Discrete mean formulas and the Landau-Siegel zero

Yitang Zhang

Department of Mathematics University of California at Santa Barbara USA

December 9, 2021

Yitang Zhang (UCSB)

Discrete mean formulas and the Landau-Si

December 9, 2021 1/10

• □ ▶, • □ ▶ • □ ▶ • □ ▶

Let χ be a real primitive character to the modulus *D*. It is known that the Dirichlet *L*-function $L(s, \chi)$ has at most one real and simple zero $\tilde{\rho}$ satisfying

 $1-\tilde{
ho}\ll (\log D)^{-1}.$

Such a zero is called the Landau-Siegel zero. The typical methods to determine zero-free regions for Dirichlet *L*-functions are unable to eliminate the Landau-Siegel zero for an intrinsic reason. On the other hand, many consequences can be obtained if the Landau-Siegel zero really exists, some of which could be too strong!

A (1) > A (2) > A (2) >

Relations between the non-existence of the Landau-Siegel zero and other questions in number theory were investigated by several authors. For example, Goldfield discussed the relation between the non-existence of the Landau-Siegel zero and the order of zeros of the function $L_{F}(s)L_{F}(s,\chi)$ at the central point, where E is an elliptic curve; Iwaniec and Sarnak discussed the relation between the non-existence of the Landau-Siegel zero and the non-vanishing of central values of a family of automorphic L-functions. Motivated by their work, we discuss the relation between the non-existence of the Landau-Siegel zero and the distribution of zeros of the function $L(s, \psi)L(s, \psi\chi)$, with ψ belonging to a large set Ψ of primitive characters, in a region Ω .

< 口 > < 同 > < 三 > < 三 > 、

Heuristic arguments

Let c_1 , c_2 and c_3 be constants > 1. Write

$$\mathcal{L} = \log D$$

and

$$\boldsymbol{P} = \exp\{\mathcal{L}^{\boldsymbol{c}_1}\}.$$

Let Ψ denote the set of all primitive characters $\psi \pmod{p}$ with P , where*p* $is a prime. Let <math>\Omega$ denote the region

$$\{s = \sigma + it: 0 < \sigma < 1, |t - \mathcal{L}^{c_2}| < \mathcal{L}^{c_3}\}.$$
 $(c_3 < c_2).$

For $\psi \in \Psi$, the average gap between consecutive zeros of the function $L(s, \psi)L(s, \psi\chi)$ in Ω is

$$\sim rac{2\pi}{\log({\it P}^2 D)} \sim rac{\pi}{\log {\it P}} = lpha, \qquad {
m say}.$$

In what follows assume that the Landau-Siegel zero $\tilde{\rho}$ of $L(s, \chi)$ exists and very close to 1. It can be shown that there is a subset Ψ_1 of Ψ such that the size of the complement of Ψ_1 in Ψ is relatively small, and such that for $\psi \in \Psi_1$ the following hold.

(i). All the zeros of $L(s, \psi)L(s, \psi\chi)$ in Ω lie on the critical line $\sigma = 1/2$.

(ii). All the zeros of $L(s, \psi)L(s, \psi\chi)$ in Ω are simple.

(iii). The gap between any pair of consecutive zeros of $L(s, \psi)L(s, \psi\chi)$ in Ω is $\sim \alpha$.

This result is not surprising and analogous results were observed by several authors. Our aim is now to derive a contradiction from the gap assertion (iii).

Reduced to evaluating discrete means

The functional equation for $L(s, \psi)$ is written as

$$L(\boldsymbol{s},\psi)=\boldsymbol{Z}(\boldsymbol{s},\psi)L(1-\boldsymbol{s},\bar{\psi}).$$

On the upper-half plane t > 0, the factor $Z(s, \psi)$ is analytic and non-vanishing. Thus we can introduce

$$M(\boldsymbol{s},\psi) := Z(\boldsymbol{s},\psi)^{-1/2}L(\boldsymbol{s},\psi)$$

which is analytic on the upper-half plane. Note that for each ψ , there are two choices of $M(s, \psi)$ up to \pm , but the expressions

$$M(s_1,\psi)M(s_2,\psi), \qquad rac{M(s_1,\psi)}{M(s_2,\psi)}$$

are independent of these choices.

Reduced to evaluating discrete means

Note that both $M(s, \psi)$ and $iM'(s, \psi)$ are real on the critical line. Assume that $\psi \in \Psi_1$. The gap assertion (iii) implies that, for an zero ρ of $L(s, \psi)$ in Ω ,

$$\mathcal{C}(\rho,\psi) := \frac{M(\rho+\beta_1,\psi)M(\rho+\beta_2,\psi)M(\rho+\beta_3,\psi)}{iM'(\rho,\psi)} > 0,$$

where β_1 , β_2 and β_3 are purely imaginary parameters satisfying

$$\beta_j \sim ij\alpha, \qquad 1 \leq j \leq 3.$$

Let $\mathcal{Z}(\psi)$ be the set of zeros of $L(s, \psi)$ in Ω . If one can find functions $H(s, \psi)$ and show that

$$\sum_{\psi \in \Psi_1} \sum_{\rho \in \mathcal{Z}(\psi)} \mathcal{C}(\rho, \psi) |\mathcal{H}(\rho, \psi)|^2 \omega(\rho) < 0 \tag{(*)}$$

where ω is a positive smooth weight, a contradiction will follow.

Yitang Zhang (UCSB)

It is natural to consider the form

$$H(s,\psi) = \sum_{n < X} \frac{a(n)\psi(n)}{n^s}$$
(**)

with X slightly smaller than P in the logarithmic scale. Although we are unable to prove (*) directly, it is interesting that the sum in (*) is ~ 0 for certain choices of $H(s, \psi)$. Precisely this means that, when the sum is evaluated, the coefficient of the main term in the result is equal to 0. In fact, since $L(\rho + \beta_j, \psi)L(\rho + \beta_j, \psi\chi) \sim 0$ by the gap assertion (iii), the sum in (*) should be ~ 0 if $H(s, \psi) = L(\rho + \beta_j, \psi\chi)$. We may not be able to prove it directly due to the length of the sum. However, some linear combinations of the $L(\rho + \beta_j, \psi\chi)$ can be well approximated by the $H(s, \psi)$ of length slightly smaller than P.

We have investigated various types of the coefficients a(n) in (**), and found a number of $H(s, \psi)$ for which the sum in (*) is \sim 0; even we do not have interpretation of some of them. However, it seems that the inequality (*) can not be achieved with $H(s, \psi)$ given by (**). A variant of the method could be helpful. Thank you!

æ

(日)