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0 Introduction

Let E be an elliptic curve over Q. We assume that E has good supersingular
reduction at a prime p, and for simplicity, assume p is odd and a, =p+1 —
#E(F,) is zero. Then, as the second author showed, the p-adic L-function
L, «(E) of E corresponding to v = #=/—p (by Amice-Vélu and Vishik) can
be written as
L,o(E)= flog;r +glog, «

by using two Iwasawa functions f and g € Z,[[Gal(Q~/Q)]] ([20] Theo-
rem 5.1). Here log;DIE is the +-log function and Q. /Q is the cyclotomic
Z,-extension (precisely, see §1.3).

In Iwasawa theory for elliptic curves, the case when p is a supersingular
prime is usually regarded to be more complicated than the ordinary case,
but the fact that we have two nice Iwasawa functions f and g gives us some
advantage in several cases. The aim of this paper is to give such examples.

0.1. Our first application is related to the weak Birch and Swinnerton-Dyer
conjecture. Let L(E,s) be the L-function of E. The so called weak Birch
and Swinnerton-Dyer conjecture is the statement

Conjecture (Weak BSD)
L(E,1) =0 <= rank £(Q) > 0. (1)

We know by Kolyvagin that the right hand side implies the left hand side,
but the converse is still a very difficult conjecture. For a prime number p, let



Sel(E/Q) e be the Selmer group of E over Q with respect to the p-power
torsion points E[p>]. Hence Sel(E/Q),e sits in an exact sequence

0— EQ)® Qp/zp - Sel(E/Q)p“’ — II(E/Q)[p™] — 0

where HI(E/Q)[p™] is the p-primary component of the Tate-Shafarevich
group of E over Q. In this paper, we are interested in the following con-
jecture.

Conjecture 0.1
L(E,1) =0 <= #Sel(E/Q)p~ = o0

This is equivalent to the weak Birch and Swinnerton-Dyer conjecture if
we assume #II(E/Q)[p™] < oo. (Of course, the problem is the implication
from the left hand side to the right hand side.)

We note that Conjecture 0.1 is obtained as a corollary of the main con-
jecture in Iwasawa theory for E over the cyclotomic Z,-extension Q../Q.
We also remark that if the sign of the functional equation is —1, Conjecture
0.1 was proved by Skinner-Urban [24] and Nekovaf [16] in the case when p
is ordinary, and by Byoung-du Kim [10] in the case when p is supersingular.

In this paper, we will give a simple condition which can be checked nu-
merically and which implies Conjecture 0.1.

Suppose that p is an odd supersingular prime with a, = 0. We identify
Z,[[Gal(Qo/Q)]] with Z,[[T]] by the usual correspondence between a gen-
erator 7y of Gal(Qw/Q) and 1+ 7. When we regard the above two Iwasawa
functions f, g as elements in Z,[[T]], we denote them by f(T"), g(T). The in-
terpolation property of f(7') and g(T) tells us that f(0) = (p—1)L(E,1)/Qg
and ¢g(0) = 2L(FE,1)/Qg where Qg is the Néron period. Hence, if L(F,1) # 0,
we have

f(T)

g(T) ’T:O T2

We conjecture that the converse is also true, namely

p—1

Conjecture 0.2

L(E,1):0<:>@

g(T) ’T:O 7 L

2
(Again, the problem is the implication from the left hand side to the right

hand side.) Our first theorem says that Conjecture 0.2 implies Conjecture
0.1, namely



Theorem 0.3 Assume that (f/g)(0) <: (1)
Then, Sel(E/Q)p~ is infinite.

) does not equal (p—1)/2.

This result in a different terminology was essentially obtained by Perrin-
Riou (cf. [19] Proposition 4.10, see also §1.6 in this paper), but we will prove
this theorem in §1.4 by a different and simple method, using a recent formu-
lation of Iwasawa theory of an elliptic curve with supersingular reduction.
In §1, we also review the recent formulation of such supersingular Iwasawa
theory.

Conversely, assuming condition () which will be introduced in §1.4 and
which should always be true, we will show in §1.4 that the weak BSD con-
jecture (1) implies Conjecture 0.2, namely

Theorem 0.4 Assume condition (x)o in §1.4, and rank E(Q) > 0. Then,
(f/9)(0) # (p — 1)/2 holds.

Combining Theorems 0.3 and 0.4, we get

Corollary 0.5 Assume (x)o in §1.4 and #1I(E/Q)[p>*] < oco. Then, we

have HT) )
rank £(Q) > 0 <= 7(T) o # pT

Note that the left hand side is algebraic information and the right hand
side is p-adic analytic information. The weak BSD conjecture (1) is usually
regarded to be a typical relation between algebraic and analytic information.

The above Corollary 0.5 also gives such a relation, but in a different form.
(Concerning the meaning of (f/g)(0) # 1, see also §1.6.)

We note that f(7') and ¢g(7") can be computed numerically and the condi-
tion (f/g)(0) # (p—1)/2 can be checked numerically. For example, for N =
17 and 32, we considered the quadratic twist F = X(V), of the elliptic curve
Xo(N) by the Dirichlet character x4 of conductor d > 0. For p = 3 (which is
a supersingular prime in both cases with a, = 0), we checked the condition
(f/9)(0) # (p—1)/2 for all E; such that L(E4, 1) =0 with 0 < d < 500 and
d prime to 3N. We did this by computing (f/g)(0) — (p — 1)/2 mod 3"; the
biggest n we needed was 7 for £ = X((32), with d = 485. For N = 17 and
d = 76,104, 145, 157, 185, ... (resp. N = 32 and d = 41,65, 137, 145, 161, ...)
ordr(f(T)) = ordr(g(T)) = 2, so the corank of Sel(E/Q)y~ should be 2.
Our computation together with Theorem 0.3 implies that this corank is > 1.



We give here one simple condition which implies (f/g)(0) # (p — 1)/2.
Put r = min{ordy f(T),ordr g(T)}, and set f*(T") =T~ f(T) and ¢*(T) =
T7g(T). If ord,(f*(0)) # ord,(g9*(0)), then (f*/g*)(0) is not in ZX and
hence cannot be (p — 1)/2. Therefore, by Theorem 0.3 we have

Corollary 0.6 Iford,(f*(0)) # ord,(g*(0)), Sel(E/Q)pe is infinite. In par-
ticular, if one of f*(T') or g*(T) has A-invariant zero and the other has non-
zero A-invariant, then Sel(E/Q)y~ is infinite.

For example, we again consider £ = X,(17); with d > 0 and p = 3.
Then, the condition on the A-invariants in Corollary 0.6 is satisfied by many
examples, namely for d = 29,37,40,41,44,56,65, ... with r = 1, and for
d = 145,157,185, 293, 409, ... with r = 2.

Corollary 0.6 implies a small result on the Main Conjecture (Proposition
1.5, see §1.5). The case r = 1 will be treated in detail in §2.

0.2. In 0.1, we explained that the computation of the value (f/g)(0) —
(p—1)/2, or f™(0) — E1¢™(0), yields information on the Selmer group
Sel(E/Q) e where r = min{ordy f(7T'), ordr g(7)}. It is natural to ask what
this value means. In the case r = 1, we can interpret this value very explicitly
by using the p-adic Birch and Swinnerton-Dyer conjecture (cf. Bernardi and
Perrin-Riou [1] and Colmez [4]).

In this case, for a generator P of E(Q)/E(Q)ios, the p-adic Birch and

Swinnerton-Dyer conjecture predicts that log;(P) is related to f'(0)—25+¢'(0)

where log, is the logarithm of the formal group E (see §2.6 (11)). Using this
formula for log;(P), we can find P numerically. More precisely, we compute

. \/_ (70) 230 0) 20loss()le(r) 0] #EQun |
: Tam(E) p+1

which is a point on E(Q,), and which would produce a point on E(Q) with
a slight modification (see §2.7). Namely, we can construct a rational point
of infinite order p-adically in the case r = 1 as Rubin did in his paper [22] §3
for a CM elliptic curve.

Note here that we have an advantage in the supersingular case in that
the two p-adic L-functions together encode log;(P) (and not just the p-adic
height of a point).

We did the above computation for quadratic twists of the curve X(17)
with p = 3. We found a rational point on X(17)4 by this method for all d



such that 0 < d < 250 except for d = 197, ged(d, 3 -17) = 1, and the rank of
Xo(17)4 is 1. For example, for the curve

Xo(17) 103 : > + 2y +y = 2° — 2 — 256092 — 99966422
we found the rational point

915394662845247271 —878088421712236204458830141
25061097283236 125458509476191439016

by this method, namely 3-adically. To get this rational point, we had to
compute the value (2) modulo 3% (to 80 3-adic digits) to recognize that the
modified point constructed from the value (2) is a point on E(Q). For the
curve Xo(32) and p = 3 we did a similar computation and found rational
points on X(32)4 for all d with 0 < d < 150, ged(d, 6), and the rank of
X0(32)4 is 1. In §4, there are tables listing points for both of these curves.

To compute f'(0) and ¢'(0) to high accuracy, the usual definition of the
p-adic L-function (namely, the computation of the Riemann sums to approx-
imate f’(0) and ¢'(0)) is not at all suitable. We use the theory of overcon-
vergent modular symbols as in [21] and [6]. We will explain in detail in §2
this theory and the method to compute a rational point in practice.

0.3. Next, we study a certain important subgroup of the Selmer group over
Qoo This is related to studying common divisors of f(7') and ¢g(7T'). For any
algebraic extension I of Q, we define the fine Selmer group Sely(E/F') by

Selo(E/F) = Ker(Sel(E/F)ye — [[ H'(F., E[p™]))

vlp

where Sel(E/F),~ is the Selmer group of E over F' with respect to E[p*],
and v ranges over primes of F' lying over p. (The name “fine Selmer group”
is due to J. Coates.) Our interest in this subsection is in Selp(E£/Qx)-

Let Q,, be the intermediate field of Q.,/Q with degree p™. We put ¢y =
rank £(Q) and ®(7") = T. For n > 1, we define

_ rank £(Q,) —rank F(Q,_1)
ptp—1)
which is a non-negative integer, w,(T) = (1 + T)?" — 1, and ®,(T) =
wn(T) Jwn—1(T).
The Pontryagin dual Sely(F/Q )" of the fine Selmer group over Q, is a
finitely generated torsion Z,[[Gal(Q/Q)]]-module by Kato [9]. Concerning

the characteristic ideal, Greenberg raised the following problem (conjecture)
(see §3.1)

n



Problem 0.7
char(Selo(E/Qx)") = (I @57

en>1
n>0

We remark that this “conjecture” has the same flavor as his famous con-
jecture on the vanishing of the A-invariants for class groups of totally real
fields.

Let Sel*(EF/Qs) be Kobayashi’s -Selmer groups ([12], or see 1.5). By
definition we have Sely(E/Qs) C Sel*(E/Q.). In this subsection, we
assume the p-invariant of Sel*(F/Q.) vanishes. Using Kato’s result [9]
we know ¢(T) € charSel" (F/Q.)Y, and f(T) € charSel” (E/Qu)" (cf.
Kobayashi [12] Theorem 1.3, see also 1.5). Hence, a generator of char Sely(F/Qoo)
divides both f(T') and g(T'). Thus, in the supersingular case, we can check
this conjecture (Problem 0.7) numerically in many cases, by computing f(7')
and g(7).

For example, suppose that rank £(Q) = ep and min{A(f (7)), A(g(T))} =
eg. Then, we can show that the above “conjecture” is true and, moreover,
char Sely(E/Qy )Y = (T) where ¢}, = max{0, e, — 1} (see Proposition 3.1).
For E = Xy(17)4 and p = 3, the condition of Proposition 3.1 is satisfied
for all d such that 0 < d < 250 except for d = 104, 193,233. For these
exceptional values, we also checked Problem 0.7 holds (see §3.3).

In §3.2 we raise a question on the greatest common divisor of f(7") and
g(T) (Problem 3.2), and study a relation with the above Greenberg “conjec-
ture” (see Propositions 3.3 and 3.4).

We would like to heartily thank R. Greenberg for fruitful discussions on
all subjects in this paper, and for his hospitality when both of us were invited
to the University of Washington in May 2004. Furthermore, we learned to
use Wingberg’s result from him when we studied the problem in Proposition
3.4 (1). We would also like to express our hearty thanks to G. Stevens for his
helpful suggestion when we studied the example (the case d = 193) in §3.3.



1 Iwasawa theory of an elliptic curve with su-
persingular reduction

1.1. +-Coleman homomorphisms. Kobayashi defined in [12] §8 =+-
Coleman homomorphisms. We will give here a slightly different construction
of these homomorphisms using the results of the first author in [13].
Suppose that F has good supersingular reduction at an odd prime p with
a, = p+1—#E(F,) = 0. We denote by T" = T,(E) the Tate module,
and set V =T ® Q,. For n > 0, let Q,, denote the intermediate field
of the cyclotomic Z,-extension Q,~/Q, of the p-adic field Q, such that

[Qpn : Qp) = 1" We set A = Z,[[Gal(Qoe/Q)]] = Z,[[Gal(Qp00/Qp)]], and
identify A with Z,[[T]] by identifying v with 1 + 7. We put

H),. =limH (Q,,,T)

where the limit is taken with respect to the corestriction maps. We will
define two A-homomorphisms

Col* : H!

loc A.

Let D = Dyr(V) be the Dieudonné module which is a two dimen-
sional Q-vector space. Let wg be the Néron differential which we regard
as an element of D. Since D is isomorphic to the crystalline cohomol-
ogy H!,.(Emodp/Q,), the Frobenius operator ¢ acts on D and satisfies
7 —app Tt +p=9?+p=0.

We take a generator ((pn) of Z,(1); namely, (,n is a primitive p"-th root
of unity, and CII:"“ = (pn for any n > 1. For n > 1 and € D, put

n—1

Yu(@) =D (@) @ (s + (1= ) () € D @ Qplptyr).

i=0
Putting G,+1 = Gal(Qy(ppn+1)/Q,), we define
by Hl(Qp(Np”“)a T) — QplGn+1]

1

R = o] 2 Teenialben (s s ol

exp® : H'(Q,(ppn+1), T) — D @ Q,(ipn+1)

7



is the dual exponential map of Bloch and Kato (which is the dual of the
exponential map: D ® Qp(ppn+1) — HY(Q,(ppn+1),T)), and [z,y] € D ®
Q,(ppn+1) is the cup product of the de Rham cohomology for z, y € D ®
Qp(ppn+1). In this, [p(wg),wEs] € Z, plays the role of a p-adic period. By
Proposition 3.6 in [13], we have

F(2) € Zp[Gnsi]

(note that we slightly changed the notation ~,, P, from [13]).
Put G, = Cal(Q,,/Q,), and let i : H'(Qp,, T) — H (Q,(ppns1),T)
and 7 : Z,[Gp+1] — Z,[Gy] be the natural maps. We define

P Hl(Qp,m T) — Z,[G,)]

by
1
p _
These elements satisfy a distribution property; namely, we have

Pol(z) = 7o P,(i(2)).

7Tn,n—17jn(z) - _Vn—Q,n—IPn—Q (Nn,n—Q (Z))

where 7,1 : Zy|G,] — Z,[G,—1] is the natural projection, vy, 9,1 :
Z,G,—2] — Z,|G,—1] is the norm map such that o — 37 (for 0 € G,_o,
T ranges over elements in G,_; such that m,_1,_2(7) = o), and N, o :
HY Qpn, T) — H'(Qpu-2,T) is the corestriction map. This relation can
be proved by showing ¢ (7, ,-1Pn(2)) = Y(—Vn—24-1Pn—2(Npn-2(2))) for
any character ¢ of G,,_; (cf. the proof of Lemma 7.2 in [13]).

Our identification of v with 1+ T', gives an identification of Z,|G,] with
Z,[T)/(1+T)" —1). Set wy, = (1+T)P" —1, and ®,,, = wyn /w1 Which is
the p™-th cyclotomic polynomial evaluated at 1+ 7. The above distribution
relation implies that ®,_; divides P,(z). By induction on n, we can show
that ®,_1®P,_3-...- Py divides P, (2) if n is even, and ®,,_1P,,_3-...- P, divides
P, (z) if n is odd. Put

wh = H b, w, = H D,,.

2<m<n,2|m 1<m<n,2tm

boer and z, € HY(Q,,,T) is its im-
age. Suppose at first n is odd, and write P,(z,) = wlh,(T) with h,(T) €
Z,[T]/(wy,). Then, h,(T) is uniquely determined in Z,[T]|/(Tw, ) because
wiw. T = wy; so we regard h,(T) as an element in this ring. By the above
distribution property, we know that ((—1)™+1/2h, (T)),.0a4>1 is a projective

Suppose that z is an element in H}

8



system with respect to the natural maps Z,[T/(Tw, o) — Z,[T]/(Tw;,).
Hence, it defines an element h(T) € UmZ,[T]/(Tw, ) = Z,[[T]] = A. We

define Col™ (2) = h(T).

Next, suppose n is even. We write P,(z,) = w, k,(T) with k,(T) €
Z,T)/(Tw]). By the same method as above, the distribution property
implies that ((—1)"2/2k,(T))n.even>1 IS a projective system, so it defines
k(T) € imZ,[T)/(Tw,) = Z,[[T]] = A. We define Col™ (z) = k(7). Thus,

we have obtained two power series from z € Hi. .. We define Col : H} . —

A @ A by Col(z) = (Col*(z2),Col™(2)) = (W(T), k(T)).

The next lemma will be useful in what follows.

Lemma 1.1 Suppose z € H}_, Col*(z) = h(T), and Col™(z) = k(T).
Then,

h(0) = pp — 1) exp’(z) k(0) = 22O (20)
p+1 Wg p+1 wg
where zq is the image of z in H'(Q,, T), and exp*(z0)/wg is the element
a € Q, such that exp*(z) = awg.

We note that exp*(z9)/wg is known to be in p~'Z, (cf. [23] Proposition
5.2), hence the right hand side of the above formula is in Z,,.

Proof. This follows from the construction of Col*(z) and Lemma 3.5 in [13]
(cf. the proof of Lemma 7.2 in [13], pg. 220).

1.2. An exact sequence. We have defined

Col=Col"®Col™ : H.  — AP A.

loc

This homomorphism induces

Proposition 1.2 We have an exact sequence

Col

0 — H! —>A@AL>ZP—>O

loc
where p is the map defined by p(h(T), k(T)) = h(0) — E2k(0).

Proof. First of all, we note that H] _ is a free A-module of rank 2. In fact,

since H°(Q, 0, E[p]) = 0, it follows that H'(Q,, E[p™]) — H'(Qp.c0, E[p™]) 21 (Qr.ee/Qw)
is bijective. Taking the dual, we get an isomorphism (H] .)ca(q, ./q,) =
HY(Q,,T). Since H(Q,, E[p]) = H*(Q,, E[p]) = 0, HY(Q,,T) is a free

Z,-module of rank 2, and so HJ,_ is a free A-module of rank 2.



By Lemma 1.1, we know p o Col = 0. Hence, to prove Proposition 1.2, it
suffices to show that the cokernel of Col is isomorphic to Z,,.

Kobayashi defined two subgroups E*(Q,,) of E(Q,.) ® Z, ([12] Def-
inition 8.16). We will explain these subgroups in a slightly different way
(this idea is due to R. Greenberg). Since E(Q,,) ® Q, is the regular rep-
resentation of G,,, it decomposes into @, Vi where the V;’s are irreducible
representations such that dimq, Vo = 1, and dimg, V; = p"~!(p—1) for i > 0.
Then ET(Q,,) (resp. E7(Q,,)) is defined to be the subgroup consisting of
all points P € E(Q,.) ® Z, such that the image of P in V; is zero for every
odd i (resp. for every positive even 7). We define E*(Q, ) as the direct
limit of £%(Q,,,). By definition, the sequence

0— E(Q,)® Qp/zp - E+(Qp700) ® Qp/zp D E_(QILOO) ® Qp/zp
— E(Qpw) ® Qp/Z, — 0

is exact. Since p is supersingular, F(Q, ) ® Q,/Z, = H (Q,., E[p™]).
We also know that F*(Q, o) ® Q,/Z, is the exact annihilator of the kernel
of Col* with respect to the cup product ([12] Proposition 8.18). Hence,
taking the dual of the above exact sequence, we get Coker(Col) ~ (E(Q,) ®
Q,/Z,)" ~ Z,, which completes the proof.

1.3. p-adic L-functions and Kato’s zeta elements. We now consider
global cohomology groups. For n > 0, let Q,, denote the intermediate field
of Qu/Q with degree p™. We define

1
H glob —

= lim H'(Q,,T) = lim H(0q,[1/S],T)

where the limit is taken with respect to the corestriction maps, and S is the
product of the primes of bad reduction and p. The image of z € Hglob in H] .
we continue to denote by z. In our situation, Hglob was proved to be a free
A-module of rank 1 (Kato [9] Theorem 12.4). Kato constructed an element
2k = ((2K)n)n>0 € Hy,, with the following properties [9]. For a faithful
character ¢ of G,, = Gal(Q,,/Q) with n > 0,

and
L(E,1)

exp*((zk)o) = we(l — appfl —l—pfl) O

where exp* : HY(Qp,, T) — D ® Q,,,, is the dual exponential map.

10



Suppose that Oq, € Z,[G,] is the modular element of Mazur and Tate
[15], which satisfies the distribution property 7, ,-10Q, = —Vn-21-10Q, »»
and the property that for a faithful character ¢ of G,, = Gal(Q,,/Q) with

n > 0, )
L(E ¢y ,1
(o) = () LD

where 7(¢) is the Gauss sum, and ¢ : Z,[G,] — Z,[Image )] is the ring
homomorphism induced by 1.

Let o and 3 be two roots of 2 + p = 0. We have two p-adic L-functions
L, and L, 5 by Amice-Vélu and Vishik, which are in Ho, ® Q,(y/—p) where

He = {i a,T" € Qp[[T]];Jerolo |ap|,n™" =0 for some h € Z>0} .
n=0
As the second author proved in [20], there are two Iwasawa functions f(7')
and g(7") in Z,[[T]] such that
Lya(T) = f(T)log™(T) + ag(T)log™(T) (3)
and
Lyp(T) = f(T)log"(T) + Bg(T) log™(T) (4)

where log™(T) = p~'Il507 ®on(T) and log™(T) = p~ ' s03 Pon—1 (7).
Let P, be as in §1.1, and zx = ((2k),) be the zeta element of Kato. By
Lemma 7.2 in [13] by the first author, we have

Pu((2k)n) = b, ()

(we note that we need no assumption (for example on L(E,1)) to get (5)).
Since we know that £, , is also obtained as the limit of

oz_”_l(GQn — oz_lyn_lvné’anl),
using (5), we obtain
L, o(T) = Col™(zi) log*(T) + a Col™ (2 ) log™(T).
Comparing this formula with (3), we have proved

Theorem 1.3 (Kobayashi [12] Theorem 6.3) Let zx be Kato’s zeta ele-
ment, and f, g be the Iwasawa functions as in (3). Then, we have Col™ (zx) =

f(T) and Col™ (zx) = g(T).
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1.4. Proofs of Theorems 0.3 and 0.4. We begin by proving Theorem
0.3. For a non-zero element z in Hy,,, we write Col(z) = (h.(T), k-(T)).
Since Hy,,, is free of rank 1 over A ([9] Theorem 12.4), h.(T')/k.(T) does not
depend on the choice of z € Hy,;,. So choosing 2z = 2, we have by Theorem
1.3, that h.(T)/k.(T) = f(T)/g(T) for all non-zero z € Hy,.

Let & be a generator of Hy, ;. Suppose that /¢ (0) # 0. By Proposition 1.2,
p(COl(€)) = 0, 50 we get ke(0) # 0 and he(0),/ke(0) = (£/9)(0) = (p— 1)/2.
This contradicts our assumption. Hence, he(0) = 0. This implies that the
image &q, of £ in H'(Q,,T) satisfies exp*(£q,) = 0 by Lemma 1.1, so {q, is
in £(Q,)®Z,. Hence, the image {q of £ in H'(Q, T') is in Sel(E/Q, T') which
is the Selmer group of F/Q with respect to T. Since Hy,, = H'(Q,A ®
T), from an exact sequence 0 — A®T — AT — T — 0, the
natural map (Hy,)caQue/q — H'(Q,T) is injective ((Hy,p)cal(Qu/Q) 1
the Gal(Quo/Q)-coinvariants of Hy,,). Thus, q € Sel(E/Q, T') is of infinite
order. Therefore, # Sel(E/Q,T) = oo, which implies # Sel(E/Q)p~ = o0
and establishes Theorem 0.3.

1

glob

Next, we introduce condition (x),. We consider the composite H
HYQ,T) — HY(Q,,T) of natural maps, and the property
(*)o H,

glob — H'(Q,,T) is not the zero map.

This property (x)o should always be true. In fact, it is a consequence of
the p-adic Birch and Swinnerton-Dyer conjecture. More precisely, it follows
from a conjecture that a certain p-adic height pairing is non-degenerate (see
Perrin-Riou [17] pg. 979 Conjecture 3.3.7 B and Remarque iii)).

We now prove Theorem 0.4. As we saw in the proof of Proposition 1.2,
Hj _ is a free A-module of rank 2. The p-adic rational points £(Q,) ® Z, is a
direct summand of H'(Q,, T); hence, we can take a basis e, e of HJ,  such
that the image €} of e; in H'(Q,,T) is not in E(Q,) ® Z,, and the image
ey of ey in HY(Q,,T) generates F(Q,) ® Z,. Since €Y is not in £(Q,) ® Z,,
exp*(e}) # 0, and, by Lemma 1.1, Col*(e;)(0) # 0, and Col™ (e1)(0) # 0.
Since €J is in £(Q,) ® Z,, by Lemma 1.1, Col™(e2)(0) = Col™ (e2)(0) = 0.
We also have that Col™ (ey)'(0) # 0 and Col™ (e5)(0) # 0. This follows from
the fact that the determinant of the A-homomorphism Col : H, . — A ® A
is 7" modulo units by Proposition 1.2. We also note that Col*(e;)'(0) —
=1 Col™(e2)(0) # 0. Indeed, since (Col™(e;)/ Col™(e1))(0) = (p — 1)/2, if
we had (Col*(ey)/ Col™ (e2))(0) = (p — 1)/2, we would have

Image(Col) NT(A @A) C ((p—1)/2, DTA+T*(A @ A),
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which contradicts Proposition 1.2.

Now we assume (x)y and rank £(Q) > 0. Let &, he(T), ke(T), ... be
as in the proof of Theorem 0.3. We write & = a(T")e; + b(T)es with a(7T),
b(T) € A. Since rank E(Q) > 0, E(Q) ® Q, — E(Q,) ® Q, is surjective.
So the image of H(Q,T) — H'(Q,,T) is in £(Q,) ® Z, by Lemma 1.4
below which we will prove later. Therefore, a(0) = 0. Hence, (x)o implies
that b(0) # 0. Thus, we get

L (0) - 1%1/4(0) — (0) (coﬁ(ez)'(()) - 7%1 Col(eg)’(())) £0.

Hence,

9(T)

which completes the proof.

f(T) he(0)  p—1
ke

Our last task in this subsection is to prove the following well-known prop-
erty.

Lemma 1.4 . Let V =T ® Q. The image of H'(Q,V) — H*(Q,,V) is a
one dimensional Q,-vector space.

Proof of Lemma 1.4. We first note that H'(Q, V) = H'(Z[1/S],V) where S
is the product of the primes of bad reduction and p. Since V is self-dual, by
the Tate-Poitou duality we have an exact sequence

HY(Q,V) = HY(Q,,V) = H'(Q,V)"

where ¥ : HY(Q,,V) = H'(Q,, V)" — H'YQ,V)" is obtained as the
dual of ¢ : H'(Q,V) — H'(Q,,V). This shows that dimImage(i) =
dim Image(i¥) = dim Coker(i). Thus, we obtain dimImage(i) = 1 from
dim H'(Q,, V) = 2.

1.5. Main Conjecture. We review the main conjectures in our case. We
define Sel*(E/Qs) to be the Selmer group which is defined by replacing the
local condition at p with F*(Q, o) ® Q,/Z, (see the proof of Proposition
1.2). Then, the main conjecture is formulated as

char Sel " (£/Qs)" = (9(T))

and

char Sel™ (E/Qu)" = (f(T))

13



where (*)" is the Pontryagin dual (Kobayashi [12]). These two conjectures

are equivalent to each other ([12] Theorem 7.4) and, furthermore, each of
them is equivalent to

char Sely(E/Q)" = char(Hy,,/ < zx >)

where Sely(F/Qw) is defined as in 0.3. The inclusion D is proved by using
Kato’s result [9] up to p-invariants (Kobayashi [12] Theorem 1.3).

We give here a corollary of Corollary 0.6 in §0.1.
Proposition 1.5 Assume that L(E,1) =0, u(f(T)) = u(g(T)) =0, and

1= min{A(f(T)), Mg(T))} < max{A(f(T)), A(g(T))}-

Then, the ITwasawa main conjecture for E is true; namely, char Sel™ (E/Q.)" =

(9(T)) and charSel” (E/Qx)Y = (f(T)).

Proof. Corollary 0.6 implies that Sel(E/Q),~ is infinite. Hence, by the con-
trol theorem for Sel* (E/Q4) ([12] Theorem 9.3), T divides the characteristic
power series of Sel™(E/Qu), and thus, T divides f(T) and g(T). Then, by
our assumption, one of (f(7")) or (¢(7")) equals (7'). Hence, the main conjec-
ture for one of Sel™(E/Qs) or Sel” (E/Q) holds. This implies that both
statements are true ([12] Theorem 7.4).

As an example, we consider the quadratic twist £ = X,(17)4 as in
§0.1. Then, the condition in Proposition 1.5 is satisfied by X,(17), for
d=29,37,40,41,44, 56,65, ... . For example, when d = 37, we have

char Selt(E/Qq)" = (T) and charSel (F/Qu)" = (1 +T)* —1).

Hence, if we assume the finiteness of III(E£/Q(cos 27/9))[3%], we know that
rank F(Q) = 1 and rank £(Q(cos27/9)) = 3. Note that we get this conclu-
sion just from analytic information (the computation of modular symbols).

1.6. Remark. We consider in this subsection a more general case. We
assume that E has good reduction at an odd prime p. If p is ordinary,
we assume that E does not have complex multiplication. Let «, # be the
two roots of 2?2 — a,x + p = 0 in an algebraic closure of Q, where a, =
p+1—#E(F,). If p is ordinary, we take v to be a unit in Z, as usual. If
p is a supersingular prime, we have two p-adic L-functions £, , and £, 3 by

Amice-Vélu and Vishik.

14



If p is ordinary, £, is the p-adic L-function by Mazur and Swinnerton-
Dyer. The other function £, g is defined in the following way. Since £ does
not have complex multiplication, if p is ordinary, we can write wg = e, +eg in
D ® Q,(a) where e, (resp. eg) is an eigenvector of the Frobenius operator ¢
corresponding to the eigenvalue o' (resp. 4~!). Perrin-Riou constructed a
map which interpolates the dual exponential map (cf. [18] Theorem 3.2.3, [9]
Theorem 16.4 ) HllOC @7 Hoo — D®q, Hoo- The image of Kato’s element zg
can be written as £, ,eq + Ly, ges if p is supersingular, and the e, component
of the image of zx is £,, in the ordinary case. We simply define £, 3 by
2i + Ly oo + L, 3es in the ordinary case.

Set

r = min{ordr—g L, «, 0rdr—o L, 5}

We conjecture that if » > 0,
Lyh0) |, L£,5(0)
(1 _ 1)2 & )2

which is equivalent to Conjecture 0.2 in the case a, = 0. Note that if » =0,
we have

~—~

(r)
P,

= (6)

==

Lpa(0) _ L£p5(0) _ L(E,T)

M- -1

So the above conjecture (6) asserts that £4(0)/(1 — a~1)2 = Eg/)g(O)/(l —
B~1)% if and only if r = 0.

We remark that the p-adic Birch and Swinnerton-Dyer conjecture would
imply r = ordy—g £, o = ordr—o L, 3, but if we had ordy—o £, o, # ordr—o L, 3,
Conjecture (6) would follow automatically. The p-adic Birch and Swinnerton-
Dyer conjecture predicts

(d )’”ﬁpya(,{(v)s_l . (1 _1 ) #II(E/Q) Tam(E/Q) |,

ds s=1 " e (#E(Q)tors)?

(cf. Colmez [4]) where  : Gal(Q./Q) — Z, is the cyclotomic character,
and R, , (resp. R,3) is the p-adic a-regulator (f-regulator) of E. Hence, if
we admit this conjecture, Conjecture (6) means that R,, # R, 3.

We now establish that £54(0)/(1 — a~1)2 # 4:2,(0)/(1 — 71?2 implies
that # Sel(E/Q)p~ = oo. Namely, Conjecture (6) implies Conjecture 0.1.
We know (Hy,,)q = Hy,, ® Q is a free Aq = A ® Q-module of rank 1
(Kato [9] Theorem 12.4). Suppose that 7 divides Kato’s element zx and
T**! does not divide zx in (Hy,,)q. We denote by & the image of zx /T" in
HY(Q,V)fori=1,...,s. Clearly, &, = ... = &1 = 0, and &, # 0 because the
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natural map (Hy,)cal(Qe. /@ @Q — H'(Q, V) is injective ((Hyqp)Gal(Qu/Q)

is the Gal(Qo/Q)-coinvariants of Hy, ). We assume LIL0)/(1 = a )2 £

£(0)/(1 — 6712, which implies that L(E,1) = 0. We will show that the
image of & in H'(Q,, V) is in H}(Qp, V) =FE(Q,) ®Q,. Put D’ = Qug
and

L(i) = (1 — a1 72L{) (0)e, + (1 — B7H72LY,(0)es € D.

We know that the image of & by exp* is L(i) times a non-zero element,
and if & is in Hj(Q,, V), the image of & by log : H}(Q,,V) — D/D°
is L(i + 1) times a non-zero element modulo D° by Perrin-Riou’s formulas
[17] Propositions 2.1.4 and 2.2.2. (Note that Conjecture Réc(V) in [17] was
proved by Colmez [3].)

Suppose that r < s. By our assumption, L(r) is not in D°, hence log(&,_1)
is not in D°. Thus, &_; is a non-zero element in H'(Q,, V). But this is a
contradiction because &1 = 0 in H'(Q, V) by the definition of s. Thus, we
have r > s. This implies that L(s) = 0, and hence, exp*(&5) = 0. So & is in
H}(Qp, V). Therefore, & is in the Selmer group Sel(E/Q, V) with respect
to V, and # Sel(E/Q)p~ = oo. This can be also obtained from Proposition
4.10 in Perrin-Riou [19].

Next, we will show that rank £(Q) > 0 and (%), imply (6). These con-
ditions imply that &, is in H}(Qp, V) (by Lemma 1.4), and also is non-zero.
Therefore, L(s + 1) is not in D°. This shows that » = s + 1 and (6) holds.

2 Constructing a rational point in £ (Q)

We saw in the previous section that the value (f/g)(0)—(p—1)/2 is important
to understand the Selmer group. In this section, we consider the case r =
ordr—o f(T) = ordr—og(T) = 1. We will see that the computation of the
value f'(0) — 252 ¢'(0) helps to produce a rational point in £(Q) numerically.
To do this, we have to compute the value f/(0) — Z1¢/(0) to high accuracy,

which we do using the theory of overconvergent modular symbols.

2.1. Overconvergent modular symbols. Let A; denote the space of de-
gree zero divisors on P}(Q) which naturally are a left GLy(Q)-module under
linear fractional transformations. Let ¥q(p) be the semigroup of matrices
(25) € Ma(Z,) such that p divides ¢, ged(a,p) =1 and ad — be # 0. If V is
some right Z,[¥y(p)]-module, then the space Hom(Ag, V') is naturally a right
Yo(p)-module by

(2| (D) = e(vD)|.
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For a congruence subgroup I' C T'g(p) C SLa(Z), we set
Symbr(V) = {(p € Hom(A,, V) gp}”y = <p} ,

the subspace of I'-invariant maps which we refer to as the space of V -valued
modular symbols of level T'.

We note that this space is naturally a Hecke module. For instance, U,
is defined by S"P_1(§9). Also, the action of the matrix (' ?) decomposes
Symbr (V) into plus/minus subspaces Symbr(V)*.

If we take V' = Q,, Symbr(Q,) is the classical space of modular symbols
of level I over Q,. By Eichler-Shimura theory, each eigenform f over Q,
of level I' gives rise to an eigensymbol gojjf in Symbr(Q,)* with the same
Hecke-eigenvalues as f.

Let D(Z,) denote the space of (locally analytic) distributions on Z,. Then
D(Z,) inherits a right 3,(p)-action defined by:

oy = (7 (222)).

Then Symbr(D(Z,)) is Steven’s space of overconvergent modular symbols.
This space admits a Hecke-equivariant map to the space of classical modular
symbols

p : Symbr(D(Z,)) — Symbr(Q,)
by taking total measure. That is, p(®)(D) = ®(D)(1z,). We refer to this

map as the specialization map.

Theorem 2.1 (Stevens) The operator U, is completely continuous on Symbr(D(Z,)).
Moreover, the Hecke-equivariant map

E Symbp(D(Zp))(<1) - Symbp(Qp)(<1)

is an isomorphism. Here the superscript (< 1) refers to the subspace where
U, acts with slope less than 1.

See [26] Theorem 7.1 for a proof of this theorem.

2.2. Connection to p-adic L-functions. Now consider an elliptic curve
E/Q of level N with good supersingular reduction at p. By the Modularity
theorem, there is some modular form f = fr on I'((N) corresponding to E.
If a is a root of 22 — ayz +p = 0, let fo(7) = f(7) + af(p7) denote the
p-stabilization of f to level I'o(Np). By Eichler-Shimura theory, there exists
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a Hecke-eigensymbol ¢y, = @}ia € Symbr(Q,)" ® Q,(a) with the same
Hecke-eigenvalues as f,. Explicitly, we have

caty =D =ni( [ £+ [ 1)o7

where Qp is the Néron period of F/Q.

By Stevens’ comparison theorem (Theorem 2.1), there exists a unique
overconvergent Hecke-eigensymbol &, = &7 € Symbr(D(Z,))" ®Q,(«) such
that p(®,) = @7 . (Note that since gofﬂ}Up = - f o, the symbol ¢y , has
slope 1/2 and the theorem applies.)

The overconvergent symbol @, is intimately connected to the p-adic L-
function of . Indeed,

©a ({0} — {o0}) = Ly.a(E), (7)

the p-adic L-function of £ viewed as a (locally analytic) distribution on Z).
To verify this, one uses the fact that @, lifts ¢ ,, that CIDQ}UI, =a- b, and
that, by definition,

Lya(B)(Larpz,) = 2 - ora ({5} = {o0})

See [26] Theorem 8.3.

2.3. Computing p-adic L-functions. As in [21] and [6], one can use the
theory of overconvergent modular symbols to very efficiently compute the p-
adic L-function of an elliptic curve. Indeed, by (7), it suffices to compute the
corresponding overconvergent modular symbol ®,,.

To do this, we first lift ¢y, to any overconvergent symbol ® (not neces-
sarily a Hecke-eigensymbol). Then, using Theorem 2.1, one can verify that
the sequence {a‘”@’Ug} converges to ®,. Thus, as long as we can effi-
ciently compute U, on spaces of overconvergent modular symbols, we can
form approximations to the symbol ®,,.

To actually perform such a computation, one must work modulo various
powers of p and thus we must make a careful look at the denominators
that are present. If O denotes the ring of integers of Q,(«), then s, €
LSymbr(Z,). (The factor of L comes about from the p-stabilization of f
from level N to level Np.) Let D°(Z,) denote the set of distributions whose
moments are all integral; that is,

D%(Z,) = {n € D(Z,) : p(2’) € Zp}.
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It is then possible to lift ¢y, to a symbol @ in >Symbp(D°(Z,)) ® O.

As mentioned above, {a‘”CI)}Ug} converges to ®,. However, the space
Symbr(D°(Z,)) ® O is not preserved by the operator ~U,. However, the
subspace

X = {® € Symbp(D"(Z,)) ® O : p(®)|U, = ap(®) and p(®) € aSymbr(O)}

is preserved by éUp. (Note that the two conditions defining this set are
clearly preserved by this operator. The key point here is that overconvergent
symbols with integral moments satisfying these two conditions will still have
integral moments after applying éUp.)

Thus, to form our desired overconvergent symbol using only symbols with
integral moments, we begin with o, , € aSymbr(O) and lift this symbol
to an overconvergent symbol &' in X. Then Q%CID’ }Ug is in X for all n and
converges to o?®,,.

To perform this computation on a computer, we need a method of ap-
proximating an overconvergent modular symbol with a finite amount of data.
Furthermore, we must ensure that our approximations are stable under the
action of ¥g(p) so that Hecke operators can be computed. A method of ap-
proximating distributions using “finite approximation modules” is given in
[21] and [6] Section 2.4 which we will now describe.

Consider the set

F(M)=0/pM xO/p" "t x-..x O/p.
We then have a map
D°(Z,) ® O — F(M) given by p+— {u(z?) mod p™ =7}t

Moreover, one can check that the kernel of this map is stable under the action
of ¥o(p). This allows us to give F (M) the structure of a 3y (p)-module.

As F(M) is a finite set, the space Symbr(F(M)) can be represented on
a computer. Indeed, there is a finite set of divisors such that any modular
symbol of level I' is uniquely determined by its values on these divisors. Thus,
any element of Symbr(F(M)) can be represented by a finite list of elements
in F(M).

Moreover, since
Symbr(D%(Z,)) ® O 2 lim Symbyp(F(M)),

these spaces provide a natural setting to perform computations with over-
convergent modular symbols.
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To compute the p-adic L-function of E, we fix some large integer M and
consider the image of a?¢; , in Symbr(O/p™). One can explicitly lift this
symbol to a symbol ® in Symbp(F(M)). (See [21] for explicit formulas
related to such liftings.)

In the ordinary case, one then proceeds by simply computing the se-
quence {a‘”a}Ug} which will eventually stabilize to the image of a?®,, in
Symbr(F(M)).

However, in the supersingular case, « is not a unit and thus division by
a causes a loss of accuracy. The symbol oFQT@I}UIf” is naturally a symbol
in (M — n) and is congruent to a?*®, modulo p". By choosing M and n
appropriately, one can then produce a Up,-eigensymbol to any given desired
accuracy.

2.4. Twists. Let x4 denote the quadratic character of conductor d and let
E; be the quadratic twist of £ by x4. Let a* = x4(p)a and let @, be the
overconvergent eigensymbol whose special value at {0} —{oo} equals L, ,(E).

If ged(d, Np) = 1, then
1
0

is a U,-eigensymbol of level I'y(d? Np) with eigenvalue a*. Moreover, if d > 0,
then

|d|

D g = Zxd(a) - P,
a=1

—ale

Pora ({0} — {o0}) = Ly o (Ea).

In particular, once we have constructed an eigensymbol that computes L, ,(E),
we can use this symbol to compute the p-adic L-function of all real quadratic
twists of E. (To compute imaginary quadratic twists one needs to instead
use the overconvergent symbol that corresponds to go;a.)

2.5. Computing derivatives of p-adic L-functions. Once the image
of ®, has been computed in Symbr(F(M)) for some M, by evaluating at
D = {0} — {oo} we can recover the first A/ moments of the p-adic L-function
modulo certain powers of p. As in [6] pg. 17, we can also recover

/ (z — {a})! dL,(E) mod p"
a+pZp
for 0 < j < M — 1 where {a} denotes the Teichmiiller lift of a.
Using these values one can compute the derivative of this p-adic L-

function. Indeed, if we let L, ,(F,s) be the function of L, ,(E) in the s-
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variable, then

L;;,a(E, s) o /ZX logp(x) dLyo(E)
N Z/Jr zZ logp(:z:/{a}) ALy (E)
= Z/Jr ] Z (—1j)3+ (z/{a} — 1) dL,q(E)
_p—l (—1)7+1 . o
= Zl ;) /sz( {a}) dLya(E).

Since |, 2, (x — {a})? dL,(F) is divisible by p’, by calculating the above
expression for j between 0 and M — 1, one obtains an approximation to
L, . (E,1) which is correct modulo pM=" where p" < M < p'ti.

Let £,4(T) be the p-adic L-function in the T-variable as in §1. Then
Lyo(k(y) 1 =1) = L,(E,s), and L, ,(T) = f(T)log™ (T)+g(T)log™ (T ).
Hence,

L;w (E,s)

= £,,,(T)| _ -log(x(x))
= (f'(0)log*(0) + ¢'(0) log™ (0)cv) - log(r (7))
- % S (£'(0) + g'(0)a) - og((7)). (8)

sS=

So from the computation of the derivative of L, ,(E,s), we can easily com-
pute the values of f'(0) and ¢’(0).

2.6. p-adic Birch and Swinnerton-Dyer conjecture. We now give a
precise statement of the p-adic Birch and Swinnerton-Dyer conjecture as in
Bernardi and Perrin-Riou [1]. As before, £//Q is an elliptic curve for which
p is a good supersingular prime with a, = 0. If 7 is the order of L, ,(E/Q, s)
at s = 1, then this conjecture asserts that » = rank F(Q) and

GEREQ) = (15 1) GBI RulE/@) O

where R,,(E/Q) is the p-adic a-regulator of E/Q, and

#1L(E/Q) - Tam(E/Q)
Cp(E/Q) = (#E(Q)rors)?
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(cf. also [4], [19]). In the case r = 1, we have

1 P
Bya(B/Q) =~ () + 25a) g
where P is some generator of E(Q)/E(Q)iors, and wg, ¢, [p(wg),wg] are as
in §1. Here, for each v € D = Dyr(V,(F)), there is a p-adic height function
h, : E(Q) — Q, attached to v. If v = wp and if P is in the kernel of
reduction modulo p, then h,,,(P) = —log;(P)? where log; : £(Q,) — Q,
is the logarithm of the formal group E /Q, attached to E.

Assuming the p-adic Birch and Swinnerton-Dyer conjecture (with r = 1),
equations (8), (9) and (10) yield

(0%

(1 _ 1) (F(0) + g/ (0)a) log(1(7))

_ W(; 1+> 1‘)3}” (/'(0) + ¢'(0)a) log (s (7))
o P hwE(P)
o (heot?)+ 25 ) G519

Equating a-coefficients of both sides gives

2plog(k(v)) (. p—=1, 0\ he(P) C(E/Q)
(P + 1)2 ‘ (f (0) - ?g (0)) B [‘P(WE)awE]

Since F(Q,) = E'(Q,) is the kernel of the reduction map E(Q,) — E(F,),
(B(Qy) : E(Qp)) =#E(F,) =p+1,and (p+1)P isin E(Qp). The above

formula can be written as

F(0) — E524'(0)
Cpo(E/Q)

Note that the fact that we have two p-adic L-functions which are com-
putable, gives us the advantage that logg ((p + 1)P) is expressed by com-
putable terms.

We apply this formula to a quadratic twist of E, and have a twisted
version of this equation. Let £, ,«(E4,T) be the function in the T-variable
corresponding to Ly, o+ (Ey) defined in 2.4. We assume that the rank of £,;(Q)
equals 1 and P, is a generator of the Mordell-Weil group modulo torsion.
Also, we define f4(T) and g4(T) by

logz (p+1)P)* = —

2plog(r(7))lp(wp), wel.  (11)

Ly (Bas T) = Fa(T) log™(T) + ga(T) log™(T)a"
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Then, we have a twisted equation

B (£3(0) = 25 gl(0))
d- Cp(Ed/Q>

Here, 74 is defined by wg, = %wE. (Note that 7, is written down explicitly

in [1] pg. 230. In most cases, 1g = 1.)

logg, ((p+ 1) P)” = 2plog(r(7))lp(wr), wel.  (12)

2.7. Computing rational points. Using equation (11) we can attempt
to use the p-adic L-function to p-adically compute global points on E(Q).
Suppose that we do not know III(£/Q). We first compute

Zp

Tam(FE) p+1
(13)

(B) — oxp \/_ (/(0) — B5-9/(0)) 2ploa(5()) [ (@r). 0] #E(Q)ions

where expy is the inverse of log; (the formal exponential of E) The quan-
tity in the parentheses should be in pZ, because of the p-adic Birch and
Swinnerton-Dyer conjecture (cf. (11)), so the right hand side should con-

verge. If 2(t), §(t) represent the formal x and y coordinate functions of
E/Q,, then

P = (i(2(E)), §(2(E)))
is a point in £(Q,). The p-adic Birch and Swinnerton-Dyer conjecture (11)
predicts that there is a global point P’ € E(Q) such that

(p+1)P = (p+1)P in B(Q,).

(The point P’ should be /#III(E/Q)P in the terminology of (11)). Thus,
there is a point ) € E(Q,) of order dividing p + 1 such that P’ = P+ Q.
So we can proceed in the following way. We first compute p-adically all @)
of order dividing p + 1 in E(Q,). Then, for each such @, we check to see if
P' + @ appears to be a global point.

2.8. Computing in practice. We explain our method in the case of
computing points on a quadratic twist of E. Considering (12), we define

2 (E,d) == (14)

{0~ 5 gu00) - 2plog(s0) ). 8] it Eal @
PE d Tam(Ey) p+1 ’
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and
By = (#(z(E,d)), §(z(E, d))).

To carry out this computation, we need to first get a good p-adic ap-
proximation of z,(E,d) and thus a p-adic approximation of Pc’l Then, we
compute p-adic approximations of the (p + 1)-torsion in E4(Q,). To find a
global point, we translate f’é around by these torsion points with the hope
of finding some rational point that is very close p-adically to one of these
translates. Fortunately, if we find a candidate global point, we can simply
go back to the equation of Ej; to see if the point actually sits on our curve.

The key terms that need to be computed in order to determine P} are
fc,l(o)’ gél(o)’ eXpE(t)a i(t)a Q(t), Tam(Ed/Q)a #Ed(Q)torsa and [(P(WE)awE]'
The most difficult of these terms to compute are f}(0) and ¢/,(0). We cannot
use Riemann sums to approximate f}(0) and ¢/(0), since in practice we will
need a fairly high level of p-adic accuracy in order to recognize global points.
(To get n digits of p-adic accuracy, one needs to sum together approximately
p™ modular symbols which becomes implausible for large n.) Instead, we use
the theory of overconvergent modular symbols explained above to compute
f7(0) and ¢4(0) to high accuracy.

For the remaining terms, computing invariants of the formal group E /Qyp
is standard. (We used the package [25].) The arithmetic invariants (Tam(Ey;/Q)
and #FE4(Q)tors) of the elliptic curve Ey are easy to compute. (We used the
intrinsic functions of MAGMA [14].)

Lastly, an algorithm to compute [p(wg),wg| is outlined in [1] pg. 232.
However, we sidestepped this issue in the following way. For one particular
twist By with III(E;/Q) = 0, we found a generator Py of E4(Q)/Ei(Q)tors
directly using mwrank [5]. Then, using (11), we can determine what the value
of [¢(wg),wr] should be to high accuracy since every other expression in (11)
is computable to high accuracy. (We actually repeated this computation for
several different twists to make sure that the predicted value of [p(wg), wg]
was always the same.)

Lastly, to recognize the coordinates of ]5(; as rational numbers, we used
the method of rational reconstruction as explained in [11] and, in practice,
we used the recognition function in [7].

2.9. The computations. We performed the above described computations
for the curves Xo(17) and X((32) and the prime p = 3. (These computations
were done on William Stein’s meccah cluster.) For X,(17) (resp. X((32)) we
computed the associated overconvergent symbol ®, modulo 3% (resp. 3'%0).
Because of the presence of the square root in (14), we then were only able to
compute Py to 100 (resp. 50) 3-adic digits for X,(17) (resp. Xo(32)).
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For Xo(17) (resp. Xo(32)), we could find a global point on all quadratic
twists 0 < d < 250 except for d = 197 (resp. 0 < d < 150) with ged(d, 3N) =
1. (For Xy(17)197 one could find a point via several different methods, but
our method would require a more accurate computation of overconvergent
modular symbols.) We made a table of these points in §4.

Another interesting example whose d is not in the above mentioned
range is Ey = Xo(17)4 with d = 328. We found a global point P’ =
(28069/25, 3626247/125) on the curve

Fsos 1 y? = 2 — 739642 — 490717520

by the method which we described above. We also computed

1
£L§77 Zp(E, d) =

. 1\/_ (f2(0) = E52g4(0)) - 2plog(k(1))[p(wr)s W] Na#tEa(Q)rors
P13 d Tam(Ey) p+1

From this local point, we produced a global point P = (1398, —46240) on the
curve F3pg. This reflects well the fact that #1I(E/Q) = 4 in this case. The
point P = (1398, —46240) should be a generator of F(Q) modulo torsion.

3 The structure of fine Selmer groups and the
ged of f(T) and ¢(T)

In this section, we will study the problem mentioned in §0.3, and the greatest
common divisor of f(T") and g(7').

3.1. Greenberg’s “conjecture” (problem). Suppose that Sely(F/Qo),
en, f(T), g(T), ... are as in §0.3. As we explained in §0.3, we are interested
in the following problem (conjecture) by Greenberg.

Problem 0.7
char(Selo(E/Qx)") = (] @57

en>1
n>0

First of all, since £(Q,,)®Q), is a one dimensional regular representation

of G, = Gal(Q,,/Q), by the definition of e, Ker(E(Q,)®Q, — E(Qpn)®
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Q,) contains (Q,[T]/®,(T))! if e, > 1. Hence, Sely(E/Q,) contains
(Z,[T])®,(T)) ® Qp/Zy)~*, and we always have

char(Selo(E/Qx)") € ([T 7).
en>1
n>0
Coates and Sujatha conjectured in [2] that u(Sely(F/Qo)") = 0. In fact,

they showed that u%‘ésES[pD = 0 implies u(Selp(E/Qx)Y) = 0 ([2] Theorem
class

3.4) where HQ(Bip)) is the classical Iwasawa p-invariant for the class group of
cyclotomic Z,-extension of Q(E[p]) which is the field obtained by adjoining
all p-torsion points of E. The proof of this fact can be described simply and
slightly differently from [2], so we give here the proof. Put F' = Q(E[p]),
and denote by Fi,/F the cyclotomic Z,-extension. By Iwasawa [8] Theorem
2, pdass = 0 implies H*(Op_[1/S],Z/pZ) = H?(Spec Or_[1/S],Z/pZ) = 0
(S is the product of the primes of bad reduction and p). Hence, assuming
pstess = 0, we have H*(Opg,_[1/S], E[p]) = 0. Since the p-cohomological di-
mension of Spec Of,_[1/5] is 2, the corestriction map H*(Og_[1/S], E[p]) —
H?*(Oq.,[1/8], E]p]) is surjective, so we get H*(Oq..[1/S], E[p]) = 0, which
implies p(Selp(F/Qx)Y) = 0.

In the following, we assume p is supersingular and a, = 0. As we explained
in §0.3, a generator of char Sely(F/Q )" divides both f(T') and g(T') (at least
up to p-invariants). Using this fact, we will prove what we mentioned in §0.3.

Proposition 3.1 Assume that rank E(Q) = eg, min{\(f(T)),\(g(T))} =
eo, and 1u(Selg(E/Qu)Y) = 0. Then, charSely(E/Qy)Y = (T%) where e} =
max{0, ey — 1}, and Problem 0.7 holds.

Proof. Suppose, for example, A\(f(T')) = ey. Since one divisibility of the main
conjecture was proved (cf. 1.5), this assumption implies (f(7T")) = (T°) as
ideals of A. If ey = 0, then f(T) is a unit. Thus, Sely(E/Qx) is finite and we
get the conclusion. Hence, we may assume eg > 0. Then, Sel” (F/Qu)" ~
(A/(T))% (pseudo-isomorphic), and by the control theorem for Sel™ (F/Qx)
([12] Theorem 9.3), Sel(E/Q)p~ is of corank eg. Since F(Q) ® Q, —
E(Q,) ® Q, is surjective (because ey > 0), Selo(£/Q) is of corank ey —
1. By the control theorem for Selp(E/Qy) (cf. [13] Remark 4.4), we get
Selyg(E/Quo)¥ ~ (A/(T))*~!, which implies the conclusion.

3.2. The gcd of f(T) and ¢(T).

We use the convention that we always express the greatest common di-
visor of elements in A of the form p*h(T) where h(T) is a distinguished
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polynomial. Concerning the greatest common divisor of f(7T") and g(T), we
propose

Problem 3.2
ged(f(T),g(T)) =T ] @5

en>1
n>1

Proposition 3.3 Assume p(Selo(E/Qo)") = 0. Then, Problem 3.2 implies
Problem 0.7.

We note that if we assume Problem 3.2, we have min{u(f (7)), u(g9(T))} =
0, hence if the Galois representation on the p-torsion points of E is surjective,
1(Selp(E/Qx)Y) = 0 holds by [9] Theorem 13.4.

Proof of Proposition 3.3. As we explained in §0.3, Selg(E/Qoo) C Sel* (E/Qu)
which implies ged(f(T), g(T)) € char(Selp(E/Qx)Y). So if Problem 3.2 is

true, we have

(7 T @) < char(Selo(E/Qx)”) < (][] ®&7).

en>1 en>1

n>1 n>0
The rest of the proof is the same as that of Proposition 3.1. We may
assume ¢y > 0. By the control theorem for Sel*(E/Qu) ([12] Theorem
9.3) and our assumption that Problem 3.2 is true, Sel(E/Q),~ is of corank
ep. Hence, Selp(F/Q) is of corank ey — 1. Hence, if F is a generator of
char(Selp(F/Qw)"), by the control theorem for Sely(F/Q) (cf. [13] Re-
mark 4.4), we have ordr(F) = ey — 1. This implies that Problem 0.7 is
true.

Next, we will assume Problem 0.7 and deduce Problem 3.2 under certain
assumptions. Let Hélob, H{ . be as in §1. We consider the natural map

Hélob — HY(Q,,T) — HY(Qun,T) — H (Qpn,T)/(®y), and assume

(*)n H,

glob — H'(Qpn,T)/(®,) s not the zero map

for all n > 0. In particular, condition (x)q coincides with the condition we
considered in §1.4.

Proposition 3.4 We assume (x),, for alln > 0 and Problem 0.7. Then,

1) The cokernel of the natural map H1 — H1 18 pseudo—isomorphic to
glob loc
A.
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(2) If we also assume the Main Conjecture for E (cf. 1.6) and that the p-
primary component ILL(E/Q)[p>] of the Tate-Shafarevich group of E/Q is
finite, then Problem 3.2 holds.

Proof. (1) First of all, Hy,, is isomorphic to A ([9] Theorem 12.4), and as we
saw in §1.4, H{ _ is isomorphic to A& A. If we denote by (a,b) the image of a
generator of Hy, =~ A in Hj . =~ A@A, ®,, does not divide the ged of a and b.
Indeed, if &, d1v1ded the ged of a and b, the map Hy,,, — H'(Qyn, T)/(®y)
would be a zero map, which contradicts ().

On the other hand, we have an exact sequence

0— HL./H! ,k — Sel(E/Qoo);o<> — Selg(F/Qu)” — 0;

glob

hence, taking the A-torsion parts, we get an exact sequence

0— (Hloc/Hglob)A tors T (Sel(E/Qoo) )A tors (SGIO(E/QOO)V)A—tOTS‘

We write char((Hy,./Hy,)a—tors) = (€(T')). By Wingberg [27] Corollary 2.5,

we have

char((Sel(E/Qoo) o )A—tors) = char((Selo(E/Qo)")A—tors)-

Hence, by Problem 0.7, any irreducible factor of €(7") is of the form ®,,. But
®,, does not divide the ged of a and b, so does not divide (7). Therefore,
char((H loC/Hglob),\ tors) = (1), and (Hj,./Hy,)A-tors 18 pseudo-null. This
implies H{ ./HY, , ~ A.

loc glob

(2) Put A(T) = ;50,5195 1. By the Main Conjecture and Problem 0.7,
we have

char(Hy,,;,/ < zx >) = char Sely(E/Qu)" = (h(T)).

Hence, we can write zx = h(T)¢ where £ is a generator of Hglob By Theorem
1.3, we have f(T) = Col*(&)h(T) and g(T) = Col™ (§)R(T). We take a =
a(T), b = b(T), ey, ey as in the proof of Theorem 0.4 in §1.4, namely, { =
aey + bes with a, b € A. By the proof of Proposition 3.4 (1), a is prime to
b. Hence, by Proposition 1.2, the greatest common divisor of Col™(§) and
Col™ (&) is T or 1.

Suppose at first that eg = 0. Since III(E/Q)[p™] is finite, Sel(E/Q) e is
finite. Hence, by the control theorem for Sel* (E/Qq), char Sel™(E/Q..)" ¢
(T). Hence, by the Main Conjecture, f(0) # 0 and g¢(0) # 0. Thus,
Col®(£)(0) # 0. Therefore, the ged of Col™(¢) and Col™(€) is 1, and the
ged of f(T) and ¢(T) is h(T).
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Next, suppose ¢y > 0. Then, £(Q) ® Q, — E(Q,) ® Q, is surjective,
so the image of H'(Q,T) — H'(Q,,T) is in E(Q,) ® Z, by Lemma 1.4. In
particular, the image of £ is in £(Q,) ® Z,. Recall that £ = a(T")e; +b(T)e,.
Since ¢ € E(Q,) ® Z,, we get a(0) = 0. Tt follows from T | Col*(ey) (cf. 1.4)
that T divides Col™(¢). Thus, the ged of Col*(¢) and Col™ () is T, and the
ged of f(T') and g(T') is Th(T'), which completes the proof.

3.3. Examples. Let £ = X((17) and consider the quadratic twist E4. The
condition of Proposition 3.1 is satisfied for all d such that 0 < d < 250 except
for d = 104,193, 233.

For d = 104, we have r = 2 and \(f4(T)) = Mga(T)) = 4. We know
that T? divides both f4(T) and g4(T), and a computer computation shows
that fy(7) has two addition zeroes of slope 1, and g4(7") has two addition
zeroes of slope 1/2. Hence, the greatest common divisor of f4(T') and g4(T)
is T? as predicted by Problem 3.2. The computer computations also show
that p(fa(T)) = p(ga(T)) = 0. Since the Galois representation on the 3-
torsion of Ey is surjective, [9] Theorem 13.4 yields that u(Selp(E/Qx)Y) = 0.
Therefore, Proposition 3.3 applies and we have char Sely(E/Qx)Y = (T).

For d = 233, we have r = 1 and min{\(f4(7)),\ga(T))} = 3. In
this case, a similar computation can be done and, simply by computing
slopes of the zeroes, we can conclude that the ged of fy(T) and g4(T) is T
Again, the relevant u-invariants are zero and thus Proposition 3.3 yields that
Selp(F/Qwo) is finite.

Finally, we consider the case d = 193. We have that A(f4(T")) = A(gq(T)) =
7. However, in this case, both power series have 6 roots of valuation 1/6 and
a simple zero at 0. Thus, simply by looking at slopes of roots, we cannot
conclude that their greatest common divisor is 7.

To analyze this situation more carefully, we set

_ Ja(T) 94(T) log™(T)
fa(0)T 92(0)T  ®(T)

which are both convergent power series on the open unit disc. We divide
here by ®1(7") so that every root of both A(T") and B(T') has valuation at
most 1/6.

Let m be some 6-th root of p in Qp and set

A(T) log™(T) and B(T) =

A(T)= A(xT) and B'(T)= B(=T).

Then both A’ and B’ are convergent power series on the closed unit disc and
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are thus in the Tate algebra

O(T) = {f(T):ZanT" : ‘an‘p—>0}

where O = Z,[7].
We consider the image of A’ and B’ in

o{r)/m" = (O/7"O)[T]

for various m with the hopes of noticing that the image of these power series
do not share a common root in this small polynomial ring.
For m =1, by a computer computation, we have

A(T)=1+2T° and B'(T)=1+2T°,

from which we deduce nothing.
For m = 2, we have

A(T)=1+2T% and B'(T)=1+2aT +27°% + 771",
From this, we again deduce nothing as
AT)- (14 27T) = B'(T).
For m = 3 though, we have
A(T)=1+7*T*+2T°% and B'(T) = 1+2aT +7°T* + 21°% 4 7T7 +21°T®,
Now, one computes that
B'(T)= A(T)- (1 42T + x°T?) + 27°T".

If ged(fa, g4) # T, then there exists some common root « in Oﬁp with valu-
ation 1/6. If we write o = mu with u a p-adic unit, then A'(u) = B'(u) = 0.
But the above identity then forces that 27%u? is divisible by 73, which is
impossible! Thus, ged(fy, ga) = T and Sely(E/Qoo) is finite.

4 Tables

In this section, we present two tables listing the rational points we con-
structed 3-adically on quadratic twists of X(17) and X(32). For each curve

30



Xo(N), we considered d such that d > 0, ged(d,3N) = 1, and rank Xo(N), =
1. In each case, we used the curve’s globally minimal Weierstrass equation.
For the curve X(17)4, we included this equation in the table (by listing the
coefficients of y? + ayzy + asy = 23 + asx® + asx + ag). For the curve X((32),,
the globally minimal Weierstrass equation is simply y? = 2® + 4d>x.

These computations were done for the curve X,(17) (resp. X¢(32)) using

an overconvergent modular symbol that was accurate mod 3%%° (resp. mod
3100)'
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Table of global points P, found on Xy(17)4

d Py la1, as, as, ay, ag]

5 (14, -32) [1,-1,0,-17,—1734]

28 (9895 =878410) [0,0,0,—539, —305270]

29 (139954 —A0339707 ) [1,-1,0,-578,-339015]

37 (Lt Lsgatiassoans) [1-1,0,-941,-704158]

40 (190, —2400) [0, 0,0, —1100, —890000]

41 (1807, =34091) [1,—1,1,—1156, —958144]
44 (49351 —2413090) [0,0,0, 1331, —1184590]
56 (19234 =L150800) [0,0,0, —2156, —2442160]
61 (3552, 235937 [1,-1,0,—2558, —3155815]
65 (959, 29095) [1,—-1,1,—-2905, —3818278]
73 (L1191 STI20789) [1,—1,1, —3664, —5408852]
88 (Bsoznoon Loz, 0,0, 0, 5324, —9476720)
92 (Sizz2comons | 50000 T0n 0,0, 0, 5819, —10828630)
97 (123793092127’ 1373683767065164721) [1’ —1,1,—6469, —12690242]
100 | (Tt 200ty | (11,0, 8168, ~18006953)
113 (23676239933166531’ 363%0282%83151826i9531 ) [17 —1,1,—8779, —20063092]
124 (20359 | 3203209390 [0,0,0,—10571, —26513990]
133 | (S —ihpsnasset) | [1,-1,0,-12161, 32713318
173 | (SEeeTS Ssepnmn) (1, —1,0,-20576, ~71997483
181 (56021206 40282157011 ) [1,—1,0, —22523, —82454830]
184 | (MSlmwms Sssssorn) 0,0,0, 23276, —86629040
193 | (USEIea2tan STOSITIBRSSIL) | [1, —1, 1, 25609, —99966422
197 not found [1,—1,0,—26681, —106311798]
209 (4T S05REOT ) [1,—1,1,-30031, —126947224]
232 (M, s ) [0,0,0, —37004, —173649680]
253 | (R, NIRRT | (11,1, 37324, 175805512
241 (Lp2as 15 T0281T ) [1,-1,1,-39931, —194643044]
28| (e oot o) 0,0,0, ~42284, ~212111920)
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Table of global points P, found on X(32)4

d =
5 (5,25)
13 845
13 (5, %5)
1421 76531
29 ( 25 1 125 )
37 198505
37 (E’ 0261 )
750533 1987241095
53 (204497 2924207 )
102541 67889645
61 ( 1521 ° 59319 )
77 (275625 58139738475)
719104° 609800192
85 (765, 21675)
42672500 279031013300
101 ( 0409’ 912673 )
5341 415835
109 (5 =5)
133 (314109807025 338319926884539145)
1037936484 °  85311839898648
43061 9435425
149 ( 19 0~ 343 )
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