13. It is known that Kato’s zeta elements exist integrally when ρ is

surjective. In this case, Proposition 1.11 can be interpreted as a comparison between

the Pn-pairing made by the second named author and the ±-Coleman maps made by

Kobayashi (modulo ωn) as in the following diagram. See also [18, §1].

1.3 Main theorems

We state three main theorems (mainly for elliptic curves with good supersingular

reduction).
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On Refined Conjectures on Selmer Groups 9

Theorem 1.14 (Main Theorem I). Let E be an elliptic curve over Q with good reduction

at an odd prime p. Assume that ρ is surjective if E is non-CM. Assume one of the

following:

(ord) If p � ap(E), then ap(E) �≡ 1 (mod p), or

(ss) If p | ap(E), then ap(E) = 0.

Then (
θn( f ), νn−1,n

(
θn−1( f )

)) ⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

Thus, Mazur–Tate’s weak main conjecture (Conjecture 1.4) for E over Qn follows.

In Case (ord), if we further assume p � Tam(E) and the Iwasawa main conjecture

(Conjecture 2.2) holds, then the inclusion becomes an equality, so the strong main

conjecture (Conjecture 1.6) holds.

See Section 2 for proof of Case (ord) and Section 4 for proof of Case (ss). See

Theorem 2.3 and Theorem 2.4 for the current status of the Iwasawa main conjecture.

Let χ : Gal(Qn/Q) → Q
×
p be a character and Zp[χ ] the ring generated by

the image of χ over Zp. The map χ naturally extends to an algebra homomorphism

Zp[Gal(Qn/Q)] → Zp[χ ] defined by σ �→ χ(σ) where σ ∈ Gal(Qn/Q) and also denote it by

χ . Then we also define the augmentation ideal at χ by

Iχ := ker
(
χ : �n → Zp[χ ]

)
.

Let L ∈ �n. We say L vanishes to infinite order at χ if L is contained in all

powers of Iχ . We say L vanishes to order r at χ if L ∈ Ir
χ \ Ir+1

χ . See [20, (1.5)] for details.

Conjecture 1.15 ([20, Conjecture 1, “weak vanishing conjecture”]). The order of vanish-

ing of θn( f ) at χ is greater than or equal to the dimension of the χ-part of the Mordell–

Weil group of E(Qn).

Corollary 1.16. Under the same assumptions of Theorem 1.14, Conjecture 1.15 holds.

Proof. [20, Proposition 3]. �

Remark 1.17.

(1) In both conditions (ord) and (ss) in Theorem 1.14, ap(E) �≡ 1 (mod p) or

ap(E) = 0 ensures that E(Q)[p] is trivial.
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10 C.-H. Kim and M. Kurihara

(2) An anticyclotomic analogue of Theorem 1.14 is investigated in [9].

(3) See [24] for progress towards Conjecture 1.15.

In the case of elliptic curves with good supersingular reduction (under the

surjectivity of ρ), we can also obtain a lower bound of the Selmer groups as follows.

Let T = lim←−n
E[pn] be the p-adic Tate module of E and H1

glob(T) the global Iwasawa

cohomology (defined in Section 5.1). We define the “error term” by

Errn := coker

(
H1(Q�/Qn, T)

im H1
glob(T)

→ H1(Qn,p, T)

E(Qn,p) ⊗ Zp + im H1
glob(T)

)
,

where im H1
glob(T) is the image of H1

glob(T) in A in the notation A
im H1

glob(T)
. The error term

Errn also naturally appears as the cokernel of a certain map gn (Remark 5.4), which is

explicitly defined in (5.1) (cf. [12, (10.36) and Proposition 10.6]).

Theorem 1.18 (Main Theorem II). Let E be an elliptic curve over Q with good

supersingular reduction at an odd prime p. Assume that ap(E) = 0, ρ is surjective and

p � Tam(E). If the ±-main conjectures (Conjecture 3.5) hold, then

Fitt�n

(
Errn

)·Fitt�n

(
Sel(Qn, E[p∞])∨

) ⊆ (
θn(f ), νn−1,n

(
θn−1(f )

)) ⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

See Section 5 for proof. Note that the surjectivity of ρ implies E has no CM.

Also, see Theorem 3.6 and Remark 3.7 for the current status of the ±-Iwasawa main

conjecture. Although Errn might not be zero in general, if it vanishes, then Conjecture 1.6

holds.

Remark 1.19. As a Zp-module, Errn is finitely generated. Also, Errn stabilizes as n >>

0. See [12, (Proof of) Proposition 10.6].

We define the fine Selmer groups of E over Qn by

Sel0(Qn, E[p∞]) := ker
(
Sel(Qn, E[p∞]) → H1(Qn,p, E[p∞])

)
and Sel0(Q∞, E[p∞]) := lim−→n

Sel0(Qn, E[p∞]) as in [13, Definition 4.1] and [18, §0.3].

Theorem 1.20 (Main Theorem III). Under the assumptions of Theorem 1.18, we further

assume
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On Refined Conjectures on Selmer Groups 11

(fineNF) Sel0(Q∞, E[p∞])∨ has no nontrivial finite �-submodule, and

(III) if �n(1+X) divides a generator of char�

(
Sel0(Q∞, E[p∞])∨

)
, then rkZE(Qn) >

rkZE(Qn−1) (if n = 0, then �0(1 + X) = X, and this inequality means

rkZE(Q) > 0).

Then Errn vanishes. Therefore, the strong main conjecture (Conjecture 1.6)(
θn( f ), νn−1,n

(
θn−1( f )

)) = Fitt�n

(
Sel(Qn, E[p∞])∨

)
holds.

See Section 6 for proof.

Example 1.21. There are many examples satisfying Assumptions (fineNF) and (III) in

Theorem 1.20.

(1) We note that Assumption (III) is satisfied if at least one of the following

conditions is satisfied:

(a) The characteristic ideal of Sel0(Q∞, E[p∞])∨ is prime to ωn for all n.

(b) If �n(1 + X) divides a generator of the characteristic ideal of

Sel0(Q∞, E[p∞])∨, then III(E/Qn)[p∞] is finite for all n.

In fact, the implication of Assumption (III) from (a) is trivial and that from

(b) can be proved by the control theorem for fine Selmer groups (cf. [13,

Lemma 4.2, Remark 4.4]). By (b), we expect that Assumption (III) always

holds. Therefore, the only essential condition in Theorem 1.20 is Assumption

(fineNF).

(2) If one of the following conditions occurs, then both Assumptions (fineNF)

and (III) follow:

• Sel0(Q, E[p∞]) is trivial. (See [13, Lemma 4.3] and [26].)

• Sel0(Q∞, E[p∞])	n
is trivial. (It is a weaker condition than the one

above.)

• Sel0(Q∞, E[p∞]) = ker
(
E(Q∞) ⊗ Qp/Zp → E(Q∞,p) ⊗ Qp/Zp

)
.

Note that the first two cases never occur if rkZE(Q) > 1. The fine Selmer

group is said to be all Mordell–Weil if the last case holds. In the all Mordell–

Weil case, Sel0(Qn, E[p∞])∨ is free over Zp, so Assumptions (fineNF) and (III)

follow.

(3) It is conjectured by Greenberg that the roots of a generator of

char�(Sel0(Q∞, E[p∞])∨) are all of the form ζ − 1 where ζ is a p-power

root of unity. See [18, Problem 0.7] for details.
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12 C.-H. Kim and M. Kurihara

2 Review of the Case for Elliptic Curves with Good Ordinary Reduction

In this section, we prove Theorem 1.14 for elliptic curves with good ordinary reduction.

2.1 Tools from Iwasawa theory

Let E be an elliptic curve over Q with good ordinary reduction at p. We first recall

the �-cotorsion property of Selmer groups. See [30, Theorem 4.4], [4, Theorem 1.5], and

[7, Theorem 17.4.(1)] for details.

Theorem 2.1. The Selmer group Sel(Q∞, E[p∞]) is �-cotorsion.

The following statement is the Iwasawa main conjecture for elliptic curves with

ordinary reduction. See [19, §1.(c)], [4, Conjecture 1.13], and [7, Conjecture 17.6] for

details.

Conjecture 2.2 (Iwasawa main conjecture). Let p be an odd prime and E an elliptic

curve over Q with p � ap(E). Then

(
Lp(Q∞, fα)

) = char�

(
Sel(Q∞, E[p∞])∨

)
,

where Lp(Q∞, fα) is the p-adic L-function of the p-stabilized form fα with the unit

root α.

The following theorem is due to Rubin [31, Theorem 12.3] for the CM case and

Kato [7, Theorem 17.4.(3)] for the non-CM case.

Theorem 2.3. Let p be an odd prime and E be an elliptic curve over Q with p � ap(E).

(1) If E has CM, then Conjecture 2.2 holds.

(2) If E has no CM, then we assume ρ is surjective. Then

(
Lp(Q∞, fα)

) ⊆ char�

(
Sel(Q∞, E[p∞])∨

)
.

For the non-CM case, we have the following theorem is due to Skinner–Urban

[32, Theorem 3.29], X. Wan [35, Theorem 4], and Kim–Kim–Sun [10, Theorem 1.1].

Theorem 2.4. Keep all the assumptions in Theorem 2.3.
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On Refined Conjectures on Selmer Groups 13

[33] If there exists a prime q‖N such that ρ is ramified at q, then Conjecture 2.2

holds.

[35] If there exists a real quadratic field F/Q such that

– p is unramified in F,

– any prime q dividing N such that q ≡ −1 (mod p) is inert in F/Q, and any

other prime dividing N splits in F/Q,

– the canonical period of f over F is the square of its canonical period over

Q up to a p-adic unit,

then Conjecture 2.2 holds.

[10] If δ̃n �= 0 for some n and p � Tam(E) · ∏
q|Nsp

(q − 1) · ∏
q′|Nns

(q′ + 1), where

Nsp is the product of split multiplicative reduction primes of E and Nns

is the product of non-split multiplicative reduction primes of E, then

Conjecture 2.2 holds.

The following theorem is due to Greenberg [4, Proposition 4.14] and Hachimori–

Matsuno [5, Corollary].

Theorem 2.5. The Selmer group Sel(Q∞, E[p∞]) has no proper �-submodule of finite

index.

We recall the control theorem for E over the cyclotomic Zp-extension of Q.

Theorem 2.6. The restriction map

Sel
(
Qn, E[p∞]

) → Sel
(
Q∞, E[p∞]

)
[ωn]

is injective with the finite cokernel whose size is bounded independently of n. If we

further assume that ap(E) �≡ 1 (mod p) and p � Tam(E), then the restriction map is an

isomorphism.

Proof. See [4, Proposition 3.7, Proposition 3.8, and Proposition 3.9]. �

2.2 Proof of Theorem 1.14 for the case of good ordinary reduction

This is basically obtained in [14, Corollary 10.3]. From Theorem 2.3, we have

(
Lp(Q∞, fα)

) ⊆ char�

(
Sel(Q∞, E[p∞])∨

)
.
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14 C.-H. Kim and M. Kurihara

By Theorem 2.1 and Theorem 2.5, characteristic ideals are equal to Fitting ideals via

Lemma A.7; thus, we have

(
Lp(Q∞, fα)

) ⊆ Fitt�

(
Sel(Q∞, E[p∞])∨

)
.

Taking the quotient by ωn, we have

(
ϑn( fα)

) ⊆ Fitt�n

((
Sel(Q∞, E[p∞])[ωn]

)∨)
,

where

ϑn( fα) = 1

αn ·
(

θn( f ) − 1

α
· νn−1,n

(
θn−1( f )

))
is the p-stabilized Mazur–Tate element with the unit root α. Using Theorem 2.6 and

Lemma A.1, we have (
ϑn( fα)

) ⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

Since ap(E) �≡ 1 (mod p), it is not difficult to observe

ϑn( fα) = u · θn( f )

for some u ∈ �×
n . It shows that

(
θn( f ), νn−1,n

(
θn−1( f )

)) ⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

We also note that νn−1,n(θn−1( f )) is a multiple of ϑn( f ), so the ideal (θn( f ), νn−1,n(θn−1( f ))

is the principal ideal generated by ϑn( f ), equivalently by θn( f ).

If we further assume p � Tam(E) and the Iwasawa main conjecture (Conjecture

2.2, Theorem 2.3, and Theorem 2.4), then all the inclusions in the proof become equali-

ties, so we have (
θn( f )

) = Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

3 Tools from ±-Iwasawa Theory

3.1 Basic objects of ±-Iwasawa theory

We quickly recall the basic objects of ±-Iwasawa theory. For a more detailed description,

we refer to [12] for the algebraic side and to [25] for the analytic side.
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On Refined Conjectures on Selmer Groups 15

Remark 3.1 (Sign convention). We fix the sign convention of ±-Iwasawa theory as

follows:

(1) Selmer groups: [12]

(2) p-adic L-functions: [25] = −[12]

(3) Coleman maps: [18] = −[12]

3.1.1 Local conditions at p

Let E be an elliptic curve over Q with ap(E) = 0. Then we define

E+(Qn,p) := {
P ∈ E(Qn,p) : Trn/m+1(P) ∈ E(Qm,p) for even m (0 ≤ m < n)

}
E−(Qn,p) := {

P ∈ E(Qn,p) : Trn/m+1(P) ∈ E(Qm,p) for odd m (0 ≤ m < n)
}
,

where Qn,p is the completion of Qn at p and Trn/m+1 : E(Qn,p) → E(Qm+1,p) is the trace

map.

3.1.2 The norm subgroups

Let Ê be the formal group associated to E and mn be the maximal ideal of Qn,p. We define

Ê+(mn) := {
P ∈ Ê(mn) : Trn/m+1(P) ∈ Ê(mm) for even m (0 ≤ m < n)

}
Ê−(mn) := {

P ∈ Ê(mn) : Trn/m+1(P) ∈ Ê(mm) for odd m (0 ≤ m < n)
}
,

where Trn/m+1 : Ê(mn) → Ê(mm+1) is the trace map.

3.1.3 ±-Selmer groups

Following [12, Definition 1.1] and [8, Definition 3.1], we define the ±-Selmer groups of

E over Qn by

Sel±(Qn, E[p∞])

:= ker

(
Sel(Qn, E[p∞]) → H1(Qn,p, E[p∞])

E±(Qn,p) ⊗ Qp/Zp

)

= ker

⎛⎝H1(Q�/Qn, E[p∞]) → H1(Qn,p, E[p∞])

E±(Qn,p) ⊗ Qp/Zp
×

∏
w|�,�∈�,� �=p

H1(Qn,w, E[p∞])

E(Qn,w) ⊗ Qp/Zp

⎞⎠
and the ±-Selmer groups of E over Q∞ by

Sel±(Q∞, E[p∞]) := lim−→
n

Sel±(Qn, E[p∞]),
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16 C.-H. Kim and M. Kurihara

respectively. Note that ±-Selmer groups are also independent of the choice of � as usual

Selmer groups are since the local conditions at the places above p are only changed.

Also, it is easy to see

Sel0(Qn, E[p∞]) ⊆ Sel±(Qn, E[p∞]) ⊆ Sel(Qn, E[p∞]),

respectively.

3.1.4 ±-p-adic L-functions and ±-Coleman maps

We recall the characterization of ±-p-adic L-functions L±
p (Q∞, f ) ∈ � by their

interpolation property [29, (10), (11), and (12)]:

χ
(
L+

p (Q∞, f )
) = (−1)(n+1)/2 · τ(χ)

χ(ω̃+
n )

· L(E, χ−1, 1)

�E
if χ has order pn with n odd

χ
(
L−

p (Q∞, f )
) = (−1)(n/2)+1 · τ(χ)

χ(ω̃−
n )

· L(E, χ−1, 1)

�E
if χ has order pn > 1 with n even

1
(
L+

p (Q∞, f )
) = (p − 1) · L(E, 1)

�E

1
(
L−

p (Q∞, f )
) = 2 · L(E, 1)

�E
,

where χ is a character of 	, 1 is the trivial character, and τ(χ) is the Gauss sum of χ .

We also recall ±-Coleman maps. Our sign convention follows that of [18].

Theorem 3.2 ([12, Theorem 6.2, Theorem 6.3, and §8], [18, §1.1]). There exist maps

Col±n : H1(
Qn,p, T

) → �n/ω∓
n

such that

(1) Col±n : H1
(
Qn,p, T

)
/ker Col±n � �n/ω∓

n and

(2) Col±n
(
loc zKato,n

) = L±
p (Qn, f ),

where zKato,n ∈ H1(Qn, T) is Kato’s zeta element at Qn and L±
p (Qn, f ) := L±

p (Q∞, f )

(mod ω∓
n ). By taking the inverse limit with respect to n, we have maps

Col± : H1
loc(T) → �

such that

(1) Col± are surjective and

(2) Col±(loc zKato) = L±
p

(
Q∞, f

)
,
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On Refined Conjectures on Selmer Groups 17

where

H1
loc(T) := lim←−

n
H1(

Qn,p, T
)

is the local Iwasawa cohomology group and zKato ∈ H1(Q∞, T) is Kato’s zeta element

at Q∞.

Remark 3.3. The construction of Col±n in [12] uses certain local points of formal groups

of elliptic curves via Honda theory and that in [18] uses the Pn-paring defined by the

second named author in [13] and Proposition 1.11.

3.2 ±-main conjectures

We recall the �-cotorsion property of ±-Selmer groups ([12, Theorem 7.3.ii)], [29,

Theorem 6.3]).

Theorem 3.4. Let p be an odd prime and E an elliptic curve over Q with ap(E) = 0.

Then both Sel+(Q∞, E[p∞]) and Sel−(Q∞, E[p∞]) are �-cotorsion.

The following statement is the pair of the Iwasawa main conjectures for elliptic

curves with supersingular reduction ([12, Even, odd main conjectures, §4]).

Conjecture 3.5 (±-main conjectures). Let p be an odd prime and E an elliptic curve

over Q with ap(E) = 0. Then

(
L∓

p (Q∞, f )
)

= char�

(
Sel±(Q∞, E[p∞])∨

)
.

As in the ordinary case, the Euler system argument yields the following

statement ([12, Theorem 4.1], [29, Theorem in Introduction]).

Theorem 3.6. Let p be an odd prime and E an elliptic curve over Q with ap(E) = 0.

(1) If E has CM, then Conjecture 3.5 holds.

(2) If E has no CM, then we assume ρ is surjective. Then

(
L∓

p (Q∞, f )
)

⊆ char�

(
Sel±(Q∞, E[p∞])∨

)
.

Remark 3.7. Even in the non-CM case, there are several approaches to establish

Conjecture 3.5 under certain tame level assumptions. Since none of them is published
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18 C.-H. Kim and M. Kurihara

yet, we just record the assumptions they made. More precisely, it is announced that the

±-main conjectures hold if the conditions in Theorem 3.6 and one of the following tame

level conditions hold:

[36] there exists a prime q‖N such that ρ is ramifed at q,

[36] N is square-free and there exist two primes q‖N such that ρ is ramified at

q, or

[37] N is square-free (only assuming the absolute irreducibility of ρ).

In addition, the numerical criterion of Kim–Kim–Sun described in Theorem 2.4 still

works to verify the ±-main conjectures (without these tame level assumptions) in the

exactly same way. If the validity of the results in these preprints is confirmed, then

the ±-main conjecture assumption in Theorem 1.18 could be removed. Note that any of

these results is used in this article. Especially, Theorem 3.6.(2) is strong enough to prove

the Mazur–Tate conjecture (Theorem 1.14).

3.3 Nonexistence of proper �-submodules of finite index

We recall B.D. Kim’s result [8, Theorem 1.1] on the analogue of Theorem 2.5 for the

supersingular setting. For the further developments along this direction, see [11].

Theorem 3.8. The Selmer groups Sel+(Q∞, E[p∞]) and Sel−(Q∞, E[p∞]) have no proper

�-submodule of finite index.

3.4 ±-exact control theorems

We recall the ±-version of the control theorem ([12, Theorem 9.3], [6, Theorem 6.8]).

Theorem 3.9 (±-control theorems). The restriction map

Sel±
(
Qn, E[p∞]

)[
ω±

n

] → Sel±
(
Q∞, E[p∞])

[
ω±

n

]
is injective with the finite cokernel whose size is bounded independently of n. If we

further assume that p � Tam(E), then the restriction map is an isomorphism.

Proof. The ap(E) = 0 condition ensures that E(Q)[p] is trivial, and it implies that the

restriction map is injective as in [12, Lemma 9.1]. The failure of the surjectivity comes

only from prime-to-p local conditions; thus, the situation coincides with the ordinary

case. The p � Tam(E) condition ensures that the failure vanishes. See [12, Theorem 9.3]

and [4, Proposition 3.8] for details. �
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On Refined Conjectures on Selmer Groups 19

3.5 The consequence

Corollary 3.10. Let p be an odd prime and E an elliptic curve over Q with ap(E) = 0.

Assume ρ is surjective if E has no CM. Then we have

(
ω̃∓

n · L∓
p (Q∞, f ) (mod ωn)

)
⊆ ω̃∓

n · Fitt�n

(
Sel±(Qn, E[p∞])∨

)
in �n, respectively.

Proof. By Theorem 3.4, Theorem 3.6, Theorem 3.8, and Lemma A.7, we have

(
L∓

p (Q∞, f )
)

⊆ Fitt�

(
Sel±(Q∞, E[p∞])∨

)
under the conditions of Theorem 3.6. Taking the quotient by ω±

n , we obtain

(
L∓

p (Q∞, f ) (mod ω±
n )

)
⊆ Fitt�n/ω±

n

((
Sel±(Q∞, E[p∞])[ω±

n ]
)∨)

in �n/ω±
n , respectively. By Theorem 3.9 and Lemma A.1, we obtain

(
L∓

p (Q∞, f ) (mod ω±
n )

)
⊆ Fitt�n/ω±

n

((
Sel±(Qn, E[p∞])[ω±

n ]
)∨)

in �n/ω±
n , respectively. Since we have the following equality:

Fitt�n/ω±
n

((
Sel±(Qn, E[p∞])

[
ω±

n

])∨)
= Fitt�n

(
Sel±(Qn, E[p∞])∨

) + (
ω±

n

)
(ω±

n )

in �n/ω±
n by Lemma A.6, we have inclusions

(
L∓

p (Q∞, f ) (mod ωn)
)

+ (ω±
n ) ⊆ Fitt�n

(
Sel±(Qn, E[p∞])∨

) + (ω±
n )

in �n, respectively. Multiplying ω̃∓
n , the conclusion immediately follows. �

Remark 3.11. If we further assume p � Tam(E) and the ±-main conjectures, then the

inclusion in Corollary 3.10 becomes an equality.
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20 C.-H. Kim and M. Kurihara

4 Comparison of Local Conditions at p

Consider the exact sequence of �n-modules (cf. [11, (4.2)])

Then we have

Fitt�n

((
E(Qn,p) ⊗ Qp/Zp

E±(Qn,p) ⊗ Qp/Zp

)∨
/ker(ι±)

)
·Fitt�n

(
Sel±(Qn, E[p∞])∨

)⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
by Lemma A.2. By Lemma A.1, we also have

Fitt�n

((
E(Qn,p) ⊗ Qp/Zp

E±(Qn,p) ⊗ Qp/Zp

)∨)
⊆ Fitt�n

((
E(Qn,p) ⊗ Qp/Zp

E±(Qn,p) ⊗ Qp/Zp

)∨
/ker(ι±)

)
.

We observe that(
E(Qn,p) ⊗ Qp/Zp

E±(Qn,p) ⊗ Qp/Zp

)∨
�

(
Ê(mn) ⊗ Qp/Zp

Ê±(mn) ⊗ Qp/Zp

)∨
[11, Lemma 3.14]

�
(

Ê(mn)

Ê±(mn)
⊗ Qp/Zp

)∨
.

Due to [6, Proposition 4.11], we have the following exact sequence:

where f is the diagonal embedding and g : (a, b) �→ a−b. Note that ω̃+
n ω̃−

n �n � �n/X�n �
Zp. This implies that

Ê(mn)/Ê±(mn) � (
ω̃+

n , ω̃−
n

)
�n/ω̃∓

n �n.

Then

Fitt�n

(((
ω̃+

n , ω̃−
n

)
�n

ω̃∓
n �n

⊗ Qp/Zp

)∨)
= Fitt�n

(((
Ê(mn)/Ê±(mn)

) ⊗ Qp/Zp

)∨)
.

The following proposition is due to R. Pollack.
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On Refined Conjectures on Selmer Groups 21

Proposition 4.1.

Fitt�n

(((
ω̃+

n , ω̃−
n

)
�n

ω̃∓
n �n

⊗ Qp/Zp

)∨)
= ω̃∓

n �n.

Proof. Since the multiplication by ω±
n induces an isomorphism �n/ω̃∓

n �n � ω±
n �n,

we have

�n/ω̃∓
n �

(
ω̃+

n , ω̃−
n

)
�n

ω̃∓
n �n

.

We compute

((
ω̃+

n , ω̃−
n

)
�n

ω̃∓
n �n

⊗ Qp/Zp

)∨
� HomZp

((
ω̃+

n , ω̃−
n

)
�n

ω̃∓
n �n

⊗ Qp/Zp,Qp/Zp

)

� HomZp

(
�n/ω̃∓

n ,Zp

)
.

A direct calculation shows the following identities:

ω̃+,ι
n :=

∏
2≤m≤n,m:even

�m

(
1

1 + X

)

=
∏

2≤m≤n,m:even

(
�m(1 + X) · (1 + X)−pm−1(p−1)

)

=
⎛⎝ ∏

2≤m≤n,m:even

(1 + X)−pm−1(p−1)

⎞⎠ · ω̃+
n ,

and

ω̃−,ι
n :=

∏
1≤m≤n,m:odd

�m

(
1

1 + X

)

=
∏

1≤m≤n,m:odd

(
�m(1 + X) · (1 + X)−pm−1(p−1)

)

=
⎛⎝ ∏

1≤m≤n,m:odd

(1 + X)−pm−1(p−1)

⎞⎠ · ω̃−
n .

We write

c+ =
⎛⎝ ∏

2≤m≤n,m: even

(1 + X)−pm−1(p−1)

⎞⎠, c− =
⎛⎝ ∏

1≤m≤n,m: odd

(1 + X)−pm−1(p−1)

⎞⎠
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22 C.-H. Kim and M. Kurihara

and note that they are invertible in �n.

We consider a perfect pairing �n × �n → Zp defined by (σ , τ) = 1 if τ = σ−1 and

(σ , τ) = 0 otherwise, where σ , τ ∈ Gal(Qn/Q). Then the pairing induces an isomorphism

HomZp
(�n,Zp) � �n

with the reversed �n-action. Then we have

HomZp

(
�n/ω̃∓

n ,Zp

) � HomZp
(�n,Zp)

[
ω̃∓

n

]
� �n

[
ω̃∓,ι

n

]
� �n

[
ω̃∓

n

] (
c∓

n ∈ �×
n

)
� ω±

n �n.

�

To sum up, we have

ω̃∓
n · Fitt�n

(
Sel±(Qn, E[p∞])∨

) = Fitt�n

(((
ω̃+

n , ω̃−
n

)
�n

ω̃∓
n �n

⊗ Qp/Zp

)∨)

· Fitt�n

(
Sel±(Qn, E[p∞])∨

)
= Fitt�n

((
Ê(mn)/Ê±(mn) ⊗ Qp/Zp

)∨)
· Fitt�n

(
Sel±(Qn, E[p∞])∨

)
⊆ Fitt�n

((
E(Qn,p) ⊗ Qp/Zp

E±(Qn,p) ⊗ Qp/Zp

)∨
/ker(ι±)

)

· Fitt�n

(
Sel±(Qn, E[p∞])∨

)
⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

By Corollary 3.10, we have

(
ω̃∓

n · L∓
p (Q∞, f ) (mod ωn)

)
⊆ Fitt�n

(
Sel(Qn, E[p∞])∨

)
.

Then Theorem 1.14 immediately follows from Proposition 1.11. Notably, the weak main

conjecture of Mazur–Tate holds.
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On Refined Conjectures on Selmer Groups 23

5 Towards the Strong Main Conjecture

The goal of this section is to prove the inclusion

Fitt�n

(
Errn

) · Fitt�n

(
Sel(Qn, E[p∞])∨

) ⊆ (
θn( f ), νn−1,n

(
θn−1( f )

))
in Theorem 1.18. Note that the inclusion gives us a lower bound of Selmer groups (up to

some error). Throughout this section, we assume

(1) ρ is surjective (⇒ E is automatically non-CM),

(2) p does not divide Tam(E), and

(3) the ±-main conjectures (Conjecture 3.5).

5.1 Kato’s main conjecture and fine Selmer groups

Let j : Spec(Qn) → Spec(OQn
[1/p]) be the natural map. Let

Hi
glob(T) := lim←−

n
Hi

ét

(
Spec(OQn

[1/p]), j∗T
)
, Hi

glob(V) := Hi
glob(T) ⊗ Qp,

where Hi
ét(Spec(OQn

[1/p]), j∗T) is the étale cohomology group. It is well known that

H1
glob(T) � lim←−n

H1(Q�/Qn, T). See [13, §6] and [12, Proposition 7.1.(i)] for details.

The following theorem is due to Kato ([7, Theorem 12.4.(1) and (3)]).

Theorem 5.1. Assume that ρ is surjective. Then

(1) H2
glob(T) is a finitely generated torsion module over �.

(2) H1
glob(T) is free of rank one over �.

We recall the Iwasawa main conjecture without p-adic zeta functions à la Kato

and Perrin-Riou ([7, Conjecture 12.10]).

Conjecture 5.2 (Kato’s main conjecture).

char�

((
H1

glob(T)/�zKato

)
tors

)
= char�

(
H2

glob(T)
)
,

where Mtors is the �-torsion submodule of M.

Note that we crucially use Conjecture 5.2 in the argument.
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24 C.-H. Kim and M. Kurihara

Remark 5.3.

(1) If ap(E) = 0, then Kato’s main conjecture (Conjecture 5.2) and the ±-main

conjectures (Conjecture 3.5) are equivalent due to [12, Theorem 7.4].

(2) Also, H2
glob(T) and Sel0(Q∞, E[p∞])∨ are pseudo-isomorphic as �-modules.

See [13, §6] and [12, Theorem 7.1.ii)] for details.

5.2 Selmer groups and fine Selmer groups in finite layers

Let

Y ′
n := coker

(
H1

glob(T)	n
→ H1(Qn,p, T)

E(Qn,p) ⊗ Zp

)
,

Yn := coker

(
H1(Q�/Qn, T) → H1(Qn,p, T)

E(Qn,p) ⊗ Zp

)
,

and

Zn := im

(
H1(Q�/Qn, T) → H1(Qn,p, T)

E(Qn,p) ⊗ Zp

)
.

Consider the following commutative diagram

with

ker fn � coker gn

by snake lemma.

Remark 5.4. Here, coker gn is exactly Errn. We use the notation coker gn in this and

the next sections.
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On Refined Conjectures on Selmer Groups 25

Let Y ′
n/coker gn := Y ′

n/ker fn ⊆ Yn. Then we have

Fitt�n

(
Yn

) ⊆ Fitt�n

(
Y ′

n/coker gn

)
by Lemma A.10. Using the Poitou–Tate sequence ([27, A.3.2.Proposition], [12, (7.18)]), we

have the following exact sequence with splitting:

5.3 A presentation of the difference between Selmer groups and fine Selmer groups

It would be desirable to compute a presentation matrix of Yn from the following exact

sequence:

Unfortunately, it seems out of reach with current techniques; instead, we compute a

slightly easier version, a presentation matrix of Y ′
n from the following exact sequence:

We regard Y ′
n as the quotient of H1(Qn,p, T) by local constraint E(Qn,p) ⊗ Zp and global

constraint H1
glob(T)	n

.

5.3.1 The generators

Let H1
loc(T) be the local Iwasawa cohomology group (defined in Theorem 3.2). Since E is

supersingular at p, E[p] is irreducible as a Gal(Qp/Qp)-module. Then H1
loc(T) is free of

rank 2 over � since H1(Qp, T) is free of rank 2 over Zp.

Proposition 5.5 ([18, Proposition 1.2]). Let Col := Col+ ⊕ Col−. The following sequence:

is exact, where r(h(X), k(X)) := h(0) − p−1
2 · k(0).
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26 C.-H. Kim and M. Kurihara

We pick a �-basis (e1, e2) of H1
loc(T) = ker(r) by

Col(e1) =
(

p − 1

2
, 1

)
, Col(e2) = (X, 0).

Then

H1
loc(T) = �e1 ⊕ �e2

� �Col(e1) ⊕ �Col(e2)

⊆ � ⊕ �.

By the irreducibility of E[p] as a Gal(Qp/Qp)-module, we have

H1
loc(T)	n

= H1(Qn,p, T)

= �ne1 ⊕ �ne2.

5.3.2 The local constraint

Consider the exact sequence

We investigate the image of e1 and e2 in �n/ω−
n ⊕ �n/ω+

n under Coln. Then we

naturally obtain the following relations of
H1(Qn,p,T)

E(Qn,p)⊗Zp
:

ω̃−
n · e2 = (ω̃−

n X, 0)

= (ω−
n , 0)

= (0, 0) ∈ �n/ω−
n ⊕ �n/ω+

n

ω+
n · e1 − p − 1

2
· ω̃+

n · e2 =
(

ω+
n · p − 1

2
, ω+

n

)
−

(
p − 1

2
· ω̃+

n · X, 0
)

= (
0, ω+

n

)
= (0, 0) ∈ �n/ω−

n ⊕ �n/ω+
n .
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On Refined Conjectures on Selmer Groups 27

Also, since E(Qn,p) ⊗ Zp is generated by two elements over �n via a formal group

argument as in [6, Proposition 4.11], we know that
H1(Qn,p,T)

E(Qn,p)⊗Zp
is the module with two

generators e1, e2 and the above two relations (these relations are all).

5.3.3 The global constraint

Due to Theorem 5.1.(2), we have

H1
glob(T) � �

and let b be a �-generator of H1
glob(T). Then b is also a �n-generator of H1

glob(T)	n
� �n.

We write the image of b by (b1, b2) under the map

Since

H1(Qn,p, T)

E(Qn,p) ⊗ Zp
↪→ �n/ω−

n ⊕ �n/ω+
n ,

we have

Y ′
n = H1(Qn,p, T)

E(Qn,p) ⊗ Zp + im H1
glob(T)

↪→ �n/ω−
n ⊕ �n/ω+

n(
b1, b2

) ,

where im H1
glob(T) is the image of H1

glob(T) in H1(Qn,p, T) and it is a quotient of H1
glob(T)	n

.

Then

b2e1 − b1 − p−1
2 b2

X
e2 = b2(

p − 1

2
, 1) + b1 − p−1

2 b2

X
(X, 0)

= (
b1, b2

)
= (0, 0) ∈ Y ′

n.

5.3.4 A presentation matrix

Using all the above discussion on generators and relations arising from
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28 C.-H. Kim and M. Kurihara

we know there are two generators and three relations. Now we describe a presentation

matrix A of Y ′
n over �n

by

A =
⎛⎝ 0 ω+

n b2

ω̃−
n −p−1

2 ω̃+
n

b1− p−1
2 b2

X

⎞⎠.

A direct computation of minors of the above matrix A yields the following statement.

Proposition 5.6.

Fitt�n

(
Y ′

n

) = (
ω̃+

n b1, ω̃−
n b2

)
.

5.4 Putting it all together

Consider the exact sequence

where Mmft is the maximal finite torsion �-submodule of M. Then we have

char�

((
Sel0(Q∞, E[p∞])∨

)
mft

) · char� (S) = char�

(
Sel0(Q∞, E[p∞])∨

)
.

Since char�

((
Sel0(Q∞, E[p∞])∨

)
mft

)
is trivial and the projective dimension of S

over � is ≤ 1 (i.e., pd�S ≤ 1), we have

Fitt� (S) = char� (S)

= char�

(
Sel0(Q∞, E[p∞])∨

)
= char�

(
H1

glob(T)/�zKato

)
,

where Lemma A.7 and Conjecture 5.2 are used to obtain the 1st and the 3rd equalities,

respectively. Then, by Kato’s main conjecture (Conjecture 5.2) again, we have

Fitt� (S) = (c) ⊆ �,
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On Refined Conjectures on Selmer Groups 29

where zKato = c · b in H1
glob(T) with b the chosen �-generator of H1

glob(T) in Section 5.3.3.

By the control theorem for fine Selmer groups ([13, Lemma 4.2 and Remark 4.4]),

we have

Sel0(Qn, E[p∞])∨ � (
Sel0(Q∞, E[p∞])∨

)
	n

.

Consider two exact sequences with compatibility

where An is defined to be the kernel of the map Sel(Qn, E[p∞])∨ → S	n
.

Since pd�S ≤ 1, we have S admits a presentation by a square matrix over �.

Thus, S	n
also admits a presentation by a square matrix over �n. Then we have

Fitt�n

(
Sel(Qn, E[p∞])∨

) = Fitt�n

(
An

) · Fitt�n

(
S	n

)
⊆ Fitt�n

(
Yn

) · Fitt�n

(
S	n

)
,

where Lemma A.4 and Lemma A.10 are used to obtain the 1st equality and the 2nd

inclusion, respectively. Multiplying Fitt�n

(
coker gn

)
, we have

Fitt�n

(
coker gn

) · Fitt�n

(
Sel(Qn, E[p∞])∨

) ⊆ Fitt�n

(
coker gn

) · Fitt�n

(
Yn

) · Fitt�n

(
S	n

)
⊆ Fitt�n

(
coker gn

) · Fitt�n

(
Y ′

n/coker gn

)
· Fitt�n

(
S	n

)
⊆ Fitt�n

(
Y ′

n

) · Fitt�n

(
S	n

)
= (

ω̃+
n b1, ω̃−

n b2

) · (c)

= (
ω̃+

n Col+(loc b), ω̃−
n Col−(loc b)

) · (c)

= (
ω̃+

n Col+(c · loc b), ω̃−
n Col−(c · loc b)

)
= (

ω̃+
n Col+(loc zKato), ω̃−

n Col−(loc zKato)
)

=
(
ω̃+

n L+
p (Q∞, f ), ω̃−

n L−
p (Q∞, f )

)
.
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30 C.-H. Kim and M. Kurihara

6 Vanishing of Errn

This section is entirely devoted to prove the following proposition in order to obtain

Theorem 1.20. We keep all the assumptions in Section 5 in this section.

Proposition 6.1. If

(fineNF) Sel0(Q∞, E[p∞])∨ has no nontrivial finite �-submodule, and

(III) if char�

(
Sel0(Q∞, E[p∞])∨

) ⊆ (
�n(1 + X)

)
, then rkZE(Qn) > rkZE(Qn−1)

(if n = 0, then �0(1 + X) = X and this inequality means rkZE(Q) > 0),

then coker gn = 0.

6.1 Reduction

We recall the following exact sequence ([18, (Proof of) Proposition 3.4]):

By taking the 	n-coinvariant of the above sequence, we have the exact sequence

where

Cn := coker
(
Sel(Q∞, E[p∞])∨,	n → Sel0(Q∞, E[p∞])∨,	n

)
and im H1

glob(T) := im
(
H1

glob(T) → H1(Qn,p, T)
)
. We also have an exact sequence

from Sequence (5.2) and the definition of Zn.

Let πglob,n : H1
(
Qn,p, T

) → H1
(
Qn,p, T

)
im H1

glob(T)
be the natural projection and

C̃n := π−1
glob,n(Cn) ⊆ H1(

Qn,p, T
)

be the inverse image of Cn with respect to πglob,n, and it obviously contains im H1
glob(T).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnz129/5528473 by KEIO

 U
N

IVER
SITY SC

IEN
C

E AN
D

 TEC
H

N
O

L LIBR
 user on 16 April 2021



On Refined Conjectures on Selmer Groups 31

Considering the following commutative diagram:

it is observed that C̃n surjects Zn under the natural quotient map

H1(Qn,p, T) �
H1(Qn,p, T)

E(Qn,p) ⊗ Zp

since (
H1(Qn,p, T)

C̃n

)
/

(
E(Qn,p) ⊗ Zp

)
=

(
H1(Qn,p, T)

E(Qn,p) ⊗ Zp

)
/Zn

as a subgroup of Sel(Qn, E[p∞])∨.

Consider the composition of surjective maps

and then it factors through Cn by definition. Let

C′
n := Cn ∩ im

(
E(Qn,p) ⊗ Zp → H1(Qn,p, T)

im H1
glob(T)

)
⊆ H1(Qn,p, T)

im H1
glob(T)

.

Then Sequence (6.2) and the following exact sequence:

show that C′
n = ker

(
Cn → coker gn

)
. Thus, we have the exact sequence

We can easily observe the following statement.
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32 C.-H. Kim and M. Kurihara

Proposition 6.2. The following statements are equivalent:

(1) coker gn = 0.

(2) ϕn : C′
n → Cn is an isomorphism.

(3) All the classes in Cn lie in E(Qn,p) ⊗ Zp := im

(
E(Qn,p) ⊗ Zp → H1(Qn,p, T)

im H1
glob(T)

)
.

In particular, if Cn = 0, then coker gn = 0.

From now on, we prove Proposition 6.1 using induction on n.

6.2 When the rank does not grow

In this subsection, we assume that

Assumption 6.3. �n(1 + X) does not divide a generator of char�

(
Sel0(Q∞, E[p∞])∨

)
.

If n = 0, then

Sel0

(
Q∞, E[p∞]

)∨,	 = 0.

Thus by the definition of C0, we have C0 = 0, which implies that coker g0 = 0.

Now we suppose n > 0.

Lemma 6.4. Let M be a finitely generated torsion �-module with no nontrivial finite

�-submodule. Suppose that �n(1 + X) does not divide a generator of char�(M). Then

M	n−1 = M	n .

Proof. We may assume M = M	n , that is, ωnM = 0. Using the structure theorem for

finitely generated �-modules, M is a submodule of M ′ of finite index with

M ′ �
m⊕

i=1

�/fi�.

Since ωnM = 0, we also have ωnM ′ = 0. It shows that each fi divides ωn. Since �n(1 + X)

does not divide char�(M ′) = (
∏m

i=1 fi), each fi is prime to �n(1+X). Thus, each fi divides

ωn−1 = ωn/�n(1 + X), and then ωn−1M ′ = 0. Hence, ωn−1M = 0. �

By Lemma 6.4, we have

Sel0(Q∞, E[p∞])∨,	n−1 � Sel0(Q∞, E[p∞])∨,	n .
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On Refined Conjectures on Selmer Groups 33

Note that Assumption (fineNF) is used here. Thus, the natural map Cn−1 → Cn is

surjective. Then we have the following commutative diagram:

and coker gn−1 = 0 by the induction hypothesis. Thus, the lower horizontal map Cn−1 →
coker gn−1 becomes the zero map and then coker gn = 0.

6.3 When the rank grows

In this subsection, we assume that

Assumption 6.5. �n(1 + X) divides a generator of char�

(
Sel0(Q∞, E[p∞])∨

)
.

If n = 0, then Assumption (III) implies rkZE(Q) > 0, so the natural map

E(Q) ⊗ Qp/Zp → E(Qp) ⊗ Qp/Zp (6.4)

is surjective.

Let

M�n
:= M/�n(1 + X)M,

where M is a �n-module and �n(1 + X) ∈ �n.

Now we suppose n > 0. By Assumption (III), we have

rkZE(Qn) > rkZE(Qn−1).

Then the map (
E(Qn) ⊗ Qp/Zp

)
�n

→
(
E(Qn,p) ⊗ Qp/Zp

)
�n

(6.5)

is surjective.

First, we explicitly write down the connecting map

Cn → H1(Qn,p, T)

im H1
glob(T)
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34 C.-H. Kim and M. Kurihara

that is obtained by taking the 	n-coinvariant of Sequence (6.1). Let

[ f ] ∈ Cn = coker
(
Sel

(
Q∞, E[p∞]

)∨,	n → Sel0

(
Q∞, E[p∞]

)∨,	n
)

with a representative f ∈ Sel0(Q∞, E[p∞])∨[ωn] ⊆ Sel0(Q∞, E[p∞])∨. Via Sequence (6.1),

we lift f to f̃ ∈ Sel(Q∞, E[p∞])∨. Also, since ωn f̃ maps to ωn f = 0 in Sequence (6.1), we

have

ωn f̃ ∈ H1
loc(T)

loc H1
glob(T)

⊆ Sel
(
Q∞, E[p∞]

)∨.

This means that there exists an element P ∈ H1
loc(T) such that

ωn f̃ (x) = 〈P, j(x)〉

for any x ∈ Sel(Q∞, E[p∞]), where j : Sel(Q∞, E[p∞]) → H1(Q∞,p, E[p∞]) is the

natural localization map and 〈−, −〉 is the local Tate pairing between H1
loc(T) and

H1(Q∞,p, E[p∞]). Putting Pn := P (mod ωn) ∈ H1(Qn,p, T), we have the following diagram:

Note that Pn = ωn f̃ (mod ωn) ∈ H1(Qn,p,T)

im H1
glob(T)

is not necessarily zero since f̃ may not be

contained in
H1

loc(T)

loc H1
glob(T)

. To sum up, the map

Cn → H1(Qn,p, T)

im H1
glob(T)

is defined by [ f ] �→ Pn.

Now we prove that Pn ∈ E(Qn,p) ⊗ Zp in H1(Qn,p, T). By the local Tate duality, it

suffices to check 〈
Pn, E(Qn,p) ⊗ Qp/Zp

〉 = 0. (6.6)

Suppose at first n = 0. Since

E(Q) ⊗ Qp/Zp ⊆ Sel
(
Q, E[p∞]

) ⊆ Sel
(
Q∞, E[p∞]

)
[ω0],
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On Refined Conjectures on Selmer Groups 35

we know 〈P0, E(Q) ⊗ Qp/Zp〉 = 0. Since Map (6.4) is surjective, we also have 〈P0, E(Qp) ⊗
Qp/Zp〉 = 0.

Next we consider the case n > 0. Consider the exact sequence

By the induction hypothesis, we have coker gn−1 = 0. Thus, the map in

Sequence (6.3)

ϕn−1 : C′
n−1 → Cn−1

is an isomorphism, and also Pn−1 := Pn (mod ωn−1) is contained in E(Qn−1,p) ⊗ Zp.

Therefore, 〈
Pn, E(Qn−1,p) ⊗ Qp/Zp

〉
= 0. (6.8)

By Sequence (6.7), we only need to show that〈
Pn,

(
E(Qn,p) ⊗ Qp/Zp

)
�n

〉
= 0 (6.9)

in order to prove (6.6).

As in the case n = 0, ωn f̃ vanishes on E(Qn) ⊗ Qp/Zp since

E(Qn) ⊗ Qp/Zp ⊆ Sel
(
Qn, E[p∞]

) ⊆ Sel
(
Q∞, E[p∞]

)
[ωn].

Now we know that the homomorphism (6.5) is surjective, so ωn f̃ vanishes also on

(E(Qn,p) ⊗ Qp/Zp)�n
, and we get Equation (6.9).

Sequence (6.7), Equation (6.8), and Equation (6.9) complete the proof of

Equation (6.6).
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Appendix

A Lemmas on Fitting Ideals

All the modules in this section are finitely presented over their base rings. Let R be a

commutative ring with unity.

Lemma A.1 [21, 1, Appendix]. Let M � N be a surjective map of R-modules. Then

FittR(M) ⊆ FittR(N).

Lemma A.2 [21, 9, Appendix]. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of

R-modules. Then

FittR(M1) · FittR(M3) ⊆ FittR(M2).

Lemma A.3 ([23, Theorem 22, Page 80]). Let 0 → M1 → M2 → M3 → 0 be an exact

sequence of R-modules. Assume that pdRM3 ≤ 1. Then

FittR(M1) · FittR(M3) = FittR(M2).

Lemma A.4. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of R-modules. Assume

that M3 has presentation by a square matrix. Then

FittR(M1) · FittR(M3) = FittR(M2).

Proof. Denote a presentation matrix of Mi by Ai for i = 1, 2, 3. In other words,
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with r ≤ s. Then we have

A2 =
(

A1 ∗
0 A3

)
∈ M(r+m)×(s+m)(R).

Considering (r + m) × (r + m) minors of A2, it is easy to see that the upper-triangular

part (∗) of A2 does not affect the determinants of the minors. Thus, the conclusion

follows. �

Remark A.5. If R = Z[G] with a finite abelian group G, for example, and M is torsion

with pdRM ≤ 1, then FittR(M) is a principal ideal generated by a non-zero divisor. Thus,

Lemma A.3 is slightly stronger than Lemma A.4 for this case.

Lemma A.6 [21, 4, Appendix]. Let M be a finitely presented R-module. If I ⊂ R is an

ideal, then

FittR/I(M/IM) = π
(
FittR(M)

)
,

where π : A → A/I is the natural quotient map.

The following lemma is the key to replace characteristic ideals by Fitting ideals.

Lemma A.7. Let M be a finitely generated torsion �-module. Assume that M has no

nontrivial finite �-submodule. Then

char�(M) = Fitt�(M).

Proof. Though several proofs of this lemma are known, we want to give here a new

proof. If M has no nontrivial finite �-submodule, then depth(M) = 1, that is, there

exists an element x ∈ � such that the multiplication by x map on M is injective. By

Auslander–Buchsbaum formula, we have

pd�(M) + depth(M) = depth(�)

with depth(M) = 1, and depth(�) = 2. Thus, pd�(M) = 1. This shows that M is the

cokernel of a �-homomorphism f : �n → �n. Then both the characteristic ideal and

the Fitting ideal of M are generated by det(f ), and we get the conclusion. See also [38,

Proposition 2.1] and [34, Lemma 1.3.3 and Proposition 1.3.4]. �

Remark A.8. This lemma is an enhanced version of [21, page 327–328, Appendix]

removing the μ = 0 assumption. (cf. [14, §1.1].)
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Lemma A.9. Let M and N be �n-modules. We assume that M and N have no finite

�-torsion submodule provided that we regard M and N as �-modules. If N ⊆ M, then

Fitt�n
(M) ⊆ Fitt�n

(N).

Proof. We regard M and N as �-modules. Then we have

Fitt�(M) = char�(M) Fitt�(N) = char�(N)

by Lemma A.7. Consider the exact sequence of �-modules

Then we have

Fitt�(M) = char�(M)

= char�(N) · char�(M/N)

= Fitt�(N) · char�(M/N)

⊆ Fitt�(N).

By taking the quotient by ωn with Lemma A.6, we have

Fitt�n
(M) ⊆ Fitt�n

(N).
�

Lemma A.10. If A ⊂ B as finitely generated �n-modules, then

Fitt�n
(B) ⊆ Fitt�n

(A).

Proof. Consider the following two exact sequences as � or �n-modules with

compatibility

where Amft and Bmft are the maximal finite torsion �-submodules of A and B,

respectively. Thus, A′ and B′ have no finite �-submodule and indeed have no finite �n-
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On Refined Conjectures on Selmer Groups 39

submodule. Then we have

Fitt�n
(B′) ⊆ Fitt�n

(A′)

by Lemma A.9. Also, by Mazur–Wiles [21, Corollary to Proposition 3, Appendix, Page

328], we have

Fitt�n

(
Bmft

) ⊆ Fitt�n

(
Amft

)
.

Then Lemma A.3 and Lemma A.6 show us that

Fitt�n
(A) = Fitt�n

(
Amft

) · Fitt�n
(A′)

Fitt�n
(B) = Fitt�n

(
Bmft

) · Fitt�n
(B′).

Thus, the conclusion follows. �
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