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In 1916, Ramanujan considered the following function

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24 =
∞∑
n=1

τ(n)e2πinz ,

where z ∈ H = {z = x + iy : x ∈ R, y > 0} and τ(n) is called
Ramanujan’s tau function. He conjectured that

τ(m)τ(n) = τ(mn) if (m, n) = 1;

τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1) for p prime and r > 0;

p−11/2|τ(p)| ≤ 2 for all primes p.

The first two were proved by Mordell in 1917. The third one is
called the Ramanujan Conjecture and was proved by Deligne in
1974.
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In fact, the function ∆(z) is a holomorphic cusp form of weight 12
with respect to

Γ = SL2(Z) =

{(
a b
c d

)
: a, b, c , d ∈ Z, ab − cd = 1

}
.

Holomorphic modular forms

Let k > 0 be an even integer and f (z) 6= 0 be a holomorphic
complex function on H and at ∞. We call f (z) a holomorphic
modular form of weight k with respect to SL2(Z) if it satisfies the
transformation rule

f (γz) = (cz + d)k f (z) for all z ∈ H and γ ∈ SL2(Z),

where

γ =

(
a b
c d

)
and γz =

az + b

cz + d
for all z ∈ H.
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The Fourier Expansion

Let f (z) be a holomorphic modular form of weight k and

γ0 =

(
1 1
0 1

)
.

Clearly, γ0 ∈ SL2(Z), γ0z = z + 1 and f (z + 1) = f (γ0z) = f (z).
Hence, we have Fourier expansion

f (z) =
∞∑
n=0

af (n)e(nz).

Holomorphic cusp forms

A holomorphic modular form f (z) of weight k is called a
holomorphic cusp form of weight k if af (0) = 0.

Denote Sk the linear vector space consisting of all the holomorphic
cusp forms of weight k.
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Hecke Operators

Let f (z) ∈ Sk and n ∈ N. The Hecke operators Tn are defined on
Sk by

(Tnf )(z) = n−
k+1

2

∑
ad=n

ak
∑

0≤b<d

f

(
az + b

d

)
.

The Hecke operators Tn are well-defined and map Sk to Sk .

Holomorphic Hecke eigenforms

There exists a basis Fk in Sk such that Fk consists of common
eigenfunctions of all the Hecke operators Tn. The elements of Fk

are called holomorphic Hecke eigenforms.

For any f ∈ Fk , let λf (n) denote the n-th Hecke eigenvalue of f .
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One can prove that ∆(z) is a holomorphic Hecke eigenform of
weight 12 and its n-th Hecke eigenvalue

λ∆(n) = n−11/2τ(n).

Then the Ramanujan Conjecture can be rewritten as

|λ∆(p)| ≤ 2 for all primes p.
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In 1930s, Petersson generalized the Ramanujan Conjecture to
holomorphic Hecke eigenforms of weight k.

The Generalized Ramanujan Conjecture (GRC)

Let f (z) ∈ Fk be a holomorphic Hecke eigenform and λf (n) be its
n-th Hecke eigenvalue. Then for any prime p,

|λf (p)| ≤ 2.

This case was proved by Deligne in 1974.
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Maass cusp forms

A smooth function f is called a Maass cusp form for Γ if it satisfies
the following properties:

1 f is an eigenfunction of the hyperbolic Laplace operate

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

2 f (γz) = f (z) for all z ∈ H and all γ ∈ Γ.

3 f (x + iy) = O(yN) as y →∞.

4 For all z ∈ H,
∫ 1

0 f (z + x)dx = 0.

We denote the subspace consisting of all the Maass cusp forms by
C(Γ \H).
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Hecke Operators and Complete Orthogonal Basis

The Hecke operators Tn are defined on C(Γ \H) by

(Tnf )(z) :=
1√
n

∑
ad=n

∑
0≤b<d

f

((
a b
0 d

)
z

)
.

There exists a complete orthonormal basis {uj}∞j=0 in C(Γ \H) such
that it consists of eigenfunctions of ∆ and Tn, n = 1, 2, . . ., with

∆uj = (1/4 + t2
j )uj , Tnuj = λj(n)uj

where u0 is a constant function, 0 < t1 ≤ t2 ≤ · · · , and λj(n) ∈ R
are Hecke eigenvalues of uj . We call uj Hecke-Maass cusp forms.
Moreover, we have Weyl’s law

r(T ) := #{uj : 0 < tj ≤ T} =
1

12
T 2 + O(T logT ).
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The Generalized Ramanujan Conjecture (GRC)

We have the Generalized Ramanujan Conjecture for Hecke-Maass
cusp forms which predicts that

|λj(p)| ≤ 2 for all uj and all primes p.

Let αuj ,1(p), αuj ,2(p) be the Satake parameters of uj at p. We have

λj(p) = αuj ,1(p) + αuj ,2(p) and αuj ,1(p)αuj ,2(p) = 1.

Then
|λj(p)| ≤ 2 ⇐⇒ |αuj ,1(p)| = |αuj ,2(p)| = 1.

2003, Kim and Sarnak

|αuj ,`(p)| ≤ p7/64 for ` = 1, 2.
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Question 1.

Given a fixed Hecke-Maass cusp form, could we estimate the
number of primes at which GRC fails?
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The case of GL(2)

Denote Sj the set of primes p with |λj(p)| > 2.

GRC =⇒ |Sj | = 0.

1997, Ramakrishnan (upper Dirichlet density)

lim sup
s→1+

∑
p∈Sj p

−s∑
p p
−s ≤ 1

10
.

2002, Kim and Shahidi (upper Dirichlet density)

lim sup
s→1+

∑
p∈Sj p

−s∑
p p
−s ≤ 1

35
.

2019, Luo and Zhou (natrual density)

lim sup
x→∞

# {p ≤ x : |λj(p)| > 2}
π(x)

≤ 1

35
.
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One key observation, Ramakrishnan, 1997

We can write

αuj ,1(p) = e iθj (p) and αuj ,2(p) = e−iθj (p),

with θj(p) ∈ [0, π] ∪ iR ∪ π + iR. It is well-known that for m ≥ 1,

λj(p
m) =

e i(m+1)θj (p) − e−i(m+1)θj (p)

e iθj (p) − e−iθj (p)
.

Suppose GRC fails at p. If θj(p) ∈ iR, put θj(p) = iϑj(p). If
θj(p) ∈ π + iR, put θj(p) = π + iϑj(p). If m is even, we have

λj(p
m) =

e(m+1)ϑj (p) − e−(m+1)ϑj (p)

eϑj (p) − e−ϑj (p)
≥ m + 1.
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Symmetric power L-functions

The symmetric m-th power L-function of uj is defined by (<s > 1)

L(s, symmuj) =
∏
p

m∏
k=0

(1−αuj (p)m−2kp−s)−1 =
∞∑
n=1

λsymmuj (n)n−s .

It is well-known that

λsymmuj (p) = λj(p
m).

Moreover, L(s, symmuj) are automorphic for m = 1, 2, 3, 4 and

lim
x→∞

∑
p≤x λsymmuj (p)

π(x)
= 0 and lim

x→∞

∑
p≤x λsymmuj (p)2

π(x)
= 1.
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The idea of Luo-Zhou

If GRC fails at p, then(1 + 3λj(p
2) + 5λj(p

4))2 ≥ 352.

#{p ≤ x : |λj(p)| > 2}
π(x)

≤ 1

π(x)

∑
p≤x

(1 + 3λj(p
2) + 5λj(p

4))2

352

=
1

π(x)

∑
p≤x

−20 + 15λj(p
2) + 19λj(p

4) + 30λj(p
3)2 + 25λj(p

4)2

352

by the Hecke relation λj(m)λj(n) =
∑

d |(m,n)

λj
(
mn
d2

)
.

Noting that λsymmuj (p) = λj(p
m), we have

lim sup
x→∞

#{p ≤ x : |λj(p)| > 2}
π(x)

≤ 1

35
.
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Main tool: symmetric power L-functions

The symmetric m-th power L-function of uj is defined by (<s > 1)

L(s, symmuj) =
∏
p

m∏
k=0

(1−αuj (p)m−2kp−s)−1 =
∞∑
n=1

λsymmuj (n)n−s .

It is well-known that
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m).

Moreover, L(s, symmuj) are automorphic for m = 1, 2, 3, 4 and

lim
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∑
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Recall that

Γ = SL2(Z) =

{(
a b
c d

)
: a, b, c , d ∈ Z, ab − cd = 1

}
.

Let

G = GL2(R) =

{(
a b
c d

)
: a, b, c, d ∈ R, ab − cd 6= 0

}
,

K = O2(R) =

{(
± cos θ − sin θ
± sin θ cos θ

)
: 0 ≤ θ ≤ 2π

}
.

Then H ∼= G/(K ·R×). Since Maass cusp forms are invariant under
the action of Γ, we can view Maass cusp forms on Γ\G/(K · R×).

Generalize to the case:

G = GLn(R), K = On(R), Γ = SLn(Z).
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Let H = {φj} be the set of Hecke-Maass cusp forms for SLn(Z)
with n ≥ 3. For T > 100, define

HT = {φ ∈ H : µφ ∈ iRn, ‖µφ‖2 ≤ T}

where µφ is the Langlands parameters and ‖ · ‖2 is the Euclidean
norm.

Weyl’s Law

#HT ∼ T d ,

where d = n(n + 1)/2− 1.
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The Satake parameters

For SLn(Z) with n ≥ 3, the Hecke eigenvalues are not always real
and it’s more natural to consider the Satake parameters.

Let p be a fixed prime and φ ∈ HT . Denote

αφ,1(p), αφ,2(p), . . . , αφ,n(p)

the corresponding Satake parameters. It is well-known that

αφ,1(p)αφ,2(p) · · ·αφ,n(p) = 1

and

αφ,1(p) + αφ,2(p) + · · ·+ αφ,n(p) = Aφ(p, 1, . . . , 1),

where Aφ(p, 1, . . . , 1) is the p-th Hecke eigenvalue of φ.
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The Generalized Ramanujan Conjecture (GRC)

Similar to the case of SL2(Z), we also have the Generalized
Ramanujan Conjecture which asserts that

|αφ,1(p)| = |αφ,2(p)| = · · · = |αφ,n(p)| = 1.

1995, Luo, Rudnick and Sarnak

|αφ,`(p)| ≤ p1/2−1/(n2+1) for ` = 1, 2, . . . , n.

2003, Kim and Sarnak

4

5
→ 5

14
for n = 3 and

15

34
→ 9

22
for n = 4.

Please note that for n ≥ 3, GRC is NOT equivalent to

|Aφ(p, 1, . . . , 1)| = |αφ,1(p) + αφ,2(p) + . . .+ αφ,n(p)| ≤ n.
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The case of GL(n)

Denote S the set of primes p with |Aφ(p, 1, . . . , 1)| > n.

1997, Ramakrishnan (upper Dirichlet density)

lim sup
s→1+

∑
p∈S p

−s∑
p p
−s ≤

1

n2
.

Denote S ′ the set of primes p at which GRC fails. This gives no
information about S ′.

2004, Ramakrishnan, n=3

There are infinitely many primes at which GRC holds.
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The case of GL(n)

In what follows, assume φ is non-self dual. For any α > 1, define

S(α) :=

{
p primes : max

1≤i≤n
|αφ,i (p)| > α

}
.

2014, Walji, n=3, (upper Dirichlet density)

lim sup
s→1+

∑
p∈S(α) p

−s∑
p p
−s ≤ 1

(α + α−1 − 1)2
.

2014, Walji, n=4, (upper Dirichlet density)

lim sup
s→1+

∑
p∈S(α) p

−s∑
p p
−s ≤ 1

(α + α−1 − 2)2
+

1

4(α + α−1 − 1)2
.

This is nontrivial for α > 2.655096100497360745....

Yingnan Wang, joint with Yuk-Kam Lau & Ming Ho Ng On the exceptional set of the Generalized Ramanujan Conjecture



The case of GL(n)

In what follows, assume φ is non-self dual. For any α > 1, define

S(α) :=

{
p primes : max

1≤i≤n
|αφ,i (p)| > α

}
.

2014, Walji, n=3, (upper Dirichlet density)

lim sup
s→1+

∑
p∈S(α) p

−s∑
p p
−s ≤ 1

(α + α−1 − 1)2
.

2014, Walji, n=4, (upper Dirichlet density)

lim sup
s→1+

∑
p∈S(α) p

−s∑
p p
−s ≤ 1

(α + α−1 − 2)2
+

1

4(α + α−1 − 1)2
.

This is nontrivial for α > 2.655096100497360745....

Yingnan Wang, joint with Yuk-Kam Lau & Ming Ho Ng On the exceptional set of the Generalized Ramanujan Conjecture



The case of GL(n)

In what follows, assume φ is non-self dual. For any α > 1, define

S(α) :=

{
p primes : max

1≤i≤n
|αφ,i (p)| > α

}
.

2014, Walji, n=3, (upper Dirichlet density)

lim sup
s→1+

∑
p∈S(α) p

−s∑
p p
−s ≤ 1

(α + α−1 − 1)2
.

2014, Walji, n=4, (upper Dirichlet density)

lim sup
s→1+

∑
p∈S(α) p

−s∑
p p
−s ≤ 1

(α + α−1 − 2)2
+

1

4(α + α−1 − 1)2
.

This is nontrivial for α > 2.655096100497360745....

Yingnan Wang, joint with Yuk-Kam Lau & Ming Ho Ng On the exceptional set of the Generalized Ramanujan Conjecture



Theorem 1. (Lau, Ng and W., 2021)

Let φ be a non-self dual Hecke-Maass cusp form for SL3(Z). We
have

lim sup
x→∞

1

π(x)
#

{
p ≤ x : max

1≤i≤3
|αφ,i (p)| > 1

}
≤ 14

25

under the assumption∑
p≤x
|λsym2φ(p)|2 ∼ π(x).

If we further assume ∑
p≤x

λφ×φ̃(p)2 ∼ 2π(x),

lim sup
x→∞

1

π(x)
#

{
p ≤ x : max

1≤i≤3
|αφ,i (p)| > 1

}
≤ 12

25
.
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Sketch of the proof of Theorem 1

Main tool: the Rankin-Selberg L-function

L(s, φ×φ̃) =
∏
p

3∏
i=1

3∏
j=1

(1−αφ,i (p)αφ,j(p)−1p−s)−1 =:
∑
n≥1

λφ×φ̃(n)n−s .

and the symmetric square L-function

L(s, sym2φ) =
∏
p

∏
1≤i≤j≤3

(1−αφ,i (p)αφ,j(p)p−s)−1 =:
∑
n≥1

λsym2φ(n)n−s .

It is known that

λφ×φ̃(p) = |Aφ(p, 1)|2 ≥ 0 and λsym2φ(p) = Aφ(p2, 1).

However, the automorphy of these L-functions are not known.
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Recall the case of GL(2)

(1 + 3λj(p
2) + 5λj(p

4))2 ≥ 352 if GRC fails at p

and

#{p ≤ x : |λj(p)| > 2}
π(x)

≤ 1

π(x)

∑
p≤x

(1 + 3λj(p
2) + 5λj(p

4))2

352

≤ 1

π(x)

∑
p≤x

−20 + 15λj(p
2) + 19λj(p

4) + 30λj(p
3)2 + 25λj(p

4)2

352
.
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Sketch of the proof of Theorem 1

Aim: find a polynomial in αφ,`(p) similar to

(1 + 3λj(p
2) + 5λj(p

4))2.

We consider

S(x1, x2, x3)

=
1

16

∑
1≤i<j≤3

(xi + xj)
2(x−1

i + x−1
j )2 +

1

32

∏
1≤i<j≤3

(xi + xj)(x−1
i + x−1

j ).

Then

S(αφ,1(p), αφ,2(p), αφ,3(p))

=
1

32
(7 + 10λφ×φ̃(p) + 4|λsym2φ(p)|2 − λφ×φ̃(p)2).
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Sketch of the proof of Theorem 1

Next, we can prove that for all primes p,

S(αφ,1(p), αφ,2(p), αφ,3(p)) ≥ 7

32
.

Furthermore, if GRC for φ fails at p, we can prove

S(αφ,1(p), αφ,2(p), αφ,3(p)) ≥ 1.
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Sketch of the proof of Theorem 1

#{p ≤ x : max
1≤i≤3

|αφ,i (p)| > 1}

π(x)
+

7

32

#{p ≤ x : max
1≤i≤3

|αφ,i (p)| ≤ 1}

π(x)


≤ 1

π(x)

∑
p≤x

S(αφ,1(p), αφ,2(p), αφ,3(p))

=
1

32π(x)

∑
p≤x

(7 + 10λφ×φ̃(p) + 4|λsym2φ(p)|2 − λφ×φ̃(p)2).

If we assume ∑
p≤x
|λsym2φ(p)|2 ∼ π(x),

lim sup
x→∞
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1≤i≤3
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Question 2.

Could we estimate the number of Hecke-Maass cusp forms on
GL(n) whose Satake parameters at any given prime p fail GRC?
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The case of GL(2)

1987, Sarnak

1

r(T )
# {1 ≤ j ≤ r(T ) : |λj(p)| ≥ α > 2} � T−

2 log(α/2)
log p .

2014, Blomer, Buttcane and Raulf

1

r(T )
# {1 ≤ j ≤ r(T ) : |λj(p)| ≥ α > 2} �ε T

− 8 log(α/2)
log p

+ε
.

2011, Lau and W.

1

r(T )
# {1 ≤ j ≤ r(T ) : |λj(p)| > 2} �

(
log p

logT

)2

.

2017, W. and Xiao

1

r(T )
# {1 ≤ j ≤ r(T ) : |λj(p)| > 2} �

(
log p

logT

)3

.
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The case of GL(n)

2014, n = 3, Blomer, Buttcane and Raulf

1

#HT
#

{
φ ∈ HT : max

1≤`≤3
|αφ,`(p)| > pθ

}
� T−η,

where η depends on θ and p.

2021, Matz and Templier

1

#HT
#

{
φ ∈ HT : max

1≤`≤n
|αφ,`(p)| > pθ

}
� p2θT−cθ.
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Theorem 2. (Lau, Ng and W.)

Let p be a fixed prime. We have

1

#HT
#

{
φ ∈ HT : max

1≤`≤n
|αφ,`(p)| > 1

}
�
(

log p

logT

)3

,

where the implied constant depends on n.
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Write
αφ,1(p) = e iθφ,1(p), · · · , αφ,n(p) = e iθφ,n(p),

where θφ,j(p) ∈ {a + bi : a ∈ [0, 2π), b ∈ R} for j = 1, · · · , n.

Denote θφ(p) = (θφ,1(p), . . . , θφ,n(p)).

Since the order of θφ(p)’s entries plays no role in GRC, we shall
view θφ(p) in Cn/Sn where Sn is the symmetric group of degree
n.

GRC is equivalent to

θφ(p) ∈ [0, 2π)n/Sn.
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The Sato-Tate conjecture

Given any I ′ =
∏n

j=1[aj , bj ] ⊂ [0, 2π)n. We denote by I the image
of I ′ under the canonical map ρ : [0, 2π)n → [0, 2π)n/Sn.

Define
NI (φ; x) := #

{
p ≤ x : θφ(p) ∈ I

}
.

The Sato-Tate conjecture can be formulated as

lim
x→∞

NI (φ; x)

π(x)
=

∫
I
dµST

where π(x) counts the number of primes up to x and

dµST =
1

n!(2π)n−1

∏
1≤`<m≤n

|e iθ` − e iθm |2dθ1 · · · dθn−1.
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Theorem 3.

Suppose that T = T (x) satisfies logT/ log x →∞ as x →∞. We
have

1

#HT

∑
φ∈HT

NI (φ; x)

π(x)
= µST (I ) + O

(
log x

logT
+

log log x

π(x)

)
,

where µST (I ) =
∫
I dµST and the implied constant only depends on

n.
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Theorem 4.

Let T = T (x) be a function satisfying log T√
x log log x

→∞ as x →∞.

Then for any bounded continuous, real-valued function h on R, we
have

lim
x→∞

1

#HT

∑
φ∈HT

h

(
NI (φ; x)− π(x)µST(I )√
π(x)(µST(I )− µST(I )2)

)

=
1√
2π

∞∫
−∞

h(t)e−
t2

2 dt.
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Sketch of the proof of Theorem 2

The idea is similar to the proof of Theorem 1.

Find a polynomial F (αφ,1(p), . . . , αφ,n(p)) satisfying

F (αφ,1(p), . . . , αφ,n(p)) are always nonnegative.

F (αφ,1(p), . . . , αφ,n(p)) ≥ 1 if φ fails GRC at p.

We also use the following trace formula instead of the properties of
L-functions.

Trace formula (Matz-Templier)

Let n ≥ 3 and p be fixed. Put αφ = (αφ,1(p), . . . , αφ,n(p)). Given

any g ∈ C[x±1 , · · · , x±n ]Sn . We have

1

#HT

∑
φ∈HT

g(αφ) =

∫
S1n/Sn

gdµp + O
(
T−1/2pA deg′(g)

)
.
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Sketch of the proof of Theorem 2

Define for any x 6= y ∈ C,

UL(x , y) :=
1

L + 1

xL+1 − yL+1

x − y
.

For x1, · · · , xn ∈ C with xi 6= xj for i 6= j , we consider the
unordered n(n − 1)/2 tuple

UL(x1, · · · , xn) = {UL(x`, xm)}1≤`<m≤n.

Let s = n(n − 1)/2 and y1, . . . , ys ∈ C. For m ≤ s, define

fm(y1, . . . , ys) :=
2m

m!(s −m)!

∑
σ∈Ss

y2
σ(1) · · · y

2
σ(m).

Define

FL(x1, . . . , xn) :=
s∑

i=1

fi (UL(x1, · · · , xn))fi (UL(x−1
1 , · · · , x−1

n )).
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Sketch of the proof of Theorem 2

Clearly, FL(x1, . . . , xn) ∈ C[x±1 , · · · , x±n ]Sn .

Firstly, we can prove that for all φ ∈ HT ,

FL(αφ,1(p), . . . , αφ,n(p)) ≥ 0.

Secondly, if GRC for φ fails at p, we can prove

FL(αφ,1(p), . . . , αφ,n(p)) ≥ 1.
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Sketch of the proof of Theorem 2

#

{
φ ∈ HT : max

1≤`≤n
|αφ,`(p)| > 1

}
#HT

� 1

#HT

∑
φ∈HT

FL(αφ,1(p), . . . , αφ,n(p))

� 1

L3
+ pLAT−1/2 (by the trace formula)

�
(

log p

logT

)3

by taking

L =

[
logT

4A log p

]
.
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Thank you!
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