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Refined Iwasawa theory and Kolyvagin systems of Gauss sum type

Masato KURIHARA

ABSTRACT

In this paper, we establish a refinement of the usual Iwasawa main conjecture for the ideal class
groups of CM-fields over a totally real field, using higher Fitting ideals.

0. Introduction

In this paper, we generalize the results in our previous paper [10], and prove more refined
relationship between algebraic objects and analytic objects than the usual Iwasawa main
conjecture.

Suppose that p is an odd prime number, and consider at first a finite abelian extension K/Q
such that p does not divide [K : Q). Let x be an odd Dirichlet character of Gal(K/Q) such
that the conductor of x coincides with that of K. When the group of p-th roots of unity s, is in
K, we assume x # w where w is the Teichmiiller character which gives the action of Gal(K/Q)
on . Suppose that Ag = Clg ® Z, is the p-component of the ideal class group of K and A%
is the y-component of A (for the precise definition, see §2.2). Then Mazur and Wiles [13]
proved the celebrated Iwasawa main conjecture and also proved

#AY = #0, /By 10, (0.1)

as a corollary of the main conjecture where O, = Z,[Image x] and B; -1 is the generalized
Bernoulli number.

This is an equality on the orders, but we can get more information on A% as an Oy-module
from the values of zeta functions. Using the Euler system of Gauss sums, Kolyvagin and Rubin
proved an isomorphism

5), 5),
A% = PO /6 (0.2)
i>1
as Oy-modules where (@g%x)izo is an increasing sequence of ideals of Oy, Gé?)’x = By 10y,

and GE%X’S are determined by some arguments of Euler systems from some Stickelberger
elements (Kolyvagin [8] Theorem 7 and Rubin [16] Theorem 4.4; in [16] only the case K =
Q(pp) was studied but the same argument works for K with p J/ [K : Q]). For the precise
definition of these ideals @g%x, see §7.

In our previous paper [10], we generalized the above result to a finite and abelian extension
K /k such that p does not divide [K : k] where k is a totally real base field and K is a CM-field.
We also assume x # w when p, is in K. We obtained an isomorphism (Theorem 0.1 in [10])

X X X
Ay = @ ei,K/k/@ifl,K/k (0.3)
i>1
as Oy-modules (under certain mild assumption on x), using an increasing sequence (0 - / 1 )i>0
of ideals of Oy. The ideals ©) . /K are determined by some Stickelberger elements over k, so
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determined by some analytic information coming from zeta values. (We can also define @E(SI){;‘k
by the argument of Euler systems over k, and in our case @5 I)(;(k = @z‘ K/k holds. The ideal

@f K/k is better than G)gi)(xk for numerical computations. For the definition of these ideals, see
§7.) More precisely, an idea in [10] was to use the higher Fitting ideals (for the definition, see
§8), and we proved in [10] that

Fitt; 0 (A%) = @;fK/k (0.4)

for all 4 > 0 where the left hand side is the i-th Fitting ideal. The equality (0.4) immediately
implies the isomorphism (0.3). In the following, we fix a totally real base field k, and omit k
from the notation and write @X for ©F

In this paper, we generalize the above rebult (0.4), and study the Iwasawa theoretic version.
Let K/k and x be as above. We consider the Iwasawa module Xk =lim Ag, for the

cyclotomic Z,-extension Ko, of a CM-field K (K, is the m-th layer of IZX,/K) and the
x-component X % . The Iwasawa main conjecture proved by Mazur and Wiles [13] in the case
k = Q and by Wlles [23] in general is the Iwasawa theoretic version of (0.1), and can be stated
as

Fittoa(Xx_) = (0%_) (0.5)

since Fittg A(XX ) is equal to the characteristic ideal of XX in this case (cf. Theorem 8.6 and
Lemma 8.1). Here, A = Z »[[Gal(K o /E)]]X is the x- component of Z pl[Gal(Ko /k)]], and 0%
is the projective limit of the x-component 65 ¥, of the Stickelberger element of K, (see §2.4
and §8.3) and is essentially the p-adic L-function of Deligne and Ribet [2]. In this paper, we
study the higher Fitting ideal Fitti,Zp[[Gal(KaQ/k)]](X[)gx) for any ¢ > 0, and will prove that it
is equal to some higher Stickelberger ideal @zf k.. (see 87 for the definition) which is generated
by some elements coming from the p-adic L-function. Our main theorem is Theorem 1.1 in §1,
which is stated as

Fitti A (X ) = Ok (1.1)

for any i > 0. The case ¢ =0 of Theorem 1.1 is nothing but (0.5), so our Theorem 1.1 is a
refinement of the usual main conjecture. We mention here that we do not give a new proof
of the main conjecture because we use the main conjecture as an important ingredient of the
proof.

Our Theorem 1.1 is regarded as the Iwasawa theoretic version of the structure theorem (0.3),
so is also a generalization of (0.2) by Kolyvagin and Rubin [16] for abelian fields over Q. We
will also obtain another structure theorem, see Corollary 1.4.

An essential difference in our case from [10] is that we have to work over group rings while
we worked over discrete valuation rings in [10]. A key new ingredient is Kolyvagin systems of
Gauss sum type, especially those which do not come from Euler systems.

More precisely, the key of the proof of our main theorem is the construction of some element
X, (cf. §7) in the multiplicative group having good properties (for the key property of z, [, see
Lemma 9.2). The essential ingredient of x, ( is the Kolyvagin system x,  of Gauss sum type.

The notion of Kolyvagin systems was introduced by Mazur and Rubin in [12]. The first
important property is “k, € H ]1:(")” in the terminology of Mazur and Rubin (cf. [12] Definition
3.1.3), which had not been recognized before [12]. More important and beautiful property of our
Kolyvagin system ry ( is that they are related to the values of L-functions (see the properties
(ii) and (iv) below). Without explaining the notation, we gather here the properties of kq .
We prove (under the assumption that s, is defined and n[ is well-ordered; see Propositions
4.2, 5.4, 5.5 and also Corollary 5.2 for the details)
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i) For each prime t dividing n, dive(kn,() = at(f@%[),
ll) diV[(:‘in’[) = 6117
iii) For each prime t dividing n, ¢, (ka,() =0,

iv) B (knt) = ~Onr.

Here, 5[ is defined from the reciprocity map (see §2.3 for the definition), and &y, d, ; are defined
from the values of L-functions. The property (i) is a usual property of Kolyvagin systems (Euler
systems), and the property (iii) corresponds to “k, € H }_-(n)” in the terminology of Mazur and
Rubin. The properties (ii) and (iv) are new, and are beautiful relations between the L-values
and the Kolyvagin system of Gauss sum type.

The idea in this paper can be applied to more general case, namely to the Iwasawa theory for
more general p-adic representations, for example, for elliptic curves (see [11]). In this paper,
we study only the minus class groups because this case is the most typical and simplest case
in this theory.

(
(
(
(

In §1, we state our main theorem. In §2, we fix notation in this paper and prove basic lemmas.
We review in §3 the Euler system of Gauss sum type in [10]. Suppose that k is a totally real
number field, and K is a CM-field such that K/k is finite and abelian. For a prime [ which
splits completely in K, we consider the Euler system g[K of Gauss sum type constructed in
[10]. This element g[K is related to the values of L-functions, namely the image of g[K under the
“divisor” map is related to L-values by definition (see §3.2), and we prove that the image of g[K
under the reciprocity map of local class field theory is also related to L-values (see Proposition
5.1). In §3, we also prove the congruence relation (Proposition 3.2) which is not trivial since
our Euler system is a “finite” Euler system (see §3.2). Using some abelian extension K (n)/k,
we can define the Kolyvagin derivative sy (€ KX/(KX)”N) from g[K(") by the usual argument
of Euler systems if the prime [ splits completely in K (n). But we need k,, for more general
[ which does not necessarily split in K(n). In §4, we construct s,  for more general primes I,
and prove the above properties (i)-(iv) in §5. We introduce in §6 the element x, | which plays
an important role in the proof of Theorem 1.1. In §7, we define two higher Stickelberger ideals
GE,(SI){’X and GZ - The former is related to the theory of Euler systems, but the latter is better
in general (cf. Remark 7.2). In §8, after we gather known facts on Fitting ideals, we prove that
O} k.. is in the higher Fitting ideal of the Iwasawa module (Corollary 8.12). In §9, we prove
Theorem 1.1. We also give some numerical examples in Remark 9.5.

I would like to express my sincere gratitude to late Professor Iwasawa for his interest in this
work when I explained to him the first version of the theory in this paper. I would also like
to thank K. Kato heartily for his interest in this work, and for giving me an opportunity of a
series of lectures on this subject at Kyoto University in 2007. I would like to thank K. Rubin
very much for his interesting lectures I attended in 2002 on Kolyvagin systems. I thank K.
Kurano very much for telling me an example in Remark 8.4, and M. Aoki for the discussions
on the subject in this paper. I am very grateful to D. Burns, J. Coates, R. Greenberg and C.
Greither for helpful discussions with them on the subjects related to this work. I finally thank
very much the referee for his careful reading and suggestions.

NoOTATION. For an abelian group A and an integer n, A[n| (resp. A/n) denotes the kernel
(resp. cokernel) of the multiplication by n. The notation A/n will be used even for multiplicative
groups. For example, for the multiplicative group K* of a field K, K*/n means K> /(K*)™.
For a group G and a G-module M, M denotes the G-invariant part of M (the maximal
subgroup of M on which G acts trivially), and Mg denotes the G-coinvariant of M (the
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maximal quotient of M on which G acts trivially). For a prime number p, we denote by ord,
the additive discrete valuation of Q associated to p, which is normalized such that ord,(p) = 1.
For a positive integer n, u, denotes the group of all n-th roots of unity in an algebraic closure
of the field we are considering. For a number field or a local field F', O denotes the ring of
integers.

1. Main Result

Throughout this paper, k is the base field which is a totally real number field of finite
degree over Q. We assume p is an odd prime number, and suppose that Ky is a CM-field
such that Ky /k is finite and abelian, and [K : k] is prime to p. In this §1, we denote by Ko
the cyclotomic Z,-extension of Ky. (In §2 — §7, we consider more general K, and Ko, will
denote the cyclotomic Z,-extension of K.) We put Xx__ = liinA Ko, Where Ag, is the p-

component of the ideal class group of Ko, for the intermediate field Ko, of Ko /Ko such
that [Ko,m : Ko] = p™. This Z,[[Gal(K/k)]]-module X which is isomorphic to the Galois
group of the maximal unramified abelian pro-p extension of K, is often called the Iwasawa
module.

Since [Kj : k] is prime to p, Xk __ is decomposed into the character components for characters
of Gal(Ko/k) (see §2, subsection 2.2). Let x be an odd character of Gal(Ko/k). When
k(up) C Ko, we assume x # w where w is the Teichmiiller character which gives the action
of Gal(Ky/k) on the group of p-th roots of unity. We also assume that the conductor
of x is equal to the conductor of Ky/k, and consider the x-component XIX(OO (see §2.2)
which is a Z,[[Gal(K/k)]]¥-module. (When we are interested in the x-component, we may
change Ky such that the conductor of Ky/k equals that of y, cf. subsection 2.2.) We put
A =17,[[Gal(Kx/k)]]X = Oy[[Gal(K/Ky)]] where O, = Z,[Image x].

Let 9}200 be the projective limit of the y-component 9}20 . of the Stickelberger element
of Ko, (see §2.4 and §8.3). As we explained in §0, the main conjecture states that the
characteristic ideal of X XOO is generated by 05 . In this paper, we prove that more information
on the structure of X% can be derived from the p-adic zeta functions, more precisely from
the Stickelberger elements of abelian extensions which contain K. In §7, we define the higher
Stickelberger ideals @l, K, ,, forany ¢ > 0 and m > 0, using the Stickelberger elements of several
fields L which contain Ko, such that L/k is finite and abelian. We define the Stickelberger
ideal ©} j  C A of Ko to be the projective limit of ©F . (see §8.5). In particular, OF 5
is a principal ideal generated by 9}2& (@iC K. sfori>1 are not principal ideals, in general).

To state our main theorem, we use higher Fitting ideals (see §8 for the definition and the
basic properties of higher Fitting ideals). Our main theorem is

THEOREM 1.1. We assume that the p-invariant of X} is zero (namely, XXoo is finitely
generated over Zy ), and that x(p) # 1 for any prime p ofk “above p. Then we have

Fitt; A (X% ) = O}k (1.1)

for all 1 > 0.

REMARK 1.2. (1) The left hand side of the above equation is an algebraic object and the
right hand side is a p-adic analytic object. The above theorem gives more refined relationship
between them than the usual main conjecture.

(2) If we know all Fitting ideals Fitt@A(XIX%o), we can determine the pseudo-isomorphism
class of Xy (Lemma 8.2). So the above theorem says that the information on the p-adic
L-functions determines the pseudo-isomorphism class of XIXQ)O. For example, it determines
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whether X contains A/(f?) or A/(f)® A/(f) when f?| 0% _ for some irreducible f € A,
although a generator of char(X;goo) is conjectured to have only simple roots.

(3) In the case ranko, Xy <2, if we know all Fitt; (X ), we can determine the
isomorphism class of X% (Lemma 8.3). If ranko, Xy > 3, the isomorphism class is not
determined (Remark 8.4).

(4) We can remove the assumption x(p) # 1 in Theorem 1.1, which will be treated in [11].

Put Rk, . = Zp[Gal(Kom/Ko)X = Oy[Gal(Kq,m/Ko)]. As a corollary of Theorem 1.1, we
prove in §9.3

THEOREM 1.3. Under the same assumption as Theorem 1.1, for any m > 0, we have

FittivRKo,m (A}c(o,m) = GZKO,m

for all i > 0.

Let ¢ be a character of Gal(Ko,m/Ko) of order p™ where m > 0. We define Oy, = Oy [ptpm].
The ring homomorphism Ry, ,, — Oy induced by o — 9(0) (0 € Gal(Kg,n/Ko)) is denoted
by the same letter 1. We regard O,y as an Rk, ,,-module by the ring homomorphism 1 :
Ri,.,, — Oyy. We define A’%’m = A%, . ®Ry, . Oxy which is an Oyy-module. Put XY =
Y(OF Ko, )- From Theorem 1.3, we immediately have (see §9.3)

COROLLARY 1.4. There is an isomorphism

iy, = D Or/6r,

i>1

of Oy -modules.

Taking m = 0 and ¢ = 1 in Corollary 1.4, we obtain Theorem 0.1 in [10], which is (0.3) in
§0. Hence Corollary 1.4 is a generalization of (0.2) and (0.3) in §0.

Theorem 1.1 also says that Conjecture 8.2 in [9] is true. In Theorem 1.1, the case i =0 is
nothing but the main conjecture proved by Wiles, and the case i = 1 can be proved by the
same method as [9] Theorem 8.4 if we use the Euler system constructed in [10]. Hence what
is essentially new is the case i > 2.

In the paper [9], we studied the initial Fitting ideal Fitto z, [[Gal(K o /k))) (XK. ) for a general
CM-field K. In this paper, concerning the higher Fitting ideals, we only consider the case
K = Ky, for some m.

2. Notation and Preliminary Lemmas

2.1. For a finite prime [ of k, we denote by x([) the residue field of [, and by N(I) the absolute
norm of [ (so N(I) = #&x(l)). We define n; by n; = ord,(N(I) — 1). We fix a positive integer
N >0in§2 - §6.

LEMMA 2.1. There are infinitely many primes [ of degree 1 such that n; > N and that
there is a cyclic extension k([)/k of degree p™ which is unramified outside [ and which is
totally ramified at [.
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We denote by S the set of all finite primes [ of k£ which satisfy the conditions of Lemma 2.1.
If p divides the class number of k, k([) is not unique. But we will take a k(I) satisfying the
above conditions for each prime [ € S, and fix it throughout this paper.

Correction: In [10] Lemma 4.3, it is stated that there exists a unique such extension, but
clearly we do not have the uniqueness if £ has an unramified abelian extension of degree p.
The word “unique” in the statement in [10] Lemma 4.3 should be deleted.

Proof of Lemma 2.1. Suppose that the p-primary component Ay of the ideal class group of & is
generated as an abelian group by the classes of prime ideals qi...., qs. Suppose that the order
of the class [q;] in Ay is p%. We take &; € k* such that q? "’ = (&) for each j. We denote by
U the subgroup of £* generated by the unit group Ex = O and &,...,&s.

We take n sufficiently large such that n > N and k(uyn) # k(ppn+1). The Galois group
Gal(k(up)/k) acts on Gal(k(ppn+1)/k(ppe)) trivially, and on Gal(k(upn ,UYP") [k(pym)) via
w where w : Gal(k(pp)/k) — Z, is the Teichmiiller character which gives the action on p,.
Hence k(ppn+1)/k(ppn) and k(ppn,UP")/k(upn) are linearly disjoint, and k(pyn,UM/P") #
E(ppn+1,U/P"). We take a prime [ of k of degree 1, which is prime to pqy - ... - g5, which splits
completely in k(,upn,ul/ »"), and which does not split completely in k(ppn+1,U /"), By the
Chebotarev density theorem, there are infinitely many such [’s. We will show that [ satisfies
the conditions of Lemma 2.1.

First of all, since [ splits in k(u,») and does not split in k(p,n+1), it is clear that n; = n.

Let Hy, be the p-Hilbert class field of k (hence Ay ~ Gal(Hy/k)), and k{(} be the maximal
p-extension of k in the ray class field mod [. We know by class field theory Gal(k{I}/H}) ~
(k(1)*/(Er mod [)) ® Z, where (Ej mod [) is the image of Ej, in x(I)*. Since [ splits completely
in k(E,i/pn) and n = ny, we have (E, mod [) = {1}, and Gal(k{(}/Hy) ~ Z/p™.

Furthermore, since [ splits completely in k(U'/?"), by class field theory we can show that
the sequence

0 — Gal(k{1}/Hy) — Gal(k{1}/k) — Gal(Hy/k) — 0

splits as an exact sequence of abelian groups (see the proof of Lemma 4.3 in [10]). This shows
that k& has a cyclic extension of degree p™', which is unramified outside [ and which is totally
ramified at [.

2.2. Suppose that K/k is a finite and abelian extension, and K is a CM-field (hence K is
totally imaginary and there is an intermediate field KT of K/k such that K is totally real,
and [K : KT] =2). We write Gal(K/k) = A(K/k) x ['(K/k) where the order of A(K/k) is
prime to p, and I'(K/k) is a p-group.

Suppose that x : A(K/k) — 6; is a character of A(K/k) whose values are in an algebraic
closure of Q,. For a Z,[Gal(K/k)]-module M, we define MX by

MX = M ®z,(a(x/k)] Ox

where O, = Z,[Image x| is the Z,[A(K/k)]-module on which A(K/k) acts via x. Since we can
also write MX = M ®z_qai(k/k)] Ox[T(K/k)], it is an Oy [I'(K/k)]-module. For any element
x € M, we denote by zX the image of  in MX (namely, X =z ® 1).

Since #A(K/k) is prime to p, the group algebra Z,[A(K/k)] is a direct sum of discrete
valuation rings, more precisely, Z,[A(K/k)] = @, Oy where x runs through all Q,-conjugate
classes of characters of A(K/k) (we say two 6; -valued characters x; and x2 of A(K/k) are Q,-

conjugate if 0o x1 = x2 for some o € Gal(Q,/Qy;)). Hence Z[Gal(K/k)] = @, Ox[I'(K/k)]
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and
M =P M~
X

hold for any Z,[Gal(K/k)]-module M. Therefore, to study M, it suffices to study each MX.
Throughout this paper, we assume x is odd. Also, when K contains f,,, we assume x # w where
w is the Teichmiiller character.

For any number field F', we denote by Clg the ideal class group of F', and by Ar the p-
component Clp ® Z,. For a field K as above, we are interested in the Z,[Gal(K/k)]-module
Ag =Clg ® Z,,. We denote by Ky the subfield of K corresponding to I'(K/k) by Galois
theory, hence Gal(K/Ky) = I'(K/k) and Gal(Ky/k) = A(K/k). Without loss of generality, we
may assume the conductor of x is equal to the conductor of Ko/k. In fact, let A, C A(K/k)
be the kernel of x : A(K/k) = Gal(Ky/k) — 6;, and Ky, the subfield of K corresponding
to Ay. We also regard A, as a subgroup of Gal(K/k) = A(K/k) x I'(K/k), and denote by
K, the subfield of K corresponding to A, C Gal(K/k). Since [K : K,| = #A, is prime to
p, Ak, is isomorphic to the A,-coinvariant (Ag)a, by the usual norm argument. So AXKX is
isomorphic to A} = ((Ax)a,)X. Hence, when we study A%, we may regard x as a character
of Gal(Ky,,/k), and may assume Ky = Ko ,. So in the following, we assume the conductor of
X is equal to the conductor of Ky/k.

2.3. In this subsection, we define two important homomorphisms div, and ¢,. Let K be a field
as in §2.2. We denote by Divg the divisor group of K written additively. So, an element of
Divg is of the form »n;p; where n; € Z and p; is a finite prime of K. Suppose that

div : K* — Divyg

is the homomorphism which maps an element of K* to its principal divisor, namely for z € K*|
div(z) = Y ord,(z)p € Divg where ord, is the normalized additive valuation associated to the
prime ideal p.

Let S be the set of finite primes of k defined in §2.1. For each [ € &, we fix a prime [ of
an algebraic closure k above [ throughout this paper. For any subfield F C k, the prime of F
below [ is denoted by [r. So when we consider finite extensions Fy/k, Fy5/k such that Fy C Fs,

we are always taking (and fixing) primes such that (r, | [F, .
Suppose K C k is as above. We define S(K) by

S(K) = {1 € 8|1 splits completely in K}.
Hence [k is a prime of degree 1.

Assume that [ is a prime in S(K). We consider a map K* — B, Z defined by z —
Epjrordy(z)p. Using the fixed prime [k of K above [, we regard P, Z as a free Z[Gal(K/k)]-
module of rank 1 generated by [k, and regard the above map as

div; : K* — Z[Gal(K/k)].
Taking (— ® Z/p™V)X, we obtain
div s (K™ [p¥)X — Oy /pV [D(K/K)]

which we also denote by the same notation divy.

We will next define ¢;. We assume [ € S. Recall that in §2.1 we took and fixed the field k(1)
such that k([)/k is a cyclic extension of degree p™t which is unramified outside [ and is totally
ramified at [. We define G| by

G, = Gal(k(1)/k).
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Let [ = [y be the unique prime of k([) above [. Suppose that k; (resp. k([);) is the completion
of k (resp. k(1)) at the prime [ (resp. [). We consider the reciprocity map

Sn, kS — Gal(k(1);/k) = G,

of local class field theory. Since the characteristic of the residue field s(I) of k; is prime to p,
k; contains a primitive p™t-th root of unity. We can write k(I); = k(( »"{/7) for some prime
element 7; of k. We identify G| with the group p,n: of p"'-th roots of unity by

Kum : Gy — ppni, o+ (o0 —1)(»"/m).

Note that (o — 1)( #"/7() means, of course, o( »"\/7()/ »"{/7, and that this map does not depend
on the choice of m;. We have

1-N
Kumo ¢p, (u) =T »"" € ppn (2.1)

(Serre [20] Chap.XIV Proposition 6 and Corollaire to Proposition 8) for all units u € Uy, = Oy
where N(I) = #x([) is the absolute norm (x([) is the residue field of [), @ =wu mod [ € x([),
and we regard here ju,n as a subgroup of £([)*. The extension k(I);/k; is tamely ramified, and
the above map is known as the tame symbol. (Note that some authors are using the inverse of
our ¢y, as the reciprocity map.)

LEMMA 2.2. Let ¢y (n): k' — G(® Z/p" be ¢y, mod pV. Suppose that 3 € k([)fx, o€
Gal(k(1);/k;) = G|, and that

1-N(1) .
(a—l)ﬁz#zu o (mod )
holds for some u € Uy, = O,:I. Then we have
p™ ord(8)

bry () (u) =0

where we extended to k(I); the normalized additive valuation ord; of k;.

Proof. Let
Kum(N) G ® Z/pN =, HpN

be the mod p™ of the homomorphism Kum, namely o+ (o — 1)( »Y/7;). Then by (2.1) we

have
1—N(1)

Kumyy o ¢y, (ny(u) =T »~
Since
o( »N/m) ),,N ord () — o ord () ( PN/77)
pw - pw ’

u N = = (
we obtain ¢y, (n)(u) = oP" ordi(B)

By the definition of S and local class field theory, we know that k/p™ =k /(k P s
a direct sum of the kernels of ord; and ¢y,. More precisely, we have the following lemma,
immediately.

LEMMA 2.3. k[/pN is a free Z/p"-module of rank 2. We define V; (resp. V») to be the
kernel of the map ord (ny : k{* /p — Z/p" which is the normalized additive valuation mod
p™ (resp. of the map ¢y, () : k[ /pY — G @ Z/p" which is ¢, mod p™). Then both Vi and
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V; are free of rank 1 over Z/pN and

kX /pN =Vi @ Va.

(V)
Furthermore, Vs is the image of (k([)gN))X N, k — k[ /pN where k([)%N) is the intermedi-
ate field of degree pV of k(\);/k;, and N[(N) is the norm map of k([)%N)/k[.

Suppose that [ is in S(K). Since [ splits completely in K, the natural inclusion map k — K
induces an isomorphism k;, — K, for any prime p of K above [ where K, is the completion
of K at p. We consider the reciprocity map K, — G;. We define ¢; by the composition

¢ K* — PK — PG =Pz @G ~ZGa(K/k)]® G,

plt plt olt
where the first map is the diagonal inclusion, the second map consists of the reciprocity maps,
and the third isomorphism is defined by the identification of €, Z with Z[Gal(K/k)] using
[k. This map ¢, is a Z[Gal(K/k)]-linear homomorphism.

Again, taking (— ® Z/p™)X, we obtain

¢+ (KX /pN)* — Oy /o [D(K/k)] ® G,
which we also denote by the same letter ¢;. When we fix a generator oy of G|, we have a
non-canonical isomorphism O, /p" [['(K/k)] @ Gy ~ O, /pN[['(K/k)], and we define ¢, to be
the composition of ¢, with this isomorphism

by (B pM )X — Oy /p [D(K /)],

Namely, ¢,(z) = ¢,(z) ® oy for all z.

We put K (1) = Kk(1). We remark that if z € (K> /p™)X is a norm from K(I) (namely x can
be written as z = Ny ()/x (y) for some y € (K (1)* /p™)X where Ng ;)i is the norm map), we
have ¢(x) = 0 by local class field theory and the definition of ¢;.

2.4. In this subsection, we define the Stickelberger element for an abelian extension. Let K/k
be a finite and abelian extension. For a non-zero ideal a of Ok, we denote by (a, K/k) the
Artin symbol. We define the partial zeta function for o € Gal(K/k) by

(so)= 3 N@
(a,K/k)=0c

for Re(s) > 1 where N(a) is the absolute norm and a runs through all non-zero integral ideals
which are prime to the ramified primes in K/k. The equivariant zeta function 0 /4 (s) is defined
by
Ok /u(s) = Z C(s,0)0t.
oc€Gal(K/k)

Suppose that L/k is a finite and abelian extension such that K C L. The natural restriction

map Gal(L/k) — Gal(K/k) induces
cr/i : ClGal(L/k)] — ClGal(K/k)].

Using the fact that 6, (s) and 6/, (s) have the Euler products (Tate [21] Proposition 1.6),
we can show that

crxOn() = T 0= NO e "))0x/u(s)
l€ERL /K

where Ry /g is the set of finite primes of k£ which are ramified in L and which are unramified
in K, and ¢y is the Frobenius of [ in Gal(K/k) (cf. Tate [21] p.86).
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The partial zeta functions have meromorphic continuation for the whole complex plane, and
we know by Klingen and Siegel that 0/ (0) is in Q[Gal(K/k)] ([19]). We simply write 0 for
0k /1 (0). By the above formula, we have

c0n)=( [ (1—er")x.

[ERL/K

Let K be as in §2.2. We consider the x-component Z,[Gal(K/k)|X = O, [I'(K/k)] of the group
ring. As in §2.1, we assume x # w. Consider the natural map Q[Gal(K/k)] = Q[A(K/k) x
I'(K/k)] — Qp(Image x)[['(K/k)] defined by Xas-(0,7)+— Zas,x(o)7. We define 05 €
Q,(Image x)[T'(K/k)] to be the image of Ok by this map (see §2.2 for the general definition of
the element X for general z). Since we are assuming x # w, we have

O € Ox[L(K/k)]

by Deligne and Ribet [2]. We note that this element 6% is numerically computable in principle.

Suppose that L/k is finite and abelian such that K C L and L/K is a p-extension. In the
notation of §2.2, we have A(K/k) = A(L/k), and we can define §F € O, [I'(L/k)]. By the above
equation, we have the following lemma which will be used many times.

LEMMA 2.4. Let cp i : Oy[T'(L/k)] — O, [I'(K/k)] be the restriction map. Then we have

CL/K(%) = ( H (1- @fl)x)e)f(-

[ERL/K

3. Euler systems of Gauss sum type

In this section, we review the Euler system of Gauss sum type in [10], and prove some
fundamental properties.

3.1. From now on, we always assume the following. We consider a number field K as in §2.2,
namely K is a CM-field such that K/k is finite and abelian. We use the same notation A(K/k),
I'(K/k), K¢ (recall that K is the field such that Gal(K/Ky) = I'(K/k)), and consider an odd
character x of A(K/k). As in §2.2, we assume x # w, and the conductor of x is equal to that
of K. We also assume that x(p) # 1 for all primes p of k above p, and the p,-invariant of K is
zero. The second assumption means the following. For the cyclotomic Z,-extension K, /K, we
define Xx_ by Xk =limAg, where K, is the intermediate field of degree p”, and the limit
is taken with respect to the norm maps. The assumption that the p,-invariant of K vanishes
means M(X;gw) = 0, namely the x-component X}gw is a finitely generated O,-module (this is
always true by a famous theorem of Ferrero and Washington if £ = Q [3]). We consider such
general K in §3 — §7 (we do not assume K C Ky ). Furthermore, in §3 — §6 we also assume
that

(*) all primes of k above p are ramified in K, and all primes of K above p are totally ramified
in K.

3.2. We next review the result in [10] §4. We consider abelian p-extensions L/ K, more precisely,
put

F={L|K C L, L/k is finite and abelian, and L/K is a p-extension},

and consider L € F. Note that Gal(L/k) = A(L/k) x T'(L/k), T'(L/k) = Gal(L/Ky), and
A(L/k) = A(K/k) = Gal(Ko/k) (recall that Ky is the field such that K/Kj is a p-extension
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and [Ky : K] is prime to p). Note that L is a CM-field because K is a CM-field, L/K is a
p-extension (p # 2) and L/k is an abelian extension.

We regard x as a character of A(L/k), and consider the y-components (L* ® Zp)X,
(Divy, ®Z,)X, etc. Let AY be the y-component of the p-component of the ideal class group
of L. We denote by Of (resp. Divy) the unit group of L (resp. the divisor group of L).
As in §2.3, we define div : L* — Divy, to be the homomorphism which maps an element of
L* to its principal divisor. Then we have an exact sequence 0 — Of ® Z,, — L* @ Z,, div,
Divy ®Z, — Ar — 0. Taking the x-component, we obtain

LEMMA 3.1. For L € F,
0 — (L* ® Zp)* 2% (Div, ®Z,)X — A — 0

is exact.

Proof. This follows from (O} ® Z,)X = 0 which can be easily checked by our assumption that
x is odd and x # w.

We use the same notation as in §2.3 for L. Recall that S(L) is the subset of finite primes of
k defined by

S(L) = {1€ S| 1 splits completely in L},

and we consistently fixed a prime (1, of L above [ for each [ € S(L).

By Corollary 2.4 in [10] (note that the p-invariant of L vanishes because of our assumption
of the vanishing of the p-invariant of K and the fact that L/K is a p-extension (Theorem 2 in
Iwasawa [6])), we have

X AX = 0.

For [ € S(L), the class of [, in A} is denoted by [(]X. Then 67 [(.]X = 0 holds. By the exact
sequence in Lemma 3.1, there is a unique element g[L in (L* ® Zp)X such that

div(gh) = 03 1§ (3.1)

(note that [} is the image of [, in (Divy, ®Z,)X).

Suppose that M is a subfield such that Ko C M C L (where Ky is the subfield such that
Gal(Ko/k) = A(K/k) as in §2.2). Recall that we are taking [ps such that [ |5, so we can
define g similarly. Using Lemma 2.4, if [ € S(L), namely if [ € S splits completely in L, we
have (see [10] Lemma 4.1)

Nepa(af) = I (=9, (3.2)
PERL /M

where Ny, /5 is the norm map and Ry, /ys is defined similarly for L/M as in §2.4. Note that if [
does not split completely in L, (3.2) does not hold (the residue degree appears in the formula
cf. Lemma 4.1 in [10]). Thus, for [ € S(L), for any intermediate field M of L/Kj, we obtain an
Euler system (g). But this is a “finite” Euler system in the terminology of Mazur and Rubin
[12] because it is defined only on the finite set {M | Ko C M C L}. For more details for this
Euler system, see [10] §4.

3.3. In this subsection, we recall the usual argument of Euler systems to construct the
Kolyvagin derivative ky . Recall at first that in §2.1 for each v € S we took and fixed a field
k(r) such that k(tr)/k is a cyclic extension of degree p™t, which is unramified outside t and is
totally ramified at t. We define G, by G. = Gal(k(r)/k). As in the usual argument of Euler
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systems, taking a generator o, of G, we put

pt—1 pmt—1
N, = Z ol € Z[G,] and D, = Z iol € Z[G.].
i=0 =0

A fundamental equation is D(o, — 1) = p™ — N..

We define N (resp. N(K)) to be the set consisting of all squarefree products of primes in S
(resp. S(K)) (we denote by 1 the ideal (1) = Oy and suppose 1 is both in A” and NV (K)). For
any n € N with n = tq ... - t,,, define k(n) to be the compositum of the fields k(r1),...,k(tm),
and Gy = Gy, X ... X Gy, which is isomorphic to Gal(k(n)/k).

Forn € N(K), we write K (n) = Kk(n). Clearly, we have Gal(K (n)/K) = Gal(k(n)/k) = Gy.
Note that K (n) € F where F is the set defined in §3.2. We put Ny, = I,y N and Dy, = Il o D;
which are elements of Z[Gy].

We use the standard argument of Euler systems ([15] §2, [22] §15.3). For [ € S(K(n)),
Dngf((n) mod p is in the Gy-invariant part of (K(n)* ® Z/p™)X. We define ky, € (K* ®
Z/p"™)X to be the unique element whose image in (K (n)* @ Z/p™V)X is Dng[K(n). The uniqueness
comes from the bijectivity of the natural map

(KX ®@Z/p") — (Kn)* @ Z/p"))",
which follows from our assumption x # w. Note that k1 = g[K forn=1.

We next consider Stickelberger elements. Suppose that n € N(K). In §2.4, we defined
0% € Ox[D(K/k)]. We define 05, € Ox[['(K (n)/k)] by the same method. Since I'(K (n)/k) =
I'(K/k) x Gy, we have OX[F(K(ng/k)} = Oy [['(K/k)][Gy]. The multiplication by N, gives an
injective homomorphism

N : Oy /pV[D(K/K)] — Oy /p" L (K/K)][Gy]

of Gal(K (n)/k)-modules, whose image is the Gy-invariant part. Since Dnﬁ}g(n) mod p? is in the
Gr-invariant part of O, /p™ [['(K (n)/k)] (which follows from the standard argument of Euler
system as above), it is in the image of N,,. Hence there is a unique element &, in O, /p™ [['(K/k)]
such that N6, = Dy0% ., mod p". Note that §; = 6% for n = 1.

K(n)
Suppose that n =ty -... - t;,,. We know
Oty = (=1)"0u(00, = 1) - oo - (0, — 1)
(mOd pNv (Un - 1)2a ey (al‘m - 1)2) (33)

by Lemma 4.4 in [10].

Suppose again that n =ty -... - t,, € N(K) and [ € S(K(n)). We defined ry € (K> /pV)X
above, but this does depend on the choice of a generator o, of G, for each t | n. Put

gn:Gt1®--~®G
Following Mazur and Rubin [12], we consider elements in (K> /pN)X ® G, and define

T

Font = Fin @ 0¢, @ ... @ o, € (K7 /pY)X @ Gy
which does not depend on the choice of o,. In the same way, we define
On = 00 @ 0¢, © . @ v, € (Ox /DN [D(K/K)]) © G
which is also independent of the choice of oy, .

3.4. We next prove a famous relation called congruence relation of Euler systems (cf. Corollary
4.8.1 in Rubin [17]). We are dealing with a “finite” Euler system, and cannot apply the usual
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argument directly, so we will give here a proof. A special case was proved and used in [10], but
here we give a general version and its proof.

PROPOSITION 3.2.  (Congruence relation) Supposet € S is unramified in K and [ € S(K (v))
where K (t) = Kk(t). (Note that we do not assume v € S(K).) Then, for any prime p, of K ()
above t, we have

1-N(x)~ ! K
(9%) =g~

9 v mod p.)

where N(t) is the absolute norm ##(t) of t.

Proof. Let k(p.) be the residue field of p, and put n’ = ord, (#r(pr)*). Obviously, n’ > n, and
n’ does not depend on the choice of p, and only on K because K/k is a Galois extension. Put
L = K(r). By the Chebotarev density theorem, we can take a prime [' € S(L(t,n'+n.)) such
that the class [(7]X and the class [[1]X coincide in AY. In fact, we take n > n’ 4 n. sufficiently
large such that L(pyn) # L(ppn+1). Let Hp be the maximal subfield of the Hilbert p-class
field of L such that A(L/k) acts on Gal(Hy /L) via x (namely, Hy, is the subfield such that
AY ~ Gal(Hp /L) is bijective). We also consider U in the proof of Lemma 2.1. Using the action
of A(L(pp)/k), we know L(ppm+1,UYP" YN Hy = L and L(ppn,UYP") N L(ppn+1) = L{papn).
Hence we can take [ € S(L(upn)) satisfying the above property.

We put L' = L(ptyn4n. ) and K" = K (pt,nr4n. ). We write R(L') for (B, £(v)* ® Zp)X where
k(v) is the residue field of a prime v of L’ above t, and denote by

rr: ({z € L' | (z) is prime to t} ® Z,)* — R(L')

the natural homomorphism. We define R(K’) and rg- similarly. Consider the images of gf,( '
and g[L,/ in R(L'). Note that the natural map gives an isomorphism R(K’) — R(L') because
all primes of K’ above t are totally ramified in L. We identify R(L’) with R(K’) by this
isomorphism. Then it follows from [L’ : K'] = p™ that the norm map induces the p™*-th power
map on R(L'). On the other hand, by the norm property of the Euler system (see (3.2) in §3.2)
we have Ny, x:(g) = (gff/)(l_“’:l)x. Hence on R(L') we get 71, (g5 /7" = rg (g{fl)l_N(‘)fl.
For each prime v of L’ above t, k(v) contains a primitive p" 77 _th root of unity, so we have
ord,(#k(v)™) > n' + n.. Therefore, the above equality implies

;) 1=N()~!

rp(ge ) =ree(ge )7 (mod p™)

(the congruence means the equality in R(L')/p™). Since L'/L (resp. K'/K) is unramified
outside p and all primes above p of k are ramified in L (resp. K) by the assumption (*) in §3.1,
we have

Npoo(gh ) =gf  (resp. Ngoyw(gf) =gk)

by the norm property (3.2) in §3.2. Taking the norm Ny, of the both sides of the above
congruence, we get

1-N(x)~ !

rolgf) =ri(gl) "7 (mod p™). (3.4)

Since R(L) is a free OX/p"/—module, the above congruence is the equality in R(L). This shows
that Proposition 3.2 is true for ['.

By our assumption on [, we can take an element a € (L™ ® Z,)X such that div(a) =
(I, —1)X. Then we have div gf,/aef = div g}, which implies by Lemma 3.1 that g[L,/aef =g
in (L* ® Z,)X. In the same way, putting b = Ny, (a), we have div g[l,(/b% = div g[K, which
implies g[l,(/b% = g in (K* ® Z,)X by Lemma 3.1. Since G acts on R(L) trivially, by Lemma
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2.4 we have
0%y = (1= )Xo% — OX(1-N(x)~1) _ pre oL Im N0
rr(a’c) =rp(a) k 7“L( )'K =rp(a® " )’x e

X 1=N(¥)~ 1-N(e)~!

= ric(Npyx ()i ome— = ppe(B0) o7 (3.5)
Combining (3.4) and (3.5), we get
L K —1 1
gir gy 1=No=h 1=N=t
TL(g[)_T’L( ;E):TK(ba[;(() pTT :TK(g[I() pTT .

This completes the proof of Proposition 3.2.

We consider a homomorphism
div : (K* /pM )X @ G, — (Divg /pN)X ® Gn

induced by the homomorphism div, and denote it also by the same notation div. For v € S(K),
we also use

din : (KX/pN)X & gn - (Ox/pN[F(K/k)]) ® gﬂ

which is obtained from div, : (K*/p™)X — O, [['(K/k)]/p" defined in §2.3. There, we also
defined

¢+ (KX /p™)X — Oy /p"V[D(K/k)] @ G

for v € S(K) though we used [ instead of v in §2.3. If ¢ divides n, the above homomorphism
induces

¢ (KX /p")X @ Ga — Oy /pV[D(K/k)] @ Gn

which we also denote by ¢..

PROPOSITION 3.3. Suppose that [ € S(K(n)). Then we have
(0) If p is a prime of K which does not divide nl, it is not in the support of div(Ry ).
(1) For any prime v dividing n, we have dive(Fa,() = ¢c(Fn ().
(2) diV[(/%n’[) = (Sn,

Proof. The property (0) follows from the fact that p is unramified in K (n), and g, K ig a unit
outside [. The property (2) is immediate from the definitions of &4, and ba. The property (1)
is a standard property of Euler systems (cf. Theorem 4.5.4 in Rubin [17]) and can be proved
by the usual argument (see Proposition 2.4 in Rubin [15]). We will give here a proof to clarify
where we use Proposition 3.2 and Lemma 2.2.

We take a lifting £} | € (K* ® Zy)X of kn € (K /p")X. By definition, we can wrlte K =

Dy g, (n)/ﬁp for some 3 € (K(n)* ® Z,)X. In the same way, we write /{“ =Dn= g /(ﬁ')

for some (' € (K (§)* ® Zp)X. Since &y |, /in , are elements of (K™ @ A )X we Compute
(0 = 1)B = (00 = D)Dag! ™)/?" = (5" — Ne)D2 g ™) /7"
— Dag P (1 - ) Da gt
ny—N
= (Dug ™"/~ )
n — )~L
We apply Proposition 3.2 to K(§) to get gK(") = (g[K(ﬂ) = (mod p,) for any prime p,.

of K (n) above t. Therefore, we have

K(n) 1-N(x)~t

(e —1B=(Dag ) #" /() NOT (mod pe)



REFINED IWASAWA THEORY Page 15 of 41

K(2) N =N =N~
= (Dagl D) T = (kb)Y
N(r)—1
E(I‘L/%\’[) »N (mod tg).

Here, we used the fact that o, is the N(t)-th power map on the residue field of p, to get the
first congruence, and that the N(t)-th power map is the identity map on the residue field of
tx to get the last congruence.

N -
By Lemma 2.2, we have ¢¢(rkh ) = ¢e(kin ) = oc " dive(®) Therefore, we get

Ge(kin ) = o
T

which implies ¢¢(Fn ) = dive(Rn,()-

pN dive(8) _ _ divr(ﬁpN) ® 0p = divr(mﬁd) ® or = dive(kn,) @ o,

REMARK 3.4. In §4 we will give more general definition of &, |, for which we will prove
the same properties in Proposition 4.2.

4. Kolyvagin systems of Gauss sum type I

4.1. In the argument to define ky, in the previous section, the assumption [ € S(K(n)) is
definitely needed because we need the norm property (3.2) in §3.2 for L = K(n), M = K to
define g[K(n), and (3.2) holds only when [ splits in L = K (n) as we explained after (3.2). But
the theory of Kolyvagin systems by Mazur and Rubin [12] suggests that there would exist i
for more general [. They studied their theory mainly over principal ideal domains in [12], so we
cannot apply it directly to our case. We will construct in this paper the elements x, ; explicitly
under some (mild) assumptions on [.

We will explain a little more what we need. When we define k, (, [ has to be chosen from
S(K(n)), hence taken after we took n. But we need later elements k, ( where we take n after we
took [ (see §9.2 where we define x, |, taking n after we took [). We sometimes need both «, ,
and kp,,, (see Remark 9.6). Namely, we need ky, for more general (n,[). In the following, we
will define a certain subset Ny (K) of N(K), and will define rn € (K*/p™)X for all (n,1)
such that n[ € N¢m) (K), though it seems that x, ; could be defined for more general (n, [) (cf.
Remark 4.4 and §5.3).

Suppose that ¢ is the exponent of A%, namely the smallest integer such that p°A% = 0. The
following lemma is easy to prove, but is useful in §4.2.

LEMMA 4.1. Let g, g’ be elements in (KX/pN-i-c)x. Suppose that div(g) = div(g’)
(mod p™N*¢). Then we have g mod p™ = ¢’ mod p~ in (K> /p™V)X.

Proof. Consider the exact sequence

0 — AR [pVF] — (KX /pVT)X — (Divg /pV TN — A /pVTE — 0.
Since (K* ® Z,)X is p-torsion free, (K> /pN*t¢)X is a free O, /pN°-module. Hence the image
of AL [pNT¢] = A in (K> /pNT¢)X is in p™ (K> /pN €)X, This shows that g mod p" = ¢’ mod
N
4.2. For any integer m > N, we define S,,(K) = {1 € S(K)|n; > m}. For any integer n > 0,
we put

S[n] (K) = Snine(K)
and define NVp,)(K) to be the set consisting of all squarefree products of primes in Sy, (K).
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For n € NV, we define €(n) to be the number of primes which divide n (namely, e(n) = m for
n =1y -..-t, in §3.3), and consider N (K). For n = 1, we define (1) = 0.

Suppose that n[ € ./\/[6(,%([(), and t is a prime factor of n. Replacing N by N + e(n)c, we
can define ¢, : (K< /pNteMeyx — O, /pN*+eMe[D(K/k)] ® G.. By the same method as in the
proof of Proposition 3.2, using the Chebotarev density theorem, we can take [" € Sje(ny) (K (1))
such that the classes [[)]X and [[x]X in A% coincide. By the exact sequence in Lemma 3.1, there
is a unique element b € (K* ® Z,)X such that div(b [x)X. Replacing N by N + ¢(n)c,
we define 54" (M) ¢ OX/pN+€(“)‘[ (K/k)] ® Gy, and zj\ffre(n) (K> /pNFTemeyx @ G, by
the usual Euler system argument in §3.3. Using induction on €(n), we define

/%:1’[ ~(N+e(n) ) -4 N+e(n)c)b - Z(R/%w ® ¢r(b)) c (KX/pN-‘re(n)c)X ® Ga.

n 4
t|n
Here, we wrote the group law of (K> /pNtemeyx @ G, additively though K* is a multiplicative
group. The element SNHMp means ab® T € (K> /pNtemeyx @ g, if SN _ o1 €
O, /pN T (K /k)] ® Go. The sum is taken over all primes dividing n. Note that B
is defined by induction because of €(¢) < e(n). We regard f%’ﬂr ® ¢ (b) as an element of
(K> /pNteMeyx @ G, by the identification

(K> [pNTe™X @ Gu ) @0, jpv+emeqr(i /iy (Ox /PN T M (K/k)] © Ge)
— (K fp e g G,
We put
fin, = Fyp,; mod pV € (K> /p™M)X @ G

PROPOSITION 4.2. The element Ry defined above is well-defined, namely independent of
the choice of I (hence independent of the choice of b). This element satisfies the following
properties.

(0) If p is a prime of K which does not divide nl, it is not in the support of div(&Kq ).
(1) For any prime v dividing n, we have dive(Fa,() = ¢c(fn ().
(2) div((Fn,() = On.

REMARK 4.3. In the above proposition, if we further assume that [ is in S(K(n)), we
can take [ = [ and b = 1. Hence we have ¢.(b) = 0, and &, defined above coincides with &n
defined in §3.3. Therefore, our notation is consistent.

Proof. We prove this proposition by induction on e(n). We first show
(0)" If p is a prime which does not divide n{, it is not in the support of div(&y () mod p
(1)’ For any prime v dividing n, we have div(ky ) = ¢t(/%’;_.’[) (mod pN+e).
(2) divy(7),) = 67T (mod pNHe).

By induction on e(n), N + e(n)c = N + ¢ + €(7)c implies that & /{,,7 mod p™VT¢ is well-defined,
namely does not depend on the choice of the auxiliary prime for v. Using (0)', (1), (2) for
R'T o» We have

N+c

div(&h , Z¢t /(N+C )t —|—5 (Nre()e) e (mod pNte).
r/ ‘ n
Therefore, by Proposition 3.3 (0), if a prime p is prime to n[[’, p is not in the support of
div(ky ) mod pN+e. Concerning ', if [ # [, by Proposition 3.3 (2) we have

divy (Ry ) = sNFeme) _ §iNFelme) — Ney,

(mod p
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Hence we get the property (0)’.
For t such that t | n, we can compute

dive(h,) = ¢e(7s ) = 3D @ 6 (5) = D de(fa, 1) @ G0 (D)
v/ |%

= ¢t(/%'%’[) (mod p™T¢),

by Proposition 3.3 (1), (2) and the definition of &, |, Hn - Thus, we get the property (1)".
Concerning the property (2)’, we just note that [ is prlme to n, and get

div(fy () = (—S‘EN'H me) )= S‘EN—H ne) (mod pN 1)

if (' # If [ =1, we get divi(A}, ) = N Fe(me) by Proposition 3.3 (2).

The properties (0), (1), (2 ) 1mp1y that div(&}, ;) mod p™*¢ is independent of the choice of
[. Hence by Lemma 4.1 Ry = /{n’ mod p" is independent of the choice of ['. This completes
the proof of Proposition 4.2.

REMARK 4.4.  We give another definition of M) (K). Let Ko /K be the cyclotomic
Z,-extension, and K,, the m-th layer. Since we assumed ,u(XI’goo) =0, the map A’;(m [pN] —
A¥ [p™] induced by the norm map becomes the zero map if m is sufficiently large. We take the
minimal m satisfying the above property, and put Kj;; = Kp,. We define inductively K, by
Kin) = (K[p—1))11) where we applied the above definition to K[,y instead of K. For n > 0, we
put

Sin)(K) = S(K[py),

and define NV, (K) to be the set consisting of all squarefree products of primes in Sy, (K). We
consider Nem)) (K).

We assume n# 1 and n[ € Njm)(K). By the Chebotarev density theorem, we can take
[ € S(Kie(ny)(n)) such that [’K[e(“) and (K., Yield the same class in AK ny BY Lemma
3.1 for Kln)), there is a unique element by () € (K[e(n)] ® Zp)X such that div(bem))) =
([/K[E(n)] — UKoy ¥ Put b= NK[E(M/K[” (b[e(n)]). Again, using induction on €(n), we define

(Ff") = i = G b - Z ) @ 6c (b)) € (K5 /D)X @ G,

and fn = Nk, /K((Fﬂf[{l )) € (K*/p™)X @ Gy. Then we can prove that this element &y,  does
not depend on the choice of ', and satisfies the properties in Proposition 4.2. This definition
looks similar to the first definition, but this method is useful when we study more general
Galois representations (see [11]).

4.3. The following lemma is useful when we choose [' in the definition of %, in the previous
subsection.

LEMMA 4.5. Assumen =rtj-...-t,, € N(K) and [ € S(K) is prime to n. Suppose for each
i=1,.,m, 0; € Oy/pV[['(K/k)] ® G, is given. Then there are infinitely many ' € S(K (n))
which satisfy the following properties.

(i) The class [[c|X in A} coincides with the class [[x]X.
(ii) For the element z € (K* ® Z,)X such that div(z) = (I — (k)X, ¢«,(2) = 0; holds for each
1 =1,..,m
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Proof. Let K{n} be the maximal abelian p-extension of K which is unramified outside n. For a
prime v of K, we define Uy, = OIX(U and U }<v =1+ m,0Ok, as usual where m,, is the maximal
ideal of O,. The residue field of v is denoted by k(v). By class field theory, we have an
isomorphism

Hv|n K;(/Ufl(v X @vXn KIT/UKU

the image of K* ®Zy — Gal(K{n}/K)

which yields an exact sequence

0 — (P k)" @ Z,)* — Gal(K{n}/K)X — AY —0

v|n

where the injectivity of the second arrow follows from (O} ® Z,)X = 0. We denote by K{n}X
the intermediate field of K{n}/K such that Gal(K{n}*/K) = Gal(K{n}/K)X.

By the similar method as we did when we defined ¢, in §2.3, we identify (@vhl K(0)* ®
Z,)* with Oy [I(K/k)] @ Gy, © ... ® O [I(K/k)] ® Gt,,. We take oy € (B, £(v)* @ Zp)X
such that o, mod p" is (o1,...,0.,), and regard o, as an element of Gal(K{n}X/K). Let
(g, K{n}X/K) € Gal(K{n}X/K) be the Artin symbol (the Frobenius of [k). Note that
A(K/k) acts trivially on Gal(K (n)/K),so K{n}X N K(n) = K. Put L = K{n}XK (n) which is a
subfield of K{n}. We take 7 € Gal(L/K) whose image in Gal(K{n}X/K) is o} ' (Ix, K{n}X/K)
and whose image in Gal(K(n)/K) is the identity map.

Let U be as in the proof of Lemma 2.1. Considering the action of Gal(Ko(up)/k), we have
K (ppn+1,UYP" )N L = K. Hence by the Chebotarev density theorem there exist infinitely many
' € S(K) such that (¢, L/K) =7 in Gal(L/K) where (I%x,L/K) is the Frobenius of [} in
Gal(L/K).

Since the image of (I, L/K) in Gal(K (n)/K) is the identity, [' is in S(K (n)). Let IT;» be the
idele whose [j-component is a prime element of [} and whose other components are trivial.
Let II; », denote the idele whose (I, K ® Z,)X-component is &;1 € (yn K ® Zp)X which
is a lifting of 0;1 € (HU‘HUK,U/U}(H ® Z,)X, and whose [g-component is a prime element of [x
and whose other components are trivial. By definition, Il and II; ;, have the same class in

H1)|n K;( /Ull(“ X @v,{n K;(/UKU
the image of K*

(

Hence there is an element z € (K* ®Zpy)X such that Iy =21l in ([, KY/Ug. x
@D,y K /Uk,) ® Zp)*. Therefore, the class [[x]* in A% coincides with the class [[x]X, and
div(z) = (Ix — (x)X. Furthermore, ¢,(z) = o; for all i =1,...,m.

® Z,)X = Gal(K {n}¥/K).

REMARK 4.6.  In the definition of &, | in §4.2, using Lemma 4.5, we can take [' € S(K(n))
and b € (K* @ Z,)X such that div(b) = (I — [x)X and ¢X(b) = 0 in O, /pNTM[T(K/k)] @
G, for all v dividing n. Then we have /%{17[ = /%1(11_/\[&6(“)6) — 6,(1N+€(n)c)b, which implies that

~(N+e(n)e) S‘SNJre(n)c)b mod p?.

This fact will be used later.

5. Kolyvagin systems of Gauss sum type IT

In this section, we study ¢ (fn,) for v dividing n[. We use the same notation K, X, gy, &n,,
etc as in the previous section.
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5.1. Suppose that [ € S(K). We consider the homomorphism

¢ 2 (K™ /p™)X — Oy /pM[D(K/k)] @ Gy
defined in §2.3.

PROPOSITION 5.1.  ¢(g{) = =0, ® oy = —4.

When k£ = Q, this proposition and the next corollary correspond to Theorem 2.4 in Rubin
[16] where it was proved by using the explicit form of Gauss sums. We do not know the explicit
form of our g[K , S0 we prove this proposition by a completely different method which can be
applied to general k. This proposition can be formulated in a simple form as above, because
the homomorphism ¢, is defined not only on the [-units but defined on the whole K* by using
the reciprocity map.

Proof of Proposition 5.1. Put L = K (I). As in the proof of Proposition 3.2, using the Chebotarev
density theorem, we can take [' € S(L) such that the class [[}]X in AT comadeb with the class
[1L]X in AY where [;, is the unique prime of L above (k. We take a € (L™ ® Z,)X such that
div(a) = (1, — )"

Let cp /i : Ox[['(L/k)] — Oy [T'(K/k)] be the natural restriction map. By Lemma 2.4, we
have ¢/ (0F) = (1 — ¢; ")0% = 0 because [ € S(K) implies ¢, = 1. Hence o — 1 divides 67,
and we can write

0% = a0y — 1) + Boy — 1)

for some a € O, [['(K/k)] and B8 € O, [I'(L/k)]. We have a = —6; (mod p") by (3.3) in §3.3
(Lemma 4.4 in [10]). Since [, is totally ramified in L/K, we have (oy — 1) [ = 0. It follows
from o, — 1| 05 that 6F(11)X = 0 in (Divy, ®Z,)X. Therefore, we have

div(gh) = OX(1,)% = 0¥ (1), — (p)X = div(a’})

which implies g[ =a’t by Lemma 3.1.
Put z = a**P#(@=1) ¢ (L ® Z,)X. Using the congruence relation (Proposition 3.2), we
compute
—N([)—l
(0 =Dz =a"t = gff = (/)"
N()—1 1-N(1)

= (9[’) = g[’) P

(mod py)

for any prime p; of L above [.
We denote by

div, : (L* ® — Pz, [T(K/k)]
plt
the homomorphism induced by z + X, ord,(z)p where p runs through all primes of L above
[, and the second isomorphism is ¥([z)X — ¥ for ¥ € O [I'(K/k)]. It follows from Lemma 2.2
that
¢i(gl) = —divy, (z) @ op mod pV
—(a+B(o; — 1)) divy, (@) @ oy mod pV
= —adiv, (a) ® o; mod pY =a®o; mod pv
= —5[ X ay.
Put b = NL/K( a) € (K* ® Z,)X. By the definition of a, we have div(b) = (I'x — [x)X. Since

div(g¥) = div(g¥ /bP%), by Lemma 3.1 we obtain gt = g} K /pf% . Since b is a norm from L, by
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the remark in the end of §2.3 (by local class field theory), we know ¢(b) = 0. Therefore, we
finally have

¢[(9[K) =¢g) =6 ®or = 0.

Next, let us consider a map
(K™ /p™)X ® G — Oy /P [D(K/K)] @ Ga

which is obtained from ¢ : (K* /pV)X — O, /pN[[(K/k)] ® G, by tensoring G,, and which
we also denote by ¢;.

COROLLARY 5.2.  We assume that [ € S(K(n)). Then we have ¢((fn,) = —dn ;.

Proof. We denote d;, ¢; for K(n) by (5[K(n), ¢[K("). We apply Proposition 5.1 to K(n) to get

KM (K™ = 55 & o e 0, /pN DK (n)/E)] @ Gy = Oy /pV [L(K/k) x Ga] ® G

Consider the commutative diagram

K(n)

(Km)*/pM)X == Oy/pN[L(K/k) x G| ® G,

[ I

(N 2 0N [D(K/R) © Gy

where ¢ is the natural inclusion map, and N, is the multiplication by N, = Ng, = ¥s¢c¢,0-
Since i(kn,) = Dng[K(n) and Dné[K(n) ® 0y = Nubn ® 01, we have ¢((kn,() = —dn| ® o because
N, is injective. Thus, we get ¢((Rn,) = —0n ;.

5.2. The homomorphism ¢, : (K*/pN)X — O, /pN[I'(K/k)] ® G, induces
(K /PV)* @ G — Oy /0N [D(E/K)]| ® Go ® Ge

which we also denote by ¢.. In [12], for completely general n, Mazur and Rubin computed
¢¢(Rn) for each v | n. In this paper, we consider the following special case.

Suppose that n € N(K). We call n well-ordered if n has factorization n =ty -... - t,, such
that t;41 € S(K(ty-...-v;)) for all ¢ = 1,....,m — 1. The next lemma follows from Theorem A4
in Mazur and Rubin [12].

LEMMA 5.3. (Mazur and Rubin) Assume that [ € S(K(n)) and n is well-ordered. Then, for
each v | n, we have ¢.(fn,) = 0.

Proof. Since we are in a special case, this lemma can be proved simply. Suppose that n =

Ty sy, and v € S(K (v ... - vy)) for all i = 1,...;m — 1, and suppose that v = t(j for some
j.Put my =v-.. v, and my =t -... - t,,. We denote R, for K(my) by F@n[fz:?l). Since

qbf((ml)(/%,g:?l)) = 0 implies ¢¢(&n,) = 0, to prove Lemma 5.3 we may assume t = t;.
For a prime v of K above t, we will prove
oK, (Kn,) =0

where ¢r, : KX /pY — G, ® Z/p" is the reciprocity map of K,. Let KX/pY =V, @ V3 be
the decomposition in Lemma 2.3. Let v’ be the prime of K (t) above v. Since v is totally ramified
in K(r)/K, the natural map K /p™ — K(r),5/p" is injective on V;. It follows from this fact
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and V5 = Ker ¢k, that it is enough to show that the image of ky, in K(r))/p" vanishes, in
order to get ¢, (Kn,) = 0.

We note that the image of k,, in K(t)*/p" is Dtnf(;). Let Uk(),, be the unit group of
K(t),. The image of DN i K(v)5 /pN is in Uk, /p". Since G; acts on Uk ,/pV

2
v’ n n
P ("t —1) K(v)
2

trivially, D, acts on UK(t)“,/pN as = 0. Therefore, the image of Dikn [’ in

Uk, /p is zero. Thus, we get ¢x, (ka,) = 0, which implies ¢.(%n () = 0.

Recall that we defined in §4 fy (€ (K*/p™)X ® Gy for n and [ such that n [ € Nm)(K).

PROPOSITION 5.4. Assume that n[ € N (ny(K) and n is well-ordered. Then, for each v | n,
we have ¢¢(Rn,) = 0.

Proof. As we remarked in Remark 4.6, in the definition of /%;7[ in §4.2, using Lemma 4.5 we can
take b € (K* ® Z,)X such that div(b) = (I)x — [x)X and ¢.(b) =0 in O, /pN+<M[T(K/k)| ®
G, for all v dividing n. Then

~ o ~(N/+e(n)c) o S‘(lNJre(n)c)b (mod pN)

Therefore, by Lemma 5.3 and ¢.(b) = 0, we obtain

¢1‘(/~€ﬂ,[) = ¢t(/~fn,[/) - 5n¢r(b) =0.

We next consider
¢t (KX /p")X @ Gn — Oy /pV[D(K/E)] ® Gay
which is induced by ¢, : (K*/pN)X — O, /pN[['(K/k)] @ G;.

PROPOSITION 5.5.  Assume that n[ € Nie(n)+1](K) and n{ is well-ordered. Then we have
¢[(/%n,[) = —0ny.

The assumption that n[ is well-ordered does not mean [ € S(K(n)), but means that n[ has
factorization n[ =ty -... - t;,41 satisfying the property in the definition of the well-orderedness
in the beginning of §5.2 (namely, [ = t; for some ).

Proof of Proposition 5.5. We take [' € Sje(n)41)(K(n1)) = Sje(n ) (K (n1)) and consider &y, p.
As in Remark 4.6, using Lemma 4.5, we can take an auxiliary prime [ € Sjen (K (n 1)) and
b e (K* ® Zp)X such that div(b) = (% — k)X, ¢c(b) = 0 for all v dividing n, and ¢((b) = 1 ® oy
which is a generator of O, /p™ [['(K/k)] ® G;. We showed in Proposition 4.2 that &, ¢ does not
depend on the choice of [/, namely we have

Ropy = R — On b — R, @ ¢y(D).
Therefore, using ¢;(b) = 1 ® o, we have
S(Fnrr) = Ot(Ragr) — On( ® 0 — G1(Fn,) @ oy

On the other hand, Proposition 5.4 tells us that ¢((Rn () = ¢((Fn(,v) = 0. Hence we obtain
G1(Fn,t) = =0n( in Oy /PN [T(K/K)] @ Gn .
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5.3. It seems to the author that one can define x,,; and Ky, in a more general setting. In this
paper, we defined these elements under the assumption n[ € Ny (K) (cf. §4.2 and Remark
4.4). This assumption is used to show that K, is independent of the choice of ' and b (cf.
Proposition 4.2).

Suppose that n[ € N(K). Using Lemma 4.5, we can take ' € S(K(n)) and b € (K* ® Z,)X
such that div(b) = (I'%x — k)X and ¢(b) =0 for all v|n. We write the group law of (K* ®
Z/pN)X ® G, additively as before. Can one show that &, — bnb is independent of the choice
of ', and hence of b (by taking [ sufficiently close to [)? If the answer would be yes, we could
define Ky, as Rn,y — Onb.

Concerning this question, currently the author can only show Proposition A.1 in Appendix,
namely he knows the affirmative answer to this question only in the case n is a prime.

Another natural question is the following. Suppose that &, is defined. Can one prove
&1(Fn,1) = —0n(? In this paper, we proved this property only for (n,[) such that [ € S(K(n))
(Corollary 5.2), and for (n,[) such that n[ € Nm)11)(K) and n[ is well-ordered (Proposition
5.5).

6. Elements xy

In this section, we define elements z, ; € (K* ® Z/p™)X and 7, € (K*/pVN)X ® G, forn| €

6.1. We write the group law of (K*/pV)X ® G, additively. We assume that n[ € Niey) (K)
and n[ is well-ordered. Suppose that for each prime t which divides n, an element a. €
Oy /PN [T(K/k)] ® G, is given (we will give a, explicitly later in §9, see the paragraph before
Lemma 9.2). For a divisor d of n, we define a;, by

Ay = Qe|ple € Oy /PN D (K/k)] @ Gy

where for o = t; ...ty we identify (Oy/p" [C(K/k)] @ Gv,) ®0, /p~ (r(5/m)] -+ ®0, /p¥ [1(/k)
(Ox/PN[T(K/K)| ® G, ,) with Oy /p"N [D(K/k)] ® Gy. We put a; = 1. We define &, by

Fng= Y ay @Rz € (KX/pV)X @Gy

oln

where ay @ ks € (Oy /PN [D(K/K)] @ Gy) @0, jpyriryry (KX /pN)X @ Gn = (KX /pN)X @ G,
and the sum is taken over all divisors ? of n including 1. Namely, Z, is defined as a sum of
2¢(") terms.

PROPOSITION 6.1. (0) If p is a prime of K which does not divide n{, it is not in the support
of div(Zy,).
(1) For each prime v dividing n, we have dive(Za,)) = ¢c(Tn ;).
(2) For each prime v dividing n, we have ¢(Zn,) = a: ® ¢c(Tn ;).

Proof. The property (0) is an immediate consequence of Proposition 4.2 (0).
Concerning (1), using Proposition 4.2 (0) and (1), we compute

dive(Zn) = Y a @ dive(Fa ) + Y ap @ dive(fz )
o|n ofn
t|o tfo
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= Z ap @ de(Rn )

on
tfo
= Zaa ®¢t Ky )
ot
= ¢r(z ap @K () =¢e(Tn ).
ot

We next prove (2). Using Proposition 5.4, we have

xn[ Z%®¢r/~i§, Z%®¢r %

on on

t|o tfo
== E aa®¢r l‘%%

on

t|o

Z%®¢r :w))

ot
= Q¢ ® (bt(a?%/[)
Thus, we get Proposition 6.1.

Using Lemma 4.5 as in Remark 4.6, we take [' € Si(ny) (/K (n)) and b € (K* ® Z,)X such that
div(b) = (I — [x)X and ¢¢(b) = 0 in O, /pN <M (K/k)] @ G, for all ¢ dividing n.

LEMMA 6.2.

Gr (Tn,) = Z%@’ 5“r'+5“®¢[/())

on

Proof. As in Remark 4.6, we have Rs | = Rz v — 5 b. Therefore, by the definition of Z,  we
get Tn = Tny — (Xyn 0 ® 5“ )b. By Corollary 5. 2 we obtain

Gv (Tn,0) Zaa®5“['_zaa®5“®¢r’(b)»
o[n on

which completes the proof.

6.2. Recall that we took a generator o, of G, for each vt € S. We define x, | € (K* ® Z/p™)X
by

Ty, = T, @ ®t\n0't-

For [ € S(K(n)), An,; was defined by fn ;= fin; ® @¢noc in §3. For any (n,[) with nie
Nie)) (K), we define ki € (KX ® Z/pN)X by

Kn,t = Kn,1 @ @cn0t,

which is consistent with the definition in the case [ € S(K(n)). We also use an element @, €
Oy /pV [T (K /k)] which is defined by

Ay = aa (024 ®t‘00—t'
Recall that
b s (K™ /pN)* — Oy /p" [T (K/K)]
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is the homomorphism such that ¢.(z) = é.(z) ® o, for all z.
By Proposition 6.1 and Lemma 6.2 we have

PROPOSITION 6.3. (0) If p is a prime of K which does not divide n{, it is not in the support
of div(zy,).
(1) For each prime t dividing n, we have dive(2q,) = ¢ (z2 ).
(2) For each prime v dividing n, we have ¢, (zn ) = Etat(x%ﬂ).
(3) We take " and b as before Lemma 6.2. Then we have

By (Tn,) Zaa 5“[/+5“¢['())

oln

7. Higher Stickelberger ideals

Let K, x,...be as in the previous sections, namely as in §3.1 (recall that we are fixing an
odd character x of A(K/k)), but in this section and the next section we do not assume (*)
in §3.1. In this section, we define the i-th Stlckelberger ideal ©F 5 C O [ (K/E)] of K for all

i € Z>(. More precisely, we define two ideals Gl KX, @XK such that Gl X C ©F . In the case
that K is a subfield of the cyclotomic Zp—extenblon of Ky (namely, K= Kom for some m in
the notation of §1), we will prove that they coincide in §9. In Remark 7.2, we will see that they
do not coincide in general.

7.1. For n € N(K), we consider §, € O, /p" [['(K/k)], which is defined in §3.3 (note that this
is defined without the assumption (*) in §3.1). We note that by definition all divisors [ of
n € N(K) satisfy n; > N. When we would like to clarify this, we write Ny (K) for N'(K). For
1 > 0, we define @g?}(N)’X to be the ideal generated by

(60 | n € Nn(K), e(n) <i}.

We define the small i-th Stickelberger ideal @E:SI)(’X by

)

O ==lim O Clim O /p[[(K/k)] = O\[L(K/k))
In particular, 9(()2?( is the principal ideal generated by 67%.

7.2. We define @ZK by the same method as [10] §3. Let s and r be positive integers, and put
s’ =min{z € Z : s < p*}. We consider a ring

R = O\ [T(K/R)[[S1, ... S]]/ (L + S)P" — 1,1+ S,)P"" —1)

with nl,...,nr 2 N+s —1. Let f= Eih_“irzoail._irSil...Sff‘ mod Z be an element of R

where a;, ;€ Oy[[(K/k)] and Z = ((1+ S1)?"" —1,...,(1+ S,.)P"" —1). Since ord ((p;')) =
ord,(p ""/( ( M) >ni—s +1 for all j with 0<j<p® (1<1<7), considering
the coefficients of the expansion (14 5;)P "1, we know ai,,...;,, mod p? with ¢ =

min{nq,..,n.} — s + 1 and i1,...,i, < s is well-defined, namely a;, ... ;. mod p? is determined
by f. Hence a;, .. ;. mod pY is also well-defined. For i € Zxq and s € Z~q, we define I; 5(f) to
be the ideal of O, /p" [['(K/k)] generated by

{ai, i, mod pV | 0<iy,..,ip <s and 41 + ... + i, < i}.
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Recall that Ky is a subfield of K such that I'(L/k) = Gal(L/Ky) and T'(K/k) = Gal(K/K)).
We define ' by
F' ={Lo| Ko C Lo, Lo/k is finite and abelian, Ly/Kj is a p-extension, Lo N K = K,

and every prime above p is unramified in Lo/ Ko}.

For Lo € F', we put L = LoK, then L € F where F is the set we defined in §3.2. We have a
canonical isomorphism

[(L/k) = Gal(L/Ky) = Gal(L/K) x Gal(L/Lg) ~ Gal(L/K) x T'(K/k).
We fix this isomorphism, and identify O, [I'(L/k)] with O, [I'(K/k)][Gal(L/K)]. For s > 0, we
put
FL={Ly e F'| Gal(Lo/Kp) is of the form Gal(Lo/Ko) =Z/p"Z& ... Z/p""Z
with nq,...,n, > N + s’ — 1 for some r > 0} U {Ko}.
For n € N(K)(= Nn(K)), we have Ko(n) N K = Ko, so Ko(n) is in F/, and is in F{. Suppose
that Lo is in F,, L = LyK and Gal(L/K) = Gal(Ly/Ko) =Z/p™Z @ ... ® Z/p"Z. Fixing
generators o1,...,0, of Gal(L/K), we have an isomorphism
Ox[D(L/k)] = Oy [D(K/k)][Gal(L/ K)]
~ Oy [D(K/R)|[[S1, o S]] /(L4 8P =1, ., (14 8,7 — 1)
where o; corresponds to 1 4+ .5; (1 <1 < r). Weregard 0F € O,[I'(L/k)] (see §2.4) as an element
of the lower right ring, and define I; s(0Y) C O, /p™ [[(K/k)]. It is easy to check that I; s(6})
does not depend on the choice of generators o1,...,0, of Gal(L/K) (see Lemma 3.1 in [10]; note
that the ideal generated by the coefficients of degree ¢ of §F depends on the choice of o1,...0,,
but the ideal Ii,S(H;) does not). We also note that this ideal I; 5(67) depends on the choice of
Ly. We define @ngX to be the ideal of O, /p" [['(K/k)] generated by
{I; s(6%) where L = LoK | Lo € F.},
and @ngK)’X to be the ideal generated by J,, @ff)KX In Theorem 8.11 we prove a relation
between @gf\]f(),x and the Fitting ideals. Finally, we define

OX, x = lignN@fvff,)ié‘, and O = ninNengIQvX C O [T(K /).
Suppose n =ty -... - t; € Ny (K). We consider the isomorphism
Ox[T(E (n)/k)] = O [L(K/R)][[S1, -, Sill/ (L4 1P = 1,y (14 8P = 1)
defined by the correspondence oy, <> 1+ S;. Then by Lemma 4.4 in [10] we have (cf. §3.3)
9?{(:1) = (—1)"0451 - ... - S;  (mod p",S%,...,52).
Hence ¢, is in @E?KX , and we obtain @E?I’{N)’X C @E?KX . Therefore, we have

d),
0)%X C OF, x C OX. (7.1)

/L5

REMARK 7.1. Suppose that Lg is in F" and L = LoK. We write I, for the kernel of the
restriction map Oy [I'(L/k)] — Oy [['(K/k)]. Suppose that iz x : Oy[I'(K/k)] — Oy [T'(L/k)]
is the natural map induced by the homomorphism I'(K/k) — T'(K/k) x Gal(L/K) =T'(L/k).
We define the ideal éf  to be the minimal ideal in

{J : ideal of O\ [T(K/k)] | for any Lo € F', 0% € ir i (J)Ox[T(L/k)] + I} where L = LoK}.
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Then we can prove that ©X Ko = (:)Z Ko.m for Ko, satisfying the assumptions of Theorem 1.4
(in fact, we can show that both are equal to the i-th Fitting ideal of AX ) So we could adopt

the above definition of Gf i as the definition of @f . Our definition of @1 i is more useful for
numerical computation.

REMARK 7.2. In general, we have @(6) X A4 @X . We will give examples for which 9(6) X c
071 i C O] k- For simplicity, we assume Ak =0, AK =0, Ko Nk(up) =k,and [y € S(Ko) isa
principal ideal. We consider K = Ky (lp), so K/Kj is a p-extension such that Gal(K/Ky) = Gy,.
Then by genus theory A}, is generated by one element over O, [['(K/k)] = O, [G,] and A} # 0
(cf. Proposition 5.2 in [9]).

Concerning the Stickelberger ideals, we can first show that for any [ € S(K), ¢, is not a
unit in O, /pN [[(K/k)] = Oy /p™[G,,]. In fact, we put L = K({), Lo = Ko(1),and S =0 — 1 €
Oy /PN [L(L/k)] = Oy /pN[G\, x G{]. We know 0F = —6,S (mod p",S5?) by Lemma 4.4 in [10]
((3.3) in §2.3). On the other hand, by Lemma 2.4 we have CL/Lo (07) = (1 =y )X9§0 where
cr/ro : Ox[L(L/k)] = Oy[G, x G{] — O4[G|] = Oy [I'(Lo/k)] is the restriction map. Since [o
splits completely in Ko, ¢, = (lo, Lo/k) is in Gal(Lo/Ko) = G,. We write cpgl = o} for some
i € Z in Gal(Lo/K() = G;. Combining two equations, we obtain

—cr/L(0)S = (1—(1+ S)i)G’L‘O =—if] S (mod pN, S?).

Applying Proposition 5.2 in [9] (or genus theory) also to Ly, we have A’EO # 0. By Theorem
8.10 in the next section, ff  is in Fittg o [q,)(A],)- Hence, 67 is not a unit. It follows from
the above congruence that cr /1, (d;) is not a unit, which shows that d; is not a unit.

Therefore, we have @1 KX C 04[Gy,] (namely 652( is too small).

Next, we consider @1,K Suppose that [p = (z) for some x € k*. By the Chebotarev density
theorem, we can take t € S such that v is inert in k(¢/r) and no prime above t splits in
Ko/K{. Weput M = K(x), My = Ko(x), S = o — 1, and write ), = ag + a1 S (mod p~, S?)
with ag, a; € Oy/pV[Gy,]. Then we can check that a; is a unit. In fact, since v is inert in
k(¥/x), x mod v is not a p-th power in the residue field of t. By the Artin reciprocity law, we
know that (I, Mp/k) is not a p-th power in Gal(My/k). In the same Way as above, we have
ey (03) = (1 — oy, )XHX where ¢, = (lo, Mo/k). We write o' = of for some j which is
prime to p. By the same method as above we have

ey, (a0 + a1S) = —joy, S (mod pN, 8?).

Since no prime above t splits in Ko/K, we have ALO = 0 by Proposition 5.2 in [9]. Again by

Theorem 8.10 (1), fy, has to be a unit in O, [G:] (because v (%, ) is not a unit). Therefore,

e/, (ao) = 0 and cpg/ag, (a1) is a unit because both j and 65, are units. Hence, a; is a unit.
Since My € F', we obtain

0NN C OY, x = O x = O\[L(K/kK)].

For example, if k = Q, Ko = Q(v—6),p=3, N=1,10="7, K = Ko(lo) = Ko(cos(27/7)),
and x is the nontrivial character of Gal(K,/Q), then all the assumptions we made are satisfied.
We can take My = Ko(tr) with v = 13 € S, for example. In this case, 6%, can be computed as

0%, = —(4T + 4T?) — (14 4 22T + 14T%)S — (8 + 12 + 87?)S?

mod ((1+7)3—1,(1+S)3 —1) where we took 1+ S =0, € G, = (Z/13Z)* ® Z/3Z which
corresponds to 2® 1, and 1+ T =0, € G, = (Z/7Z)* ® Z/3Z which corresponds to 3 ® 1.
In this example, a; = —(14 + 227 + 14T?) is certainly a unit in O, /p™ [[(K/k)].
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8. Fitting ideals

In this section, we describe known facts on Fitting ideals.

8.1. Suppose that R is a commutative ring, and M is a finitely presented R-module. By
definition, we have an exact sequence

R R M —0

of R-modules where m and n are positive integers. (If m < n, using a projection R" — R™,
we can replace the above sequence by the exact sequence R* — R™ — M — 0, so we may
assume m > n.) For an integer ¢ > 0 the i-th Fitting ideal of M is defined to be the ideal of
R generated by all (n —4) x (n — ¢) minors of the matrix A corresponding to f. If i > n, it is
defined to be R. This definition depends only on M and does not depend on the choice of f
(cf. Northcott [14] Chap. 3). The i-th Fitting ideal of M over R is denoted by Fitt; r(M). We
have a sequence of ideals

Fitto}R(M) C Fittl}R(M) C...C FittmR(M) = FitthrLR(M) =..=R.

The 0-th Fitting ideal is called the initial Fitting ideal, and Fitt; r(M)’s with ¢ > 1 are called
higher Fitting ideals.

These ideals give information on the structure of M as an R-module. For example, by
definition, if Fitt, r(M) = R, M is generated by at most r elements.

8.2. In this subsection, we suppose that O is a complete discrete valuation ring, and A = O[[T]]].
Note that this is a noetherian unique factorial domain (Bourbaki [1] Chap. 7 §4 Proposition
8). For finitely generated torsion A-modules M; and My, M is said to be pseudo-isomorphic
to My if there is a A-homomorphism M; — M5 whose kernel and cokernel are both of finite
length as O-modules. This is an equivalence relation of finitely generated torsion A-modules
([22] §13.2). We write M7 ~ M> in this case. If M ~ 0, M is said to be a pseudo-null module.
For any finitely generated torsion A-module M, there is a pseudo-isomorphism M ~ A/(ay) @
...®A/(a;) (Bourbaki [1] Chap. 7 §4 Théoreme 5). In this situation, the characteristic ideal
char(M) is defined by char(M) = (a1 - ... - a,.).
The following lemma is well-known.

LEMMA 8.1. Suppose that M is a finitely generated torsion A-module, and it contains no
nontrivial pseudo-null submodule.
(1) For any surjective A-homomorphism

p: A" — M,

the kernel of ¢ is a free A-module of rank n.
(2) Fittog o (M) is a principal ideal.
(3) Fittg (M) is equal to the characteristic ideal char(M).

Proof. (1) This follows from the fact that the projective dimension of M is at most 1 (see for
example, Wingberg [24] Proposition 2.1).

(2) We have an exact sequence 0 — A" LA M —0 by (1). Hence Fitto (M) is a
principal ideal generated by det A where A corresponds to f.

(3) Since Fitto o (M) is generated by det A, this follows from a well-known property char(M) =
(det A) (Bourbaki [1] Chap. 7 §4 Corollaire to Proposition 14).
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LEMMA 8.2. Let M be a finitely generated torsion A-module such that
M~A/(a1)®...® AN/ (a;) with (a1) D (az) D ... D (a,).

Then Fitt; o(M) = (a1 - ... - ar—;)I; for all i with 0<i<r where I; is an ideal with
lengthy, A/I; < co. In particular, if we know all Fitt; o (M), we get to know all a; (1 < j <r),
namely we get to know the pseudo-isomorphism class of M.

Proof. In general, if there is an exact sequence M; — My — M3 — 0 of R-modules,
we have Fitt; p(M;) Fitto r(Ms) C Fitt; r(M2) by elementary consideration of the matrix
corresponding to Ms ([14] page 91).

Applying this to an exact sequence M — A/(a1) @ ... ® A/(a,) — F — 0 where F is a
pseudo-null A-module, we have

Fitti’A(M) Fitt()’A(F) C Fitti,A(A/(al) D..D A/(ar)) = (a1 C e 'ar,i).

Put f; =ai-...-ar—;. We take an arbitrary x € Fitt; o(M). Since A/ Fittoa(F) has finite
length as an O-module, we can take y1, y2 € Fittoa(F) such that y; and y, are relatively
prime. It follows from the above inclusion that f; divides xzy; and xys, and hence divides =x.
Therefore, Fitt; A(M) C (f;), and we can write Fitt, o (M) = f;I; for some ideal I,. We also
have an exact sequence A/(a1)® ... ®A/(ay) — M — F' — 0 with lengthy F’ < 0o, by
which we obtain

Fitt; A(A/(a1) & ... ® A/(a,)) Fittoa (F') = fi Fitto a(F') C Fitt; o (M) = fi1;.
Hence Fitto a (F’) C I;. This shows that A/I; is of finite length as an O-module.

Concerning the isomorphism class of M, we have

LEMMA 8.3. Let M be a finitely generated torsion A-module such that M is free of rank
2 as an O-module. Then Fitto o (M) and Fitt1 o (M) determine the isomorphism class of M.

Proof. This is [9] Lemma 9.1.

REMARK 8.4. If M is free of rank r with » > 2 as an O-module, Fitt; »(M)’s do not
determine the isomorphism class of M, in general.
For example, consider the A-modules M7, Ms corresponding to the matrices

T? 72 T =2
a=(m ) a=(o 2).

respectively where 7 is a prime element of O. Then both M; and M, are free of rank 3 as O-
modules. Clearly, we get Fitto  (M;) = Fitto a(Ma) = (% — 7°), Fitty A (My) = Fitty A (M) =
(T,7?%), and Fitt; o(M;) = Fitt; o (Mz) = A for all 4 > 2. But M; is not isomorphic to Ms. In
fact, put I = (73, 7T, T?) C A. Then we have length, A/I = 4, lengthy, M1 /IM; =4+ 4 —1=
7, and lengthy My/IMy =4 —2+4 =6.

LEMMA 8.5. We assume that ¢ : A — Oy Is a surjective ring homomorphism such that
Oy is a discrete valuation ring. For a finitely generated torsion A-module M, we define MV =
M ®a Oy and Jiw = (Fitt; A(M)). Then we have an isomorphism

Mw':@sz/JZp—l

i>1
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as Oy-modules. Namely, if we know all Fitt; »(M) for i > 0, we get to know the isomorphism
class of MV for all 1.

Proof. In fact, by the definition of the Fitting ideals, we have J;p = Fitti,o¢(Mw). If
MY is isomorphic to Oy/(a1) @ ... ® Oy/(a,) such that (a1) D (az) D ... D (a,), we have
Fitt; 0, (M"¥) = (a1 - ... - ar—;). Therefore, we obtain the isomorphism stated in Lemma 8.5.

8.3. Let K, Ky, x etc be as before, namely as in §3.1 (but we do not assume (*) in §3.1). From
now on, we also assume that K is in the cyclotomic Zy-extension (Ko)oo of K. We denote by
Ky, the intermediate field of (K¢)eo /Ko such that [Ko ., : Ko] = p™. Our assumption means
K = Ky, for some m > 0. By definition, K = (Ko)oo. We study X}gw = lilnAXK“. Recall
that we assumed p(Xy_) = 01in §3.1. Put A = O\ [[['(K/k)]] = Oy[[Gal(K /Ko)]] which is
isomorphic to the formal power series ring O, [[T']], and we can apply the results in the previous
subsection.

By Lemma 2.4, 05 ’s (€ Oy[Gal(K,/Ky)]) for n > 0 become a projective system and we
define 03 € Oy [[Gal(Ko/Ko)]] = A as their projective limit which is the p-adic L-function of
Deligne and Ribet. Since X does not have a non-trivial finite A-submodule ([22] Proposition
13.28), by the main conjecture proved by Wiles [23] and Lemma 8.1 (3), we know

THEOREM 8.6. (Wiles [23]) Fittoa(Xx_) = (0%_).

For any n € N/, we put K (n) = Kk(n) and consider the cyclotomic Z,-extension K (n)s of
K (n). The element 67 o € Oy [[Gal(K (n) oo /Ko)]] = A[G4] is defined by the same method as
above. For 9 € N diviéing n, we define the norm map

Vyn @ A[Gy] — A[G]

by Yoca,0s0 — Yoca, @oT where 77 = Y ko) =c T (the sum is taken over all 7 € Gy whose
restriction to K () is o). Since Ko (n) satisfies the condition (A,) in [9], we have the following.

THEOREM 8.7. ([9] Theorem 0.9)
FittO,A[Gn](XIX((n)OO) = ({1/07,1(9}(((0)&) |0 € NV, o divides n})

where the right hand side is the ideal of A[Gy] generated by all Vﬁv“w}(((a)m) ’s.

We note that the Leopoldt conjecture is not needed in the proof of the above theorem because
of x # w (cf. Remark 0.11 (1) in [9]). We also note that Fitto (X _) is a principal ideal, but
FittQA[G“](X;X((n)oo) is not principal, in general.

In [4], Greither generalized the above theorem, and determined the initial Fitting ideal
for more general cyclotomic Zj,-extensions. By Greither [4] Theorem 7 (i), Fittoa(X}_) is
determined where L = LoK with Ly € ' (which was defined in §7.2).

In particular, we have the following.

THEOREM 8.8. (Greither [4] Theorem 7 (i)) For any L = LoK with Lo € F’, we have

6 . € Fitto,arcain/x)) (X5 _)-
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Recall that L in the above theorem satisfies the condition that all primes of K., above
p are unramified in L.,. If we remove this assumption on the unramifiedness, there exist
counterexamples of the above property ([5] Theorem 1.1).

8.4. We next study A%, and AY for L € F.

LEMMA 8.9. The norm map induces an isomorphism
(X¥ eal(Lo/L) — A%

for any L € F.

Proof. In fact, by our assumption that x(p) # 1 for all primes p of k above p, we have
(D, Zp)X = 0 where v ranges over primes of Ko above p. Hence we also have (D, |, Zy)X =0
where w ranges over primes of L above p, and (B,,, fw(Lo/L))* =0 where I,(Loo/L) is
the inertia group of w in Gal(Ls/L). Therefore, by Proposition 5.2 in [9], we get the above
isomorphism.

Suppose L € F. For a prime p of k above p, by our assumption x(p) # 1, 1 — x(p)~!is a
unit of O,. Hence, if p is unramified in L, (1 — ¢, ") is a unit of O, [['(L/k)] where ¢, is the
Frobenius of p in Gal(L/k). Therefore, by Lemma 2.4, we have

CLo/L0r.) = uby

for some u € O [I'(L/k)]*.
Put Rx = Oy [['(K/k)]. For n, 9 € N with 0 | n, we define the norm map v, » : Rg[Gy] —
Ry [Gy] by the same method as above, and consider 1/07,1(9’;((0)) € Rik[Gy] = Oy [T(K (n)/k)].
In general, for any ideal I of R and an R-module M, by the definition of the Fitting ideals,

Fitt; g/ (M/IM) = Fitt; r(M) mod I C R/I

holds. Therefore, using Theorems 8.7, 8.8 and Lemma 8.9, we obtain

THEOREM 8.10. (1) For any n € N, we have
Fitto, ryc (G (AR () = {Von(Ok(y)) [0 €N, 0 divides n})

where the right hand side is the ideal of Rk [Gy] = Oy [['(K (n)/k)] generated by all 1/07,1(9}“((0)) ’s.
(2) For any L = LoK with Ly € .7:/, we have 9)5 S FittO,RK[Gal(L/K)] (A%)

8.5. Let K be as above. We defined @sz in §7.2. In this subsection, we prove

THEOREM 8.11. (cf. [9] Theorem 8.1) For any i > 0, we have

O\ X C Fitt, g, jpv (A% /pY) and ©), C Fitt g, (A)).

Proof. This is essentially Theorem 8.1 in [9]. Suppose that L = LoK with Lo € F. for some
s>0,and Gal(L/K)=Z/pmZ & ... ® Z/p™Z for some r > 0. Put G = Gal(L/K). We take
generators o1,...,0, of G, and identify O, [I'(L/k)] = Rk [G] with

Ri([S1,- S/ (L S0P =1, (14 8,7 — 1)
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by 07 < 1+.5; (1 <1<r). By the definition of F. and the consideration in §7.2, we have an
isomorphism
RK/pN[G}/(Serla ey SﬁJrl) = RK/pN[[Slv sty ST]]/(Sf—Ha 3% SﬁJrl)'
We regard A% as an Ry [G]-module, on which G acts trivially. Let Rf %+ RE, — A% — 0
be an exact sequence of Rg-modules, and B be the matrix with m columns and n rows

corresponding to g. We have an exact sequence Rp[G]"H" 2= Rg[G]" — A% — 0 of
Ry [G]-modules where g’ corresponds to the matrix

St ... S ... .. 0 .. 0
o .. 0 .. .. 0 .. O
B
o .. 0 .. .. S5 .. &8,
Then we know from the above matrix that
Fittg RK[G ZFlttz RK (Sl,...,S )l

Since we have a surjective homomorphism A’L< — A% of Rig[G]-modules ([9] Lemma 5.1 (1)),
we have

Fitto gy (e (AY) C ZFlttz R (A)(S1, o0y S
This implies

n
Fitto, (o) (AY) mod (pV, S5, .., S5F1) © > Fitt; gy v (AX /DY) (St 00, Sr)'
i=0
in Ry /pV[[S1, ... S]]/ (S5, ..., S571). By Theorem 8.10 (2), we have 6 € Fitto g, (q)(A}),
hence we obtain I; ;(%) C Fitt; gy /pv (A% /pN). Thus, we have

N), .
O C Fitt; e s (A /pV).
Since
Fitt; g, (A%) = lim  Fitt, g, /,n (A% /p"),
“— N

from the definition of ©) ;- we obtain the conclusion ©) ;- C Fitt; g, (A%).

We define the Stickelberger ideals over Ko, by
GE(SI)(’X = lim@gf}(’: and ©Ffx =1limO}

From the inclusion @E I)<X C Ok, , we know @Eél)(i COf k. CA

COROLLARY 8.12. For any i > 0, we have
s .
0% C Ok CFittia(X%).

Proof. Suppose that O—>A”L>A”—>XIX<OO — 0 is exact, and =, is a genera-
tor of Gal(K./Kp). Then by Lemma 8.9 f mod «, —1 yields an exact sequence

Oy [T(Kpm/k)|™ fmodypm—1 O [T(Ko /k)]" — A% — 0. Hence we have
Fitti,A(X;gw) = liin Fitti,ox (Ko /K)] (A}C(n).
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Therefore, Theorem 8.11 implies Corollary 8.12.
Concerning the commutativity of projective limits with Fitting ideals in a more general
setting, see [5] Theorem 2.1.

9. Proof of the Main Theorem

In this section, we prove Theorem 1.1. In order to get the equality of two ideals, since we saw
in the previous section that one inclusion holds (Corollary 8.12), we have to prove the other
inclusion. Using z, in §6, we will construct elements in the multiplicative group which give
relations approximating submatrices of a relation matrix of X IX(OO' The properties of Kolyvagin
systems ((iii) and (iv) in §0; more directly Proposition 6.3) play an important role (see Lemma
9.2 which is a key lemma).

9.1. For each [ € S, using the prime [ we fixed, we regard p,» C % asa subgroup of E[X for all
n > 0 where k is an algebraic closure of k;. We fix a generator (,n € p,n for all n > 0 such that
(Gpn+1)P = (pn. For each [ € S, we take oy € G| to be the element such that Kum(o() = (pn
where Kum is the map defined in §2.3.

In the proof of the main theorem, we need the following lemma which is Rubin Theorem 3.1
in [15] combined with Lemma 4.5.

LEMMA 9.1. Assume n=r1t;-...-t, € N(K) and [ € S(K) is prime to n. Suppose one
is given o; € O, /pN[['(K/k)] @ G, for each i =1,...,m, a finite Gal(K/k)-submodule W of
(K> /pN)X, and a Gal(K/k)-equivariant homomorphism

AW — O, /p"N [T(K/k)].

Then there are infinitely many ' € S(K (n)) which satisfy the following properties.

(i) The class [[)s]X in A}, coincides with the class [[k]X.

(ii) For the element z € (K* ® Z,)X such that div(z) = (I — k)X, ¢v,(2) = 0; holds for each
i =1,....,m.

(iif) W is in the kernel of divy : (K* /p™)X — O, /p™ [['(K/k)], and we have \(z) = ¢ (z) for
allz e W.

Proof. We follow the argument of the proof of Rubin [15] Theorem 3.1, and our proof is a
modification of [15] Theorem 3.1. So the reader who is not familiar with this kind of proof
should consult the proof of [15] Theorem 3.1. Put G = Gal(K/k). We define ¢ : Z/pN[G] —
Z/p" by a1lg + > g#1099 — a1. Then f v o f defines an isomorphism

T : Homg, v ) (M, Z/p"[G]) = Hom(M, Z/p")

for any Z/p"[G]-module M. In fact, f +— (z+ Yocaf(ox)o~!) gives the inverse of Z. Let
¢y~ be the primitive p¥-th root of unity we fixed. We regard W as a Z/p"[G]-module,
Oy /PN [L(K/k)] as a direct summand of Z/p™[G], and A as a map from W to Z/p"[G]. We
define X' : W — p,v by X (z) = p_N(LOA)(x).

Consider the Kummer pairing

N
Gal(K (1 WP ) [ (o)) % W — iy

which is non-degenerate because of the injectivity of (K> /p™)X — (K (u,~)* /p™V)X. (Here,
we regard x as a character of A(K(u,~)/k) using the natural restriction A(K (p,~)/k) —
A(K/k).) Using this pairing, we regard X’ as an element of Gal(K(upN,Wl/pN)/K(,upN)).
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Let K {n}X be as in the proof of Lemma 4.5, and let ¢ and k(fz,n+1,U*/P") be as in the proof
of Lemma 2.1. We consider the compositum

L' = K {n}XK (n) (g UMP" WHPY),
The Galois group Gal(Ko(u,)/k) acts on Gal(K{n}X/K) via x, acts on Gal(K (n)(pyn+1)/K)

via the trivial character, acts on Gal(K (ppn,U"/?")/K(um)) via w, and acts on
N . — n

Gl (e, W7 ) ) vin x o Hemee K (P (g ), K (0) ). K (o), K (g UV,
and K (p,n, WYP") are all linearly disjoint over K (i, ). Hence, as in the proof of Lemma 4.5,
we can apply the Chebotarev density theorem to L/, anl(vi obtain infinitely many ' € S(K (n))
having the properties (i), (i) and ([ K(upn)’ K (ppn, WHYPY K (i) = N

Since [’ is unramified in K (p,n ,Wwi/pY ), W is in the kernel of divy : (K*/pV)X —
Oy /PN [T(K/k)]. We write ¢y = ([K(Mn)7 (1tpn Wl/pN)/K(/,Lpn)). For any € W, we have

a2 PN VN (1) NGH-1
Cp—N(LoA)(x) N =2 (*vz) _ (") N

= =X p

Y T p%

- Let ¢k, 3 P K v Gy ® Z/p" be the reciprocity map,

where the congruence is mod [}, K(upn)

and Kumy) be the map defined in the proof of Lemma 2.2. Then by (2.1) we have

7N([ )—1

(Kumy) 0 6xc, (@)=~ =0

mod [IK(upn))'
Since Kumyy (o) = (,~, we have
Ox,, () = oV = (Lo N)(@) oy

Since (1o ¢p)(2) ® oy = ¢, (z) and T : f+— vo f is an isomorphism, it follows that
K

This completes the proof of Lemma 9.1.
9.2. In this subsection, we prove Theorem 1.1.

Step 1. (Preliminary argument on a minor of a relation matrix of X IX(&)
By Lemma 8.1 (1), there is an exact sequence

0— A" Loam Loxx o, (9.1)

Let A be the matrix corresponding to f. Consider the matrix A; which is obtained from A by
eliminating the ni-th row,..., the n;-th row and the mq-th column,.. the m;-th column (A; is
an (n —4) X (n — ) matrix). Our aim is to prove that det A; is in @

We put Ag = A. By the main conjecture proved by Wiles (Theorem 8 6) we know (det Ag) =
(0%_). Thus, for i =0, @ééi(x = (det Ap) holds. In order to make our argument simple, we
take the above exact sequence (9.1) such that det Ay = 0% . We also note that det Ay # 0.
Suppose ¢ > 1 in the following. We will prove det 4; € 955)1 by induction on i. First of all,
since 0 € @}7 k.. 1s clear, we may assume det A; # 0. Furfherlrnolre7 by changing the order of
my,...,m; if it is needed, we may assume det A,. # 0 for all r such that 0 < r < . In fact, let B
be the (n — i+ 1) X n matrix obtained from A by eliminating the ni-th row,..., and the n;_1-th
row. For [ such that 1 <[ <, we denote by B; the matrix obtained from B by eliminating
the m;-th columns for all j such that 1 < j <4 and j #1{. If det B; =0 for all [ (1 <1 <3),
the rank of B; is equal to the rank of A; which is n — 7, so rank B = n — ¢. This shows that
rank A <n —1i+14—1=mn—1, which implies det A = 0, and we get a contradiction. Therefore,
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one of det B; is non-zero. Replacing m; with m;, we get det A;_; = det B; # 0. Proceeding in
this way, we can take A, such that det A, # 0 for all r such that 0 < r <.

Step 2. (Definition of a homomorphism [3,.)
Taking m sufficiently large, we may assume that all primes of k£ above p are ramified in Ko,
and all primes of Ky, above p are totally ramified in K. We take positive integers N, such
that N,, — oo as m — oo. To simplify the notation, we put K = Kg ,,, N = N,,. Note that K
satisfies the conditions of §3.1 including (*), and we apply the results in §1 — §8 for K and N.
Put Rx = O, [I'(K/k)] = O[Gal(K/Ky)], and denote by ~,, a generator of Gal(K/K) =
Gal(K oo /Ko,m). Since (X[X(&)GM(KDO/K) ~ A% is bijective by Lemma 8.9, it is finite. Therefore,
Ym — 1 is prime to char(Xy ), and Gal(Ko /K )-invariant (X )Gal(K‘”/K) vanishes. Hence,
taking Gal(K /K )-coinvariants of the exact sequence (9.1), by Lemma 8.9 we obtain an exact
sequence

0 — R —>R” g — A% —0 (9.2)

where f corresponds to the matrix A mod ~,, — 1.
Let (er)1<r<n be the standard basis of A™ in the exact sequence (9.1), and deﬁne c1 =

g(e1),.. = g(e,) which are generators of X% as a A-module. We denote by ¢ ™) the
image of cT in A%. The image of e, in R} will be denoted by the same notation e,. Hence we

have g(e,) = cim) € A} for all r. Recall that we defined the set Sp;_1j(K) in §4.2. We define
Qr = {1€ Sjn(K) | [tx]* = ™}

for each r where [[x]X is the class of [k in A}. By the Chebotarev density theorem, @, is
an infinite set. We define Q = {J,<,.«,, @r. Let Qx be the set of primes of K above @), and
D=6 pcq@x L+ p be the subgroup ‘of Divg consisting of all divisors whose supports are in Q.
We have a natural surjective homomorphism

a: (D®Z,)X — R

defined by [(x]X — e, for each [ € Q, and each r with 1 <r < n.
Let K denote the preimage of (D ® Z,)X under the map (K> ® Z,)X i, (Divg ®Z,)X. The
exact sequence in Lemma 3.1 yields an exact sequence

0— K- (D®Z,)X — AY — 0.

The homomorphism « induces a surjective homomorphism 3 :  — R} such that the diagram
of exact sequences

0 — Kk % Dez)x — ALY — 0
I
o — Rp L Ry T AL — 0

commutes. We define
By =pr,of: K Ry P Ry

to be the composition of 8 with the r-th projection.
Taking mod p" of the natural homomorphism K — (K* ® Z,)X, we consider

K/pY — (K> /p™)X.

This is injective, and the image coincides with the preimage of (D/p™)X under the map
(K> /pN)x A, (Divg /pN)X. These properties can be checked by diagram chasing of the
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commutative diagram of exact sequences

0 — ALPM —  KpY E DpN)x — ALY — 0

l- | ! l-

0 — ARV — (KN T Dive pN)X — AN — 0
where the map (D/pN)X — (Divg /pN)X is injective. Using the above map K/p" —
(K> /p™)X, we identify K/p" with the preimage of (D/p™¥)X under the map div.

For each r with 1 <7 <n, we consider 3. mod p": K/pY — Rx/p" which we denote
simply by ;.

Step 3. (Definition of z, . and a key Lemma 9.2)

For any n € -/\/[1‘71] (K) whose prime divisors are all in @, Qn x denotes the set of all prime
divisors of K dividing n. We define D,, = ®peQn,K Z - p which is a subgroup of D, and K, n
to be the preimage of (D,/p™)X under the map div : K/p" — (D/p™)X. Note that K, y is a
finite submodule of (K> /p™V)X.

Recall that we are studying A; which is the matrix obtained from A by eliminating the ni-th
row,..., the n;-th row and the mi-th column,..., the m;-th column. We choose n;41,...,n, such
that {n1,...,n,} ={1,...,n}. We take [, € @y, for each r with 1 <r <n, and fix them. Put
L= Ip. Inthecasei =1, weput n =n; =1 and [ = [;. Suppose ¢ > 2. We consider K¢ n
and

By : Ken — R /pY.

Applying Lemma 9.1, we can take v2 € S(K(£)) such that va € Qn,, t2 # 2, and B, () =
¢, (x) for all z € K¢ . For any 7 such that 2 < <i+ 1, we take v, by induction on r. Put
N,._1 = tg-... - t,._1. We consider

ﬂmr_l : ICSnT_l,N — RK/pN-

By induction on r, using Lemma 9.1, we take t, € S(K(£n,_1)) such that

(I) v € Qn, and t, # [,
(II) for the b, € (K* ® Z,)X such that div(b,) = (vr x — lr,x)X, ¢ (br) =0 holds for any s
such that 2 < s < r, and
(II1) B, _, (z) = ¢, (z) for all z € Kgn,_, N.
Thus, we have taken to,...,t;11. (Note that t; is not defined.)

In the case ¢ > 2, put [ = [;, and n =n; = ta-... - t;. In §6, we defined the element z, ; which
is determined if a. is given for each v dividing n. For each v, with 2 < r <, we take

ar, = ¢r, (br)

to define x, . In the case i =1, Ty = Tn, = Z1.( = K1, = gX. Since kn ’s are all in K/p™
N » T 10 N A= 9 oy )
Ty, is in K/pV.

LEMMA 9.2. (i) For r such that 2 <r <4, let 3,,. , be the map defined in Step 2. Then
we have

By (xn,[) =0
for any r such that 2 < r < 1.
(ii) Let aj = prjoa: (D/pN)X = (R /p™ )" 2, Rr /pYN be the composition of a with the
j-th projection. Then we have

a; (diV(l‘m[)) =0

for any j such that j # ny,...,n;.
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Proof of Lemma 9.2. Since z, is a unit outside n[ (Proposition 6.3 (0)), (ii) is immediate
from the definition of z, (and the above property (I)). We will prove (i). For any r such
that 2 <r <4, let b, € (K* ® Z,)X be the element such that div(b,) = (¢, xk — [,k )X. By the
definition of «, we have a(div(b,)) = 0, hence we know from the definition of § that 5(b,) =0
for any r such that 2 <r <i. Put

—&T(x%,
T = Ty (br T

It follows from 3(b,) = ... = 5(b;) = 0 that
ﬂmTfl (xﬂ,[) = 577%71 (.’t)
By Proposition 6.3 (1), we have dive,_(z) = &, (xa ) — be. (zn ) =0 for any s such that r <

[) 75177;(1;—‘_,1)
..., L

(2

5 < i. This shows that div(z) € (Dgn,_, /p")X, which implies 2 € Kgn,_, n. Hence, applying
the above property (IIT), we obtain

6mr—1 ('r) = ¢rr ('r)
By the above property (II), we have ¢, (by41) = ... = ¢,, (b;) = 0. Therefore, we get

— — 7$t7. (‘Tr‘—‘,[)
e, (2) = &r, (Tn,ibr T

Now, using Proposition 6.3 (2), we have

(zn

_ TN _ _
¢tr (xﬂ,[bT o ) = ¢t7.(b’f’)¢t7. (‘rﬁ,[) - ¢t7. (‘rﬁ,[)astr (bT) =0.

Therefore, we have obtained 5y, _, (zs,) = 0, which completes the proof of Lemma 9.2.

tr

Step 4. (Approximation of the minor det A;)
We go back to the proof of Theorem 1.1. Since z,( is in Kgn, N, We note that we also have

B (1':1,[) = ¢ri+1 (xn,[)
by the property (III).
Put x = B(zn,) € (Rx/p")" and y = a(div(zn,)) € (Ri/pY)", which we regard as column
vectors. Since Ry /p™ = A/(ym — 1,p"V), we have

Ax=y (mod (ym —1,p™)).
Let x' € (Rg/p™)" ! be the vector obtained from x by eliminating the mi-th row,...,and
the m;_1-th row, and y’ € (Rx /p™¥)" ! the vector obtained from y by eliminating the ni-th

row,...,and the n;_1-th row. It follows from Lemma 9.2 (i) that the m,-th row of x is zero in
RK/pN for all r such that 1 < r < i — 1. Therefore, we have

Ai_lx/ = yl (mOd (’Ym - 17pN))

If i > 2, the n;-th component of y is ¢, (o )= &, (zn,_,,1) by Proposition 6.3 (1). Hence,
if the n/-th component of y’ is the n;-th component of y, by Lemma 9.2 (ii) we have

yl = ati (xﬂz‘fl,[)en;

where e, denotes the nj-th standard basis vector of (R /pN)" =L We saw B, (Tn,) =
6‘77’,4—1 (xn,1) above. Therefore, the m;-th component of x is atiH (@n,1). We suppose that the m/-th
component of X’ is the m;-th component of x. Let Adj(A4;_1) be the matrix of cofactors (namely,
the (s,t) entry of Adj(A;_1) is (—1)5*! det P;s where Py, is the matrix obtained by eliminating
the ¢-th row and the s-th column of A;_1). Multiplying both sides of 4;_1x’ = at (anl?[)en;
by Adj(A;—1) on the left, we get /

(det Aifl)xl = ati (xn,;_l,[)Adj (Aifl)en{i .
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Hence we obtain

(det Ai—l)ati+1 (xn,[) = (_1)n:+m; (det Ai)atz (l'm717[) (mOd (’}/m - LpN))

Recall that n = n;. We are not concerned in the sign problem, and write the above equation as
(det Aifl)ar,;_u (mﬂm[) = i(det Al)ar, (mﬂi—l,[) (mOd (’ym - ]-apN))' (93)

If i =1, since 1, = g[K, the nq-th component of y is 0%, and y = 6%-e,,,. Therefore, by the
same method as above, we obtain

(det A)B, (2ny.0) = (1) ™ (det A8 (mod (3 — 1,p™)). (9.4)

In order to clarify that we are working over K = K ,,, we write atiﬂ (@n;,1)m for atiﬂ (@n;,0)-

LEMMA 9.3. For i > 1, the limit Ofati+1(‘rni7[)m exists in A as m goes to co. (Namely, if
Geyyy (a1 € Nis a lifting of ¢, (n,,)m € A/ (PN, ym — 1), lim o, (Tn,1)y, exists.) We

denote the limit by lim 5ri+1($ni7r)m~ We also have

lim 5ti+1(xni7[)m = ddet A; € A.
m—0o0

Proof of Lemma 9.3. Recall that we took Ay such that det Ag = 9}200 in the beginning of

this subsection. We have lim 6} =6 = det Ag. Hence the above congruence (9.4) on
m— o0 ,m =]

@, (Tn,,() implies that the limit of @, (#n,,)m exists, and

lim ¢, (Tny,()m = £ det 4

m— 00

because det Ag # 0. For general i > 2, by the same method as for i =1, using (9.3) for
¢, ,, (Tn;,1) and induction on 4, we get

det Ai,1 lim 51'141 (mni,[)m = +det Ai det Ai,1

(we note that the sign does not depend on m). Recall that we took A, such that det A, # 0
for any r with 1 <r <. Therefore, the limit of ¢, (zn,,)m exists, and we get

im @, (@n,)m = £ det A;.

m— 00

Step 5. (Final step of the proof of Theorem 1.1) _
We now prove Theorem 1.1. Put I,, = (p¥™, v, — 1), and &, = qbtiﬂ(x%[)m € A/I,,. Note
that (&)m might not be a projective system (namely, (&,)m € limA /I, might not hold).

Since &, converges, the image &, ,, of &, for sufficiently large n > m under the natural map
Tn,m @ AJI, — A/I,,, does not depend on the choice of n. We denote it by &/,,. If the following
Lemma 9.4 holds, applying it to &, € A/I,, we have &, € eg?kl\é)éx. Since an(@E(SK]X”)X) C
@Eéj(]\;”;)’x, & =& is in GEBI’(]XTJ’X. By the construction of £, (£/,)m becomes a projective

system. Hence we obtain (£,)m € limGEi’(I\;":n)’X = 9562{:3 This shows that
det A; =+ lim &, =+ lim &, € V)X
m— o0 m— o0 oo

Therefore, we have

Fitt; o (X)) C O00X.
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Combining the above inclusion with the inclusions 9(6) X C O} k.. C Fitt; A(X_) in Corol-
lary 8.12, we get

Fitt; A (X)) = 0% =Y, . (9.5)

Therefore, our final task is to prove

LEMMA 9.4. For any i > 1, amﬂ(xni Om IS in @géK]Z’:L)

Proof of Lemma 9.4. To simplify the notation, we again write K = Kom, N = Ny, n =n;, and
P, (n,) = Gy (%n;,1)m- Applying Lemma 9.1 to the map Gepy  Kntn — Ry /p™, we can
take [ € @, which satisfies the properties stated before Lemma 6.2, and

beryy (@) = 0y (@)

for any x € Ky n. In particular, we have

ariﬂ (Tn,) = 5[/ (Tn,1)-
Let b € (K* ® Z,)X be the element such that div(b) = (I'x — x)X. By Proposition 6.3 (3), we
have
Ew(xn,r) = 5[ (Tn,1) Z% 5“ v+ 5“¢v( )
on
Since €(3) < €(31') < €(nl’) =i for any 0 (€(n) is defined in the beginning of §4.2), both 0= s

(N)x

and 5n are in ©; . Hence we get

- 4,N),
¢ti+1 (xn,[) € eg,K )X'

This completes the proof of Lemma 9.4 and Theorem 1.1.

9.3. In this subsection, we prove Theorem 1.3 and Corollary 1.4.

We first prove Theorem 1.3. Let 7y, : A — Rk, be the natural map for any m > 0. By
Lemma 8.9, we have ,, (Fitt; A(Xy_)) = Fitti ry, . (AXKO77H). Since ﬂm(G)gfsl)(’fo) @(6) ffm by
definition, using (9.5) in the proof of Theorem 1.1, we have

. . 5), 3),

Fitti rye, | (A, ) = T (Fitti A (XX ) = 7 (0 ) = mm(OF0X) C OFRX € OFy, .
The last inclusion is (7.1) in §7. On the other hand, we have the other inclusion ©} Kom C
Fitt; ry, . (Ak, ) by Theorem 8.11, so we get the equality Fitt; r.,  (Ak, )= 6§6I)<3<m =
O gy - ’ | |

,80,m

Next, we prove Corollary 1.4. Since we have shown 7, (0} ) = O}, .~ above, ©XY is the

Tm

image of @zf k., under the map A — Rk, , 2, Oy - Therefore, Corollary 1.4 is an immediate
consequence of Theorem 1.1 and Lemma, 8. 5.

9.4. Finally, we give two remarks in this subsection.

REMARK 9.5. We give some examples of numerical computation. Take k= Q, Ky =
Q(v/—2437), p=3, and x to be the character associated to Ky. Then all the assumptions
of Theorem 1.1 are satisfied. We identify A with Z,[[T]], using the correspondence between
~v and 1+ T where 7 is the generator of Gal(K/Kp) such that x(y) = 1 + p where & is the
cyclotomic character. It is easy to check that the A-invariant of the p-adic L-function 0% is
2, and Ak, = (Z/3Z)®2. We have Fittq o(Xk. ) # A because Fitty z,(Ax,) = (3) # Z3 “We
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regard 0y, = 0y (T) as an element of Z3[[T]], then we have ords(f%_(0)) = 2. For a prime
¢ such that l= 1 (mod p?), Ko(f) denotes the maximal p-extension of Ky in Ko(ue), and
Gy = Gal(Ky(¢)/Kp). We consider 9’;(0(@00 € A[G/], and write

0%y =06 + 0 (00 = 1) + 657 (00 — 1)% +

where 6§£) € A for i > 0. We compute the image 6. of 6{” in A/(9,T?) = Zs[T]/(9,T?), and
obtain

699 9743 and 00 =77

Hence Theorem 1.1 implies that Fitty a(Xx. ) mod (9,7?%) contains 27 + 3 and 77. This
shows that the image of Fitt; A(Xk. ) in A/(p?,T?) contains (3,7), which implies that
Fitt1 A (Xk..) D (3,T). Since Fitty o (X, ) # A, it follows that

Fitty o (Xx_) = (3, 7).

By Lemma 8.3, the information that Fittoa(Xr, )= (0)_), Fittia(Xk,) = (3,T), and
Fitto A(Xk.. ) = A determines the isomorphism class of X}gw (Concerning relation matrices
of X, see [9] Lemma 9.1).

For Ko = Q(v/—6226) (resp. Q(v/—6910)) and p = 3, the A-invariant of ) is also 2, and
Ag, = (Z/3Z)%%. We can also compute

s =3 and 6% =27 +3

(resp. (5519) =3T+3 and 5%37) =17T).

Therefore, we get Fitt; o (Xx_ ) = (3,T) in these two cases, too. Hence the isomorphism class
is also determined by these data. In [7], Koike determined the isomorphism classes for many
numerical examples, but in these two cases (Q(v/—6226) and Q(1/—6910)) the isomorphism
classes were not determined by his method.

REMARK 9.6. Using the theory in this paper, we can compute in several cases not only
the Fitting ideals but also the matrix corresponding to f in (9.2) in §9.2. We will give a simple
example.

Suppose that K = Ko m, 12 € Njg)(K) and [ € S(K(I1)). We assume that dy, (, is a unit in
Ry /pY. (The numerical computatlon of 0y is easy in general.) Then Fitty g, (A)%) = Rk by
Theorem 1.3, and A%, is generated by two elements over Ry (cf. §8.1). Assume further that A%
is generated by [[1]X and [12]X. Then K, , v is a free Rx /p™-module of rank 2, and #y, 1, f1,.1, is
a basis of IC, 1,,n. In fact, by Propositions 5.4 and 5.5, we have ¢[ (Fiu) = 0,0, (k) = 5[1 I
&, (i) = 61 1, and @ (K, ) = 0. This shows that ¢, @ ¢, : Ky, p,n — (Ri/pY)®?is an
isomorphism, and Ky, ,, Kr,,;, is a basis of KCf, (,,n. Consider the exact sequence

di
Ki /0 =5 (Dy o /oY) — A /p™ — 0.
Using the basis ky, (,, i, We can compute the relation matrix of A% /pY to be
( oulgiy) o )
5[1 ¢[2 (g[1 )

by Proposition 4.2. Note that the entries of the matrix are numerically computable in principle
if £ = Q. This is also an example in which both x, , and x,,, play important roles.
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Appendix A

In this appendix, we prove the following proposition.

PROPOSITION A.1. Suppose that t, | are two distinct primes in S(K). We take [' €
S(K(v)) and be (K* ® Z,)X such that div(b) = (s — (k)X and qb(n')( b) =0 where A
(K> /p™)X — O, /p™ [T(K/k)] ® G is the map defined by taking N = n.. Put R = Ry, —
gtb, Then R, does not depend on the choice of ['.

Proof. Put L = K(t) and G = Gal(L/K). Suppose that we take two primes [y, [z € S(L) such
that there exist by, by € (K™ ® Z,)X with div(b;) = ((;)k — (k)X and qbrn‘)( bi) =0 fori=1,
2. Put b = by /b2. We denote by K{t}/K the maximal abelian p-extension which is unramlﬁed
outside t. Consider the x-component Gal(K{t}/K)X of the Galois group, and define K {t}X to
be the intermediate field such that Gal(K{t}X/K) = Gal(K{t}/K)X. We denote by L’/L the
maximal unramified p-extension such that L'/ K is abelian and A(K/k) acts on Gal(L'/L) via
X Then we have a canonical isomorphism Gal(L'/L) — (A} )¢. Since the ramification index
of a prime above v in L/K is p™* and the ramification index of a prime above t in any abelian
extension M/K is < p™, LK {t}X/L is unramified above v and so unramified everywhere. Hence
the restriction map

Gal(L'/L) = (A})¢ — Gal(K{t}X/K)

is bijective.
Put ¥ = (([[,. £ JUk. x @D, . K /Uk,) ® Z,)*. We consider the commutative diagram

(L* ©Zy))e 5% ((Divy©Z,))e — (AN)q 0
[ u I
0 — (K*®Z,)X -5 — Gal(K{t}X/K) — 0

where 4 is the natural map which is injective because of (O} ® Z,)X =0, and 1 is the map
induced by the norm map. Since qbrn‘)( b) = 0, the v-component of i(b) € ((I[, KY/Ug. x
@Mt K)/Uk,) ® Z,)X is trivial for all v | v. Hence i(b) is in the image of 1. Therefore, by
the above commutative diagram, there is a € (L™ ® Z,)X such that Ny, (a) = b and div(a) =
1,z — 2, +(0r — 1)z for some = € (Divy ®Zy)X.

We have div((gf /gf)(0Fa™")) = —0F (0 — 1)z. Hence
2 (9371))) = ~Dlo — 1)z = (N, ~ "y

[2

By Lemma 2.4, we have N.0F = (1— ¢;1)0% N, =0, hence div(D ((gh/g[z)(ex ) =
—p™@Fx holds. We take g, € (L* ® Z,)X such that div(g,) = 0Fx. This is possible because
0¥ AY = 0. Thus, we have div(D ((gh/gb)(GX 1)) = —div(g2""), which implies

div(D.(

g[ — —phr
—F(Oa™)) =g;"

(2

D.(

L
n (L* ® Z,)X by Lemma 3.1. It follows that Dt(z%) = D.0a in (L* ® Z/pN)X. Hence we
2
have in (L* ® Z/p™ )X
Kt,ll b

DHXa—(SNa—(Sb—(S(
Ry (o bo

)-
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Therefore, we obtain

in

Pr

11.

12.
13.

15.

16.

17.
18.

19.

So®

Ke,in _ Ky, lp

Scbi ebo

(K* ®Z/pN)X. This implies & — Seby = Re iy — S¢ba, which completes the proof of
oposition A.1l.
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