Arithmetic Exponent Pairs：Individual \＆ Averaged

PING XI

School of Mathematics EE Statistics，Xi’an Fiaotong University ping．xi＠xjtu．edu．cn

PanAsian Number Theory Conference

December 07， 2021

Related Works

- J. Wu \& P. Xi, Arithmetic exponent pairs for algebraic trace functions and applications, with an appendix by Will Sawin, to appear in Algebra Number Theory.
- J. Wu \& P. Xi, Quadratic polynomials at prime arguments, Math. Z. 285 (2017), 631-646.
- P. Xi, Ternary divisor functions in arithmetic progressions to smooth moduli, Mathematika 64 (2018), 701-729.
- P. Xi, Counting fundamental solutions to the Pell equation with prescribed size, Compositio Math. 154 (2018), 2379-2402.

Outline

- Algebraic exponential sums: background
- Developing the method of arithmetic exponent pairs
- Several applications
- Arithmetic exponent pairs on average

Exponential sums

- $\mathrm{e}(z):=\exp (2 \pi i z)$
- $U=\left\{u_{n}\right\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R} / \mathbf{Z}$
- I an interval

Exponential Sum

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right)
$$

Exponential sums

- $\mathrm{e}(z):=\exp (2 \pi i z)$
- $U=\left\{u_{n}\right\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R} / \mathbf{Z}$
- I an interval

Exponential Sum

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right)
$$

- (Weyl) $U=\left\{\alpha n^{k}\right\}_{n \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q} k \in \mathbf{Z}^{+}$(equidistribution)

Exponential sums

- $\mathrm{e}(z):=\exp (2 \pi i z)$
- $U=\left\{u_{n}\right\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R} / \mathbf{Z}$
- I an interval

Exponential Sum

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right)
$$

- (Weyl) $U=\left\{\alpha n^{k}\right\}_{n \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q} k \in \mathbf{Z}^{+}$(equidistribution)
- (Hardy-Littlewood, et al) $U=\{t \log n\}_{n \leqslant N}: t \in \mathbf{R}$ (Lindelof hypothesis for $\zeta(s)$)

Exponential sums

- $\mathrm{e}(z):=\exp (2 \pi i z)$
- $U=\left\{u_{n}\right\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R} / \mathbf{Z}$
- I an interval

Exponential Sum

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right)
$$

- (Weyl) $U=\left\{\alpha n^{k}\right\}_{n \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q} k \in \mathbf{Z}^{+}$(equidistribution)
- (Hardy-Littlewood, et al) $U=\{t \log n\}_{n \leqslant N}: t \in \mathbf{R}$ (Lindelof hypothesis for $\zeta(s)$)
- (Vinogradov) $U=\{\alpha p\}_{p \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q}$ (ternary Goldbach problem)

Exponential sums

- $\mathrm{e}(z):=\exp (2 \pi i z)$
- $U=\left\{u_{n}\right\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R} / \mathbf{Z}$
- I an interval

Exponential Sum

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right)
$$

- (Weyl) $U=\left\{\alpha n^{k}\right\}_{n \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q} k \in \mathbf{Z}^{+}$(equidistribution)
- (Hardy-Littlewood, et al) $U=\{t \log n\}_{n \leqslant N}: t \in \mathbf{R}$ (Lindelof hypothesis for $\zeta(s)$)
- (Vinogradov) $U=\{\alpha p\}_{p \leqslant N}: \alpha \in \mathbf{R} \backslash \mathbf{Q}$ (ternary Goldbach problem)
- (Kloosterman) $U=\{\bar{n} / p\}_{n \leqslant x, p \nmid n}: p$ is a large prime

Exponential sums

- $\mathrm{e}(z):=\exp (2 \pi i z)$
- $U=\left\{u_{n}\right\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R} / \mathbf{Z}$
- I an interval

Exponential Sum

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right)
$$

- (Weyl) $U=\left\{\alpha n^{k}\right\}_{n \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q} k \in \mathbf{Z}^{+}$(equidistribution)
- (Hardy-Littlewood, et al) $U=\{t \log n\}_{n \leqslant N}: t \in \mathbf{R}$ (Lindelof hypothesis for $\zeta(s)$)
- (Vinogradov) $U=\{\alpha p\}_{p \leqslant \mathcal{N}}: \alpha \in \mathbf{R} \backslash \mathbf{Q}$ (ternary Goldbach problem)
- (Kloosterman) $U=\{\bar{n} / p\}_{n \leqslant x, p \nmid n}: p$ is a large prime
- (Hooley) $U=\{h a / n\}_{f(a) \equiv 0(\bmod n), n \leqslant x}: h \in \mathbf{Z} \backslash\{0\}$

Exponential sums

GOAL

$$
\sum_{n \in I} \mathrm{e}\left(u_{n}\right) \ll|I| \Delta(I), \quad \Delta(I) \searrow 0
$$

- We expect $\left\{u_{n}\right\}$ is randomly distributed on \mathbf{R} / \mathbf{Z}.
- The problem seems more difficult is I is rather short or u_{n} is highly oscillating
- Weyl, van der Corput, Vinogradov, Bombieri-Iwaniec, Huxley, Bourgain, Wooley, et al

Algebraic exponential sums

- $q \geqslant 2$ an integer
- V a suitable algebraic variety over \mathbf{Z} or $\mathbf{Z} / q \mathbf{Z}$
- f a rational function over V

Algebraic Exponential Sum

$$
\sum_{\mathbf{x} \in V(\mathbf{Z} / q \mathbf{Z})} \mathrm{e}\left(\frac{f(\mathbf{x})}{q}\right)
$$

Typical examples

- Gauss sum

$$
\tau(a, \chi)=\sum_{x \in \mathbf{Z} / q \mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{a x}{q}\right)
$$

Typical examples

- Gauss sum

$$
\tau(a, \chi)=\sum_{x \in \mathbf{Z} / q \mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{a x}{q}\right)
$$

- Kloosterman sum

$$
\mathrm{Kl}(a, q)=\frac{1}{\sqrt{q}} \sum_{x \in(\mathbf{Z} / q \mathbf{Z})^{*}} \mathrm{e}\left(\frac{a x+\bar{x}}{q}\right)
$$

Typical examples

- Gauss sum

$$
\tau(a, \chi)=\sum_{x \in \mathbf{Z} / q \mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{a x}{q}\right)
$$

- Kloosterman sum

$$
\mathrm{Kl}(a, q)=\frac{1}{\sqrt{q}} \sum_{x \in(\mathbf{Z} / q \mathbf{Z})^{*}} \mathrm{e}\left(\frac{a x+\bar{x}}{q}\right)
$$

- hyper-Kloosterman sum $(k \geqslant 2)$

$$
\mathrm{Kl}_{k}(a, q)=q^{\frac{1-k}{2}} \sum_{\substack{x_{1}, x_{2}, \cdots, x_{k} \in(\mathbf{Z} / q \mathbf{Z})^{*} \\ x_{1} x_{2} \cdots x_{k}=a}} \mathrm{e}\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{q}\right)
$$

Typical examples

- Gauss sum

$$
\tau(a, \chi)=\sum_{x \in \mathbf{Z} / q \mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{a x}{q}\right)
$$

- Kloosterman sum

$$
\mathrm{Kl}(a, q)=\frac{1}{\sqrt{q}} \sum_{x \in(\mathbf{Z} / q \mathbf{Z})^{*}} \mathrm{e}\left(\frac{a x+\bar{x}}{q}\right)
$$

- hyper-Kloosterman sum $(k \geqslant 2)$

$$
\mathrm{Kl}_{k}(a, q)=q^{\frac{1-k}{2}} \sum_{\substack{x_{1}, x_{2}, \cdots, x_{k} \in(\mathbf{Z} / q \mathbf{Z})^{*} \\ x_{1} x_{2} \cdots x_{k}=a}} \mathrm{e}\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{q}\right)
$$

- Jacobi sum

$$
\mathcal{F}(\chi, \eta)=\sum_{x \in(\mathbf{Z} / q \mathbf{Z})^{*}} \chi(x) \eta(1-x)
$$

Incomplete sums

In many applications of harmonic analysis to analytic number theory, we usually encounter incomplete sums that do not have nice structures as given by suitable varieties.

For instance, we may consider

$$
\sum_{n \in I} a_{n} F_{q}(n)
$$

where

- F_{q} is defined over $\mathbf{Z} / q \mathbf{Z}$
- a_{n} carries the arithmetic structure of n
- I is an interval

Typical examples (incomplete sums)

- character sum

$$
\sum_{n \in I} \chi(n)
$$

Typical examples (incomplete sums)

- character sum

$$
\sum_{n \in I} \chi(n)
$$

- incomplete Kloosterman sum

$$
\sum_{\substack{n \in I \\(n, q)=1}} \mathrm{e}\left(\frac{a \bar{n}}{q}\right)
$$

Typical examples (incomplete sums)

- character sum

$$
\sum_{n \in I} \chi(n)
$$

- incomplete Kloosterman sum

$$
\sum_{\substack{n \in I \\(n, q)=1}} \mathrm{e}\left(\frac{a \bar{n}}{q}\right)
$$

- bilinear form of Kloosterman sums

$$
\sum_{m} \sum_{n} \alpha_{m} \beta_{n} \mathrm{Kl}(m n, q)
$$

Typical examples (incomplete sums)

- character sum

$$
\sum_{n \in I} \chi(n)
$$

- incomplete Kloosterman sum

$$
\sum_{\substack{n \in I \\(n, q)=1}} \mathrm{e}\left(\frac{a \bar{n}}{q}\right)
$$

- bilinear form of Kloosterman sums

$$
\sum_{m} \sum_{n} \alpha_{m} \beta_{n} \mathrm{Kl}(m n, q)
$$

- sums of products of Kloosterman sums

$$
\sum_{n \in I} \prod_{1 \leqslant j \leqslant r} \mathrm{Kl}\left(n+h_{j}, q\right)
$$

Fourier analysis: from incomplete to complete

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya-Vinogradov.

Theorem (Pólya-Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi(\bmod q)$,

$$
\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q
$$

Fourier analysis: from incomplete to complete

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya-Vinogradov.

Theorem (Pólya-Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi(\bmod q)$,

$$
\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q
$$

- This is non-trivial for $|I| /(\sqrt{q} \log q) \rightarrow+\infty$.

Fourier analysis: from incomplete to complete

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya-Vinogradov.

Theorem (Pólya-Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi(\bmod q)$,

$$
\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q
$$

- This is non-trivial for $|I| /(\sqrt{q} \log q) \rightarrow+\infty$.
- A non-trivial bound for shorter I is highly desired in many applications.

Fourier analysis: from incomplete to complete

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya-Vinogradov.

Theorem (Pólya-Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi(\bmod q)$,

$$
\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q
$$

- This is non-trivial for $|I| /(\sqrt{q} \log q) \rightarrow+\infty$.
- A non-trivial bound for shorter I is highly desired in many applications.
- Subconvexity for Dirichlet L-functions

$$
L\left(\frac{1}{2}, \chi\right) \ll q^{\frac{1}{4}-\delta} \leftrightarrow \sum_{n \leqslant \sqrt{q}} \chi(n) \ll q^{\frac{1}{2}-\delta^{\prime}} .
$$

Fourier analysis: from incomplete to complete

The method of Pólya-Vinogradov can be generalized extensively. Consider

$$
S:=\sum_{n \in I} F_{q}(n),
$$

where I is a certain interval and $F_{q}: \mathbf{Z} / q \mathbf{Z} \rightarrow \mathbf{C}$.

Fourier analysis: from incomplete to complete

The method of Pólya-Vinogradov can be generalized extensively. Consider

$$
S:=\sum_{n \in I} F_{q}(n),
$$

where I is a certain interval and $F_{q}: \mathbf{Z} / q \mathbf{Z} \rightarrow \mathbf{C}$.
By Plancherel, we have

$$
S=\sum_{n \in \mathbf{Z}} F_{q}(n) I(n)=\frac{1}{\sqrt{q}} \sum_{h \in \mathbf{Z}} \widehat{F}_{q}(h) \overline{\widehat{I}\left(\frac{h}{q}\right)},
$$

where $I(\cdot)$ denotes the characteristic function of I, and the normalized Fourier transform \widehat{F}_{q} of F_{q} is given by

$$
\begin{gathered}
\widehat{F}_{q}(h)=\frac{1}{\sqrt{q}} \sum_{x \in \mathbf{Z} / q \mathbf{Z}} F_{q}(x) \mathrm{e}\left(\frac{-h x}{q}\right), \\
\widehat{I}(y)=\int_{\mathbf{R}} I(x) \mathrm{e}(-y x) \mathrm{d} x=\int_{I} \mathrm{e}(-y x) \mathrm{d} x \ll \min \left\{|I|,|y|^{-1}, y^{-2}\right\} .
\end{gathered}
$$

Fourier analysis: from incomplete to complete

$$
\begin{aligned}
\left|S-\frac{1}{\sqrt{q}} \widehat{F}_{q}(0) \widehat{I}(0)\right| & \leqslant \frac{1}{\sqrt{q}} \sum_{|h| \geqslant 1}\left|\widehat{F}_{q}(h)\right|\left|\widehat{I}\left(\frac{h}{q}\right)\right| \\
& \leqslant \frac{1}{\sqrt{q}}\left\|\widehat{F}_{q}\right\|_{\infty}^{*} \sum_{|h| \geqslant 1}\left|\widehat{I}\left(\frac{h}{q}\right)\right|
\end{aligned}
$$

where $*$ means the norms are taken over non-zero elements.

Fourier analysis: from incomplete to complete

$$
\begin{aligned}
\left|S-\frac{1}{\sqrt{q}} \widehat{F}_{q}(0) \widehat{I}(0)\right| & \leqslant \frac{1}{\sqrt{q}} \sum_{|h| \geqslant 1}\left|\widehat{F}_{q}(h)\right|\left|\widehat{I}\left(\frac{h}{q}\right)\right| \\
& \leqslant \frac{1}{\sqrt{q}}\left\|\widehat{F}_{q}\right\|_{\infty}^{*} \sum_{|h| \geqslant 1}\left|\widehat{I}\left(\frac{h}{q}\right)\right|
\end{aligned}
$$

where $*$ means the norms are taken over non-zero elements.

- sum over h : bounded by $O\left(q^{1+\varepsilon}\right)$

Fourier analysis: from incomplete to complete

$$
\begin{aligned}
\left|S-\frac{1}{\sqrt{q}} \widehat{F}_{q}(0) \widehat{I}(0)\right| & \leqslant \frac{1}{\sqrt{q}} \sum_{|h| \geqslant 1}\left|\widehat{F}_{q}(h)\right|\left|\widehat{I}\left(\frac{h}{q}\right)\right| \\
& \leqslant \frac{1}{\sqrt{q}}\left\|\widehat{F}_{q}\right\|_{\infty}^{*} \sum_{|h| \geqslant 1}\left|\widehat{I}\left(\frac{h}{q}\right)\right|,
\end{aligned}
$$

where $*$ means the norms are taken over non-zero elements.

- sum over h : bounded by $O\left(q^{1+\varepsilon}\right)$
- sup-norm: complete sums - $O\left(q^{\varepsilon}\right)$?? [Riemann Hypothesis]

Fourier analysis: from incomplete to complete

$$
\begin{aligned}
\left|S-\frac{1}{\sqrt{q}} \widehat{F}_{q}(0) \widehat{I}(0)\right| & \leqslant \frac{1}{\sqrt{q}} \sum_{|h| \geqslant 1}\left|\widehat{F}_{q}(h)\right|\left|\widehat{I}\left(\frac{h}{q}\right)\right| \\
& \leqslant \frac{1}{\sqrt{q}}\left\|\widehat{F}_{q}\right\|_{\infty}^{*} \sum_{|h| \geqslant 1}\left|\widehat{I}\left(\frac{h}{q}\right)\right|,
\end{aligned}
$$

where $*$ means the norms are taken over non-zero elements.

- sum over h : bounded by $O\left(q^{1+\varepsilon}\right)$
- sup-norm: complete sums - $O\left(q^{\varepsilon}\right)$?? [Riemann Hypothesis]

Ideally, one has

$$
S=\widehat{F}_{q}(0) \frac{|I|}{\sqrt{q}}+O\left(q^{\frac{1}{2}+\varepsilon}\right) \ll\left(|I| q^{-1}+1\right) q^{\frac{1}{2}+\varepsilon}
$$

Fourier analysis: from incomplete to complete

$$
\begin{aligned}
\left|S-\frac{1}{\sqrt{q}} \widehat{F}_{q}(0) \widehat{I}(0)\right| & \leqslant \frac{1}{\sqrt{q}} \sum_{|h| \geqslant 1}\left|\widehat{F}_{q}(h)\right|\left|\widehat{I}\left(\frac{h}{q}\right)\right| \\
& \leqslant \frac{1}{\sqrt{q}}\left\|\widehat{F}_{q}\right\|_{\infty}^{*} \sum_{|h| \geqslant 1}\left|\widehat{I}\left(\frac{h}{q}\right)\right|,
\end{aligned}
$$

where $*$ means the norms are taken over non-zero elements.

- sum over h : bounded by $O\left(q^{1+\varepsilon}\right)$
- sup-norm: complete sums - $O\left(q^{\varepsilon}\right)$?? [Riemann Hypothesis]

Ideally, one has

$$
S=\widehat{F}_{q}(0) \frac{|I|}{\sqrt{q}}+O\left(q^{\frac{1}{2}+\varepsilon}\right) \ll\left(|I| q^{-1}+1\right) q^{\frac{1}{2}+\varepsilon}
$$

- $F_{q}(n)=\chi(n), \widehat{F}_{q}=$ normalized Gauss sum

Fourier analysis: from incomplete to complete

$$
\begin{aligned}
\left|S-\frac{1}{\sqrt{q}} \widehat{F}_{q}(0) \widehat{I}(0)\right| & \leqslant \frac{1}{\sqrt{q}} \sum_{|h| \geqslant 1}\left|\widehat{F}_{q}(h)\right|\left|\widehat{I}\left(\frac{h}{q}\right)\right| \\
& \leqslant \frac{1}{\sqrt{q}}\left\|\widehat{F}_{q}\right\|_{\infty}^{*} \sum_{|h| \geqslant 1}\left|\widehat{I}\left(\frac{h}{q}\right)\right|,
\end{aligned}
$$

where $*$ means the norms are taken over non-zero elements.

- sum over h : bounded by $O\left(q^{1+\varepsilon}\right)$
- sup-norm: complete sums - $O\left(q^{\varepsilon}\right)$?? [Riemann Hypothesis]

Ideally, one has

$$
S=\widehat{F}_{q}(0) \frac{|I|}{\sqrt{q}}+O\left(q^{\frac{1}{2}+\varepsilon}\right) \ll\left(|I| q^{-1}+1\right) q^{\frac{1}{2}+\varepsilon}
$$

- $F_{q}(n)=\chi(n), \widehat{F}_{q}=$ normalized Gauss sum
- $F_{q}(n)=\mathrm{e}(\bar{n} / q), \widehat{F}_{q}=$ Kloosterman sum

Developments and improvements

- (Burgess, 1960-70's)

$$
\sum_{M<n \leqslant M+\mathcal{N}} \chi(n) \ll \mathcal{N}^{1-\frac{1}{r}} q^{\frac{r+1}{42^{2}}+\varepsilon}, \quad r=1,2,3 .
$$

Developments and improvements

- (Burgess, 1960-70's)

$$
\sum_{M<n \leqslant M+\mathcal{N}} \chi(n) \ll \mathcal{N}^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\varepsilon}, \quad r=1,2,3
$$

- (Heath-Brown, 1978)

$$
\sum_{M<n<M+\mathcal{N}} \chi(n) \ll q^{\frac{1}{6}} \mathcal{N}^{\frac{1}{2}+\varepsilon}+q^{-1} \mathcal{N}^{1+\varepsilon}, \quad q=q_{1} q_{2}, q_{1} \sim q^{\frac{1}{3}}, q_{2} \sim q^{\frac{2}{3}}
$$

Developments and improvements

- (Burgess, 1960-70's)

$$
\sum_{M<n \leqslant M+\mathcal{N}} \chi(n) \ll \mathcal{N}^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\varepsilon}, \quad r=1,2,3 .
$$

- (Heath-Brown, 1978)

$$
\sum_{M<n \leqslant M+\mathcal{N}} \chi(n) \ll q^{\frac{1}{6}} \mathcal{N}^{\frac{1}{2}+\varepsilon}+q^{-1} \mathcal{N}^{1+\varepsilon}, \quad q=q_{1} q_{2}, q_{1} \sim q^{\frac{1}{3}}, q_{2} \sim q^{\frac{2}{3}} .
$$

- Nontrivial for $\mathcal{N}>q^{\frac{1}{3}+\varepsilon}$, but
- Burgess bound: $L\left(\frac{1}{2}, \chi\right) \ll q^{\frac{1}{4}-\frac{1}{16}+\varepsilon}$
- Heath-Brown bound: $L\left(\frac{1}{2}, \chi\right) \ll q^{\frac{1}{4}-\frac{1}{12}+\varepsilon}$ for special q
- Burgess' method is specially designed for periodic and completely multiplicative functions; Heath-Brown's method is flexible but only works for special q

How to generalize Heath-Brown's method to other Ψ ?

Philosophy in Heath-Brown's method

Heath-Brown did not invoke the Pólya-Vinogradov method directly, before which he introduced a difference process motivated by the method of van der Corput designed for

$$
\sum_{n \in I} \mathrm{e}(f(n))
$$

where $f \in \mathcal{C}(I)$ and satisfies certain assumptions on smoothness.

Philosophy in Heath-Brown's method

Heath-Brown did not invoke the Pólya-Vinogradov method directly, before which he introduced a difference process motivated by the method of van der Corput designed for

$$
\sum_{n \in I} \mathrm{e}(f(n))
$$

where $f \in \mathcal{C}(I)$ and satisfies certain assumptions on smoothness.
Heath-Brown named this method as q-analogue of the van der Corput method.

Developments and improvements

Verschärfung der Abschätzang beim Teilerproblem.

Von

J. G. van der Corput in Freiburg (Schweiz).

Es beseiohne $\boldsymbol{T}(\boldsymbol{n})$ die Anzabl der Teiler der positiven ganzen Zahl \boldsymbol{n}, $T(x)$ die summatorische Funktion

$$
x(x)=\sum_{n \leq v} T(n)=\sum_{n \leq v}\left[\begin{array}{l}
x \\
n
\end{array}\right] \quad(x \geq 0)
$$

\boldsymbol{C} die Eulersche Konstante, $\boldsymbol{R}(x)$ die Funktion

$$
R(x)=-\tau(x)-x \log x-(2 C-1) x \quad(x>0)
$$

Itber Dirichlete Ergebnis

$$
R(x)=O(\sqrt{x})
$$

war erst Voronoi ${ }^{1}$) 1903 hinausgekommen, indem or

$$
R(x)=O(\sqrt[7]{x} \log x)
$$

bewies. Bis jetat hat man $|\boldsymbol{R}(x)|$ nioht schărfer nach oben sbeohitaen können, so daß die Absohătraung

$$
R(x)=O\left(x^{y}\right) \quad\left(M<\frac{88}{100}, \text { unabhängig von } x\right)
$$

welche ich in dieser Note bewsisen werde, nen int.
Aus der (mit elementarsten Mitteln beweisbaren) Relation ${ }^{2}$)

$$
R(x)=-2 \sum_{n \leq \sqrt{n}}\left(\frac{x}{n}-\left[\frac{x}{n}\right]-\frac{1}{2}\right)+O(1)
$$

 far die reine cuid artowaidto Mathemetar 1

 S. 18-82] 8. 15-18.

Hybrid Bounds for Dirichlet L-Functions

D.R. Heath-Brown

Department of Pure Mathematics and Mathematical Statistics, 16, Mill Lane, Cambridge CB2 1SB, England

1. Introduction

Let χ be a character $(\bmod q)$ and let $L(s, \chi)$ be the corresponding Dirichlet L function. In this paper we consider the order of magnitude of $L(s, \chi)$ along the critical line $\operatorname{Re}(s)=\frac{1}{2}$. The trivial bound in this context is

$$
\begin{equation*}
L\left(\frac{1}{2}+i t, \chi\right) \ll(q T)^{1 / 4}, \tag{1}
\end{equation*}
$$

where, as later, $T=|t|+1$. The estimate (1) follows, for example, from Lemma 1. Burgess [2] has given bounds for $L(s, \chi)$ that are sharper than (1) with respect to q; although he does not give the dependence on T explicitly, it is clear that his method yields

$$
\begin{equation*}
L\left(\frac{1}{2}+i t, \chi\right) \ll q^{3 / 16+\varepsilon} T, \tag{2}
\end{equation*}
$$

for any $\varepsilon>0$. This estimate has had many applications, for example to sharpenings of the Brun-Titchmarsh theorem on primes in arithmetic progressions.

Burgess' bound (2) is weaker than the trivial bound (1) for $q \leqq T^{12}$. However there is an alternative method which improves upon (1) for sufficiently large T; one treats the q-dependence trivially and applies van der Corput's method to sums of the type

$$
\sum_{n}(n q+r)^{-s}
$$

J. G. van der Corput, Verschärfung der Abschäätzung beim Teilerproblem, Math. Ann., 87 (1922), 39-65.

$$
\text { D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. } 47 \text { (1978), 149-170. }
$$

Developments and improvements

Verschärfung der Abschătzang beim Teilerproblem.

Von

J. G. van der Corput in Freiburg (Schweiz).

Es beseidhne $\boldsymbol{T}(\boldsymbol{n})$ die Anzabl der Teiler der positiven ganzen Zahl \boldsymbol{n}, $\tau(x)$ die sammatorisohe Funktion

$$
v(x)=\sum_{n \leq v} T(x)=\sum_{n \leq v}\left[\begin{array}{l}
x \\
n
\end{array}\right] \quad(x \geq 0),
$$

\boldsymbol{C} die Eulersche Konstante, $\boldsymbol{R}(\boldsymbol{x})$ die Funktion

$$
R(x)=-\tau(x)-x \log x-(2 C-1) x \quad(x>0) .
$$

Itber Dirichlete Ergebnis

$$
R(x)=O(\sqrt{x})
$$

war erst Voronoi ${ }^{1}$) 1903 hinausgekommen, indem or

$$
R(x)=O(\sqrt[t]{x} \log x
$$

bewies. Bis jetat hat man $|\boldsymbol{R}(x)|$ nioht sohi können, so daß die Absohătraung

$$
R(x)=O\left(x^{\nu}\right)
$$ welche ich in dieser Note bewrisen werde, ne

Aus der (mit elementarsten Mittoln bewe

$$
R(x)=-2 \sum_{n \leq \sqrt{n}}\left(\frac{x}{n}-\left[\frac{x}{x}\right]-\right.
$$

${ }^{2}$) G. Vorcona, tow wn probluec ats onlons dee
 ${ }^{9}$ Vgl. s, B. R. Laiadea, Uber Dintaldes Tritere
 S. 18-82] 8. 15-18.

J. G. van der Corput, Verschärfung der Abschäätzung beim Teilerproblem, Math. Ann., 87 (1922), 39-65.
D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 149-170.

van der Corput in arithmetic situations

$$
S(\Psi ; I)=\sum_{n \in I} \Psi(n)
$$

Lemma (A - and B-processes, Heath-Brown / Irving)

- (A-process) Assume $q=q_{1} q_{2}$ with $\left(q_{1}, q_{2}\right)=1$ and $\Psi_{i}: \mathbf{Z} / q_{i} \mathbf{Z} \rightarrow \mathbf{C}$. Define $\Psi=\Psi_{1} \Psi_{2}$, then we have

$$
|S(\Psi ; I)|^{2} \leqslant\left\|\Psi_{2}\right\|_{\infty}^{2} q_{2}\left(|I|+\sum_{0<|\ell| \leqslant|I| / q_{2}}\left|\sum_{n, n+\ell q_{2} \in I} \Psi_{1}(n) \overline{\Psi_{1}\left(n+\ell q_{2}\right)}\right|\right) .
$$

- (B-process) For $\Psi: \mathbf{Z} / q \mathbf{Z} \rightarrow \mathbf{C}$, we have

$$
S(\Psi ; I) \ll \frac{|I|}{\sqrt{q}}\left(|\widehat{\Psi}(0)|+(\log q)\left|\sum_{h \in \mathcal{I}} \widehat{\Psi}(h) \mathrm{e}\left(\frac{h a}{q}\right)\right|\right)
$$

for certain $a \in \mathbf{Z}$ and some interval \mathcal{I} not containing 0 with $|\mathcal{I}| \leqslant q /|I|$, where $\widehat{\Psi}$ denotes the (normalized) Fourier transform of Ψ.

Trace functions as desired

To apply the A - and B-processes iteratively, one shoud expect both of

$$
n \mapsto \Psi_{1}(n) \overline{\Psi_{1}\left(n+\ell q_{2}\right)}, \quad n \mapsto \widehat{\Psi}(n)
$$

are good, in the sense that they still reveal certain oscillations.
Examples -

- $\Psi(n)=\chi(n)$ (subconvexity of Dirichlet L-functions)
- $\Psi(n)=\mathrm{e}(\bar{n} / q)$ (divisor functions in arithmetic progressions, prime gaps)

Trace functions as desired

To apply the A - and B-processes iteratively, one shoud expect both of

$$
n \mapsto \Psi_{1}(n) \overline{\Psi_{1}\left(n+\ell q_{2}\right)}, \quad n \mapsto \widehat{\Psi}(n)
$$

are good, in the sense that they still reveal certain oscillations.
Examples -

- $\Psi(n)=\chi(n)$ (subconvexity of Dirichlet L-functions)
- $\Psi(n)=\mathrm{e}(\bar{n} / q)$ (divisor functions in arithmetic progressions, prime gaps)

All above can be well interpreted in the language of trace functions following the spirit of Deligne-Katz-Fouvry-Kowalski-Michel.

Trace functions as desired

Let $p \neq \ell$ be two primes, and fix an isomorphism $\iota: \overline{\mathbf{Q}} \rightarrow \mathbf{C}$.

- Let \mathcal{F} be an ℓ-adic middle-extension sheaf pure of weight zero, which is lisse on an open set U. The trace function associated to \mathcal{F} is defined by

$$
K: x \in \mathbf{F}_{p} \mapsto \iota\left(\operatorname{tr}\left(\operatorname{Frob}_{x} \mid V_{\mathcal{F}}\right)\right),
$$

where Frob_{x} denotes the geometric Frobenius at $x \in \mathbf{F}_{p}$, and $V_{\mathcal{F}}$ is a finite dimensional $\overline{\mathbf{Q}}_{\boldsymbol{\ell}}$-vector space, corresponding to a continuous finite-dimensional Galois representation, is unramified at every closed point x of U.

- Define the (analytic) conductor of \mathcal{F} to be

$$
\mathfrak{c}(\mathcal{F})=\operatorname{rank}(\mathcal{F})+\sum_{x \in S(\mathcal{F})}\left(1+\operatorname{Swan}_{x}(\mathcal{F})\right)
$$

where $S(\mathcal{F}) \subset \mathbf{P}^{1}\left(\overline{\mathbf{F}}_{p}\right)$ denotes the set of singularities of \mathcal{F}, and $\operatorname{Swan}_{x}(\mathcal{F}) \geqslant 0$ denotes the Swan conductor of \mathcal{F} at x.

Quasi-orthogonality

P. Deligne, La conjecture de Weil, II, Publ. Math. IHES 52 (1980), 137-252.

Proposition (Deligne)

Suppose $\mathcal{F}_{1}, \mathcal{F}_{2}$ are two "admissible sheaves" on $\mathbf{P}_{\mathbf{F}_{p}}^{1}$, and K_{1}, κ_{2} are the associated trace functions, respectively. If $\mathcal{F}_{1}, \mathcal{F}_{2}$ have no common geometrically irreducible components, then there exists an absolute constant $C>0$ such that

$$
\left|\sum_{x \in \mathbf{F}_{p}} \kappa_{1}(x) \overline{K_{2}(x)}\right| \leqslant C \cdot \mathfrak{c}\left(\mathcal{F}_{1}\right)^{4} \mathfrak{c}\left(\mathcal{F}_{2}\right)^{4} \sqrt{p}
$$

- squareroot cancellation
- mild assumptions on $\mathcal{F}_{1}, \mathcal{F}_{2}$

Composite trace functions

Let q be a squarefree number. We consider the composite trace function K modulo q, given by the product

$$
K(n)=\prod_{p \mid q} K_{p}(n),
$$

where K_{p} is a trace function associated to some ℓ-adic middle-extension sheaf on $\mathbf{A}_{\mathbf{F}_{p}}^{1}$. The value of $\kappa_{p}(n)$ may depend on the complementary divisor q / p. Moreover, we write

$$
K(n)=\prod_{1 \leqslant j \leqslant \mathcal{F}} K\left(n, q_{j}\right)
$$

where $q=q_{1} q_{2} \cdots q_{\mathcal{J}}$ for some $\mathcal{F} \geqslant 1, q_{j}$'s are not necessarily primes but they are pairwise coprime. For each $p \mid q$, we assume $\mathfrak{c}\left(\mathcal{F}_{p}\right) \leqslant \mathfrak{c}$ for some uniform $\mathfrak{c}>0$.
Convention: $K(n) \equiv 1$ if $q=1$.

Trace functions via van der Corput

- We concern admissible sheaves, which are middle-extension on $\mathbf{A}_{\mathbf{F}_{p}}^{1}$, pointwise pure of weight 0 (in the sense of Deligne) and of Fourier type.
- A composite trace function $K(\bmod q)$ is called to be admissible, if the reduction K_{p} is admissible for each $p \mid q$.

Definition (Amiable sheaf)

- An admissible sheaf \mathcal{F}_{p} over \mathbf{F}_{p} is said to be d-amiable if it is geometrically isotypic and no geometrically irreducible component is geometrically isomorphic to an Artin-Schreier sheaf of the form $\mathcal{L}_{\psi(P)}$, where $P \in \mathbf{F}_{p}[X]$ is of degree $\leqslant d$. In such case, we also say the associated trace function K_{p} is d-amiable.
- A composite $K(\bmod q)$ is said to be compositely d-amiable if for each $p \mid q, K_{p}$ can be decomposed into a sum of d-amiable trace functions, in which case we also say the sheaf $\mathcal{F}:=\left(\mathcal{F}_{p}\right)_{p \mid q}$ is compositely d-amiable.
- A sheaf (or its associated trace function) is said to be (compositely) ∞-amiable if it is (compositely) amiable for any fixed $d \geqslant 1$.

Trace functions via van der Corput

In A-process, we expect $n \mapsto K(n+a) \overline{K(n)}$ is "amiable" for each $a \in \mathbf{F}_{p}^{\times}$.

Lemma (Polymath 8, 2014)

Let d be a positive integer and $p>d$. Suppose \mathcal{F} is a d-amiable admissible sheaf over \mathbf{F}_{p} with $\mathfrak{c}(\mathcal{F}) \leqslant p$. Then, for each $a \in \mathbf{F}_{p}^{\times}$, the sheaf $[+a]^{*} \mathcal{F} \otimes \check{\mathcal{F}}$ is compositely $(d-1)$-amiable with

$$
\mathfrak{c}\left([+a]^{*} \mathcal{F} \otimes \check{\mathcal{F}}\right) \leqslant 5 \mathfrak{c}(\mathcal{F})^{4} .
$$

More precisely, the trace function of $[+a]^{*} \mathcal{F} \otimes \breve{\mathcal{F}}$ can be decomposed into the sum of $\leqslant 5 \mathfrak{c}(\mathcal{F})^{4}$ of trace functions, each of which is $(d-1)$-amiable and has a conductor at most $5 \mathfrak{c}(\mathcal{F})^{4}$.

Remark. For any ∞-amiable sheaf \mathcal{F} and large prime $p,[+a]^{*} \mathcal{F} \otimes \check{\mathcal{F}}$ is also compositely ∞-amiable for each $a \in \mathbf{F}_{p}^{\times}$.

Trace functions via van der Corput

In B-process, we expect $n \mapsto \widehat{K}(n)$ is also "amiable".

Lemma (Laumon, Brylinski, Katz, Fouvry-Kowalski-Michel)

Let ψ be a non-trivial additive character of \mathbf{F}_{p} and \mathcal{F} a Fourier sheaf on $\mathbf{A}_{\mathbf{F}_{p}}^{1}$. Then there exists an ℓ-adic sheaf $\mathrm{FT}_{\psi}(\mathcal{F})$ called the Fourier transform of \mathcal{F}, which is also an ℓ-adic Fourier sheaf, with the property that

$$
\kappa_{\mathrm{FT}_{\psi}(\mathcal{F})}(y)=\mathrm{FT}_{\psi}\left(\kappa_{\mathcal{F}}\right)(y):=\frac{-1}{\sqrt{p}} \sum_{x \in \mathbf{F}_{p}} \kappa_{\mathcal{F}}(x) \psi(y x)
$$

Furthermore, we have

- $\mathrm{FT}_{\psi}(\mathcal{F})$ is pointwise of weight 0 on an open set, if and only if \mathcal{F} is;
- $\mathrm{FT}_{\psi}(\mathcal{F})$ is geometrically irreducible, or geometrically isotypic, if and only if \mathcal{F} is;
- We have

$$
\mathfrak{c}\left(\mathrm{FT}_{\psi}(\mathcal{F})\right) \leqslant 10 \mathfrak{c}(\mathcal{F})^{2}
$$

Trace functions via van der Corput

After several steps of A-processes, one may apply the B-process if the resultant sheaves/trace functions are sufficiently "amiable". In addition, we would also like to check the amiability after applying the B-process.

Lemma (J. Wu - X.)

Suppose $r \geqslant 1, d \geqslant 2$ and $a \in \mathbf{F}_{p}^{\times}$. If \mathcal{F} is a compositely d-amiable sheaf on $\mathbf{A}_{\mathbf{F}_{p}}^{1}$ of rank r with $\mathfrak{c}(\mathcal{F}) \leqslant p$. Denote by \mathcal{G} the Fourier transform of $[+a]^{*} \mathcal{F} \otimes \check{\mathcal{F}}$.

- If $r=1$, then \mathcal{G} is compositely 1 -amiable when $d=2$, and is compositely ∞-amiable when $d \geqslant 3$.
- If $r \geqslant 2$, then \mathcal{G} is compositely 2-amiable. Moreover, for a given $a \in \mathbf{F}_{p}^{\times}$, if $[+a]^{*} \mathcal{F} \otimes \breve{\mathcal{F}}$ is geometrically irreducible, then \mathcal{G} is geometrically irreducible and r^{2}-amiable.

Trace functions via van der Corput

Examples of amiable trace functions -

- $\psi\left(f_{1}(n) \overline{f_{2}(n)}\right)$, where ψ is a primitive additive character, $f_{1}, f_{2} \in \mathbf{F}_{p}[X]$, $\operatorname{deg}\left(f_{1}\right)<\operatorname{deg}\left(f_{2}\right)<p$ and $\operatorname{deg}\left(f_{2}\right) \geqslant 1$;
- $\chi(f(n)) \psi(g(n))$, where χ is a primitive multiplicative character $\bmod p, \psi$ is not necessarily primitive, f, g are rational functions and f is not a d-th power of another rational function with d being the order of χ;
- $\mathrm{Kl}_{k}(n, p)$ as a normalized hyper-Kloosterman sum of rank $k \geqslant 2$;
- The Fourier transforms of the above examples;
- The resultant functions by applying (partially)

$$
B A^{3} B A^{2} B A B
$$

or

$$
A B A^{3} B A^{2} B A B
$$

to the above examples.

Arithmetic exponent pairs

- $q \geqslant 3$ is a squarefree number with $P^{+}(q)<q^{\eta}$ for any small $\eta>0$
- $K=$ a compositely amiable trace function $\bmod q$
- $\delta \geqslant 1$ with $(\delta, q)=1$
- $W_{\delta}: \mathbf{Z} / \delta \mathbf{Z} \rightarrow \mathbf{C}$ (deformation factor)

Consider

$$
\mathfrak{S}(K, W ; I):=\sum_{n \in I} K(n) W_{\delta}(n),
$$

where $|I|=\mathcal{N}$. We assume $\mathcal{N}<q \delta$, i.e., we work on incomplete sums.

- We expect the following bound holds for some (κ, λ, ν) :

$$
\mathfrak{S}(K, W ; I) \ll_{\eta, \varepsilon, \mathfrak{c}} \mathcal{N}^{\varepsilon}(q / \mathcal{N})^{\kappa} \mathcal{N}^{\lambda} \delta^{\nu}\left\|W_{\delta}\right\|_{\infty}
$$

Arithmetic exponent pairs

Proposition (Initial choices)

If K is compositely 1-amiable, then $(\boldsymbol{\Omega})$ holds for

$$
(\kappa, \lambda, \nu)=(0,1,0), \quad\left(\frac{1}{2}, \frac{1}{2}, 1\right) .
$$

Classical vdC starts from the trivial exponent pair $(0,1)$; this corresponds to the q-analogue

$$
\mathfrak{S}(K, W ; I) \ll \mathcal{N}^{\varepsilon}(q / \mathcal{N})^{0} \mathcal{N}^{1} \delta^{0}\left\|W_{\delta}\right\|_{\infty} .
$$

However, we can always employ B-process (Poisson summation), so that our initial exponent pairs are in fact related to $\left(\frac{1}{2}, \frac{1}{2}\right)=B \cdot(0,1)$ in the classical case.

Arithmetic exponent pairs

Let $\mathcal{F}, L \geqslant 1$. Denote by $\mathfrak{A}_{q}(\mathcal{F}, L)$ the set of trace functions $K(\bmod q)$ such that

- K is compositely \mathcal{F}-amiable
- \widehat{K} is compositely L-amiable

Definition (Exponent pairs)

Let $0 \leqslant \kappa \leqslant \frac{1}{2} \leqslant \lambda \leqslant 1$ and $0 \leqslant \nu \leqslant 1$.
We say (κ, λ, ν) is an exponent pair of width $(\mathcal{F} ; L)$, if $(\boldsymbol{\Omega})$ holds

- for all $K \in \mathfrak{A}_{q}(\mathcal{F}, L)$,
- for all $W_{\delta}: \mathbf{Z} / \delta \mathbf{Z} \rightarrow \mathbf{C}$.

An exponent pair of width $(\infty ; L)$ with some $L \geqslant 1$ is called an arithmetic exponent pair.

Arithmetic exponent pairs

Theorem (A-process)

Let $\mathcal{F} \geqslant 1$. If (κ, λ, ν) is an exponent pair of width $(\mathcal{F} ; 1)$, then

$$
A \cdot(\kappa, \lambda, \nu)=\left(\frac{\kappa}{2(\kappa+1)}, \frac{\kappa+\lambda+1}{2(\kappa+1)}, \frac{1}{2}\right)
$$

is an exponent pair of width $(\mathcal{F}+1 ; 1)$.

Theorem (B-process)

If (κ, λ, ν) is an exponent pair of width $(1 ; 1)$, then so is

$$
B \cdot(\kappa, \lambda, \nu)=\left(\lambda-\frac{1}{2}, \kappa+\frac{1}{2}, \nu+\lambda-\kappa\right) .
$$

List of arithmetic exponent pairs

The following tables give the first several exponent pairs produced by different combinations of A - and B-processes to $\left(\frac{1}{2}, \frac{1}{2}, 1\right)$. Note that ν is omitted in the list since it is not essential in many applications.

Processes	A	A^{2}	A^{3}	$B A^{2}$
(κ, λ)	$\left(\frac{1}{6}, \frac{2}{3}\right)$	$\left(\frac{1}{14}, \frac{11}{14}\right)$	$\left(\frac{1}{30}, \frac{26}{30}\right)$	$\left(\frac{2}{7}, \frac{4}{7}\right)$

Processes	$B A^{3}$	$A B A^{2}$	$A^{2} B A^{2}$	$B A B A^{2}$
(κ, λ)	$\left(\frac{11}{30}, \frac{16}{30}\right)$	$\left(\frac{2}{18}, \frac{13}{18}\right)$	$\left(\frac{2}{40}, \frac{33}{40}\right)$	$\left(\frac{4}{18}, \frac{11}{18}\right)$

An application to a special case of Schinzel Hypothesis

Conjecture (Schinzel Hypothesis)

Suppose $f_{1}, f_{2}, \cdots, f_{k}$ are arbitrarily irreducible polynomials with integral coefficients such that $f_{1} f_{2} \cdots f_{k}$ has no fixed prime factors. Then there should exist infinitely many n, such that $f_{1}(n), f_{2}(n), \cdots, f_{k}(n)$ take prime values simultaneously. In particular,

- $n^{2}+1$ is prime infinitely often;
- $p+2$ is prime infinitely often;
- $p^{2}+2$ is prime infinitely often.

An application to a special case of Schinzel Hypothesis

Conjecture (Schinzel Hypothesis)

Suppose $f_{1}, f_{2}, \cdots, f_{k}$ are arbitrarily irreducible polynomials with integral coefficients such that $f_{1} f_{2} \cdots f_{k}$ has no fixed prime factors. Then there should exist infinitely many n, such that $f_{1}(n), f_{2}(n), \cdots, f_{k}(n)$ take prime values simultaneously. In particular,

- $n^{2}+1$ is prime infinitely often;
- $p+2$ is prime infinitely often;
- $p^{2}+2$ is prime infinitely often.

The existing approaches approximating Schinzel Hypothesis include

- almost prime values: P_{r}
- greatest prime factors: $P^{+}(n)$
- prime gaps
-

An application to a special case of Schinzel Hypothesis

Theorem (Richert, 1969)

Supposef is an irreducible polynomial of degree k with integral coefficients, and $n f(n)$ has no fixed prime factors. Then there exist infinitely many primes p, such that $f(p)=P_{2 k+1}$. In particular, $p^{2}+2=P_{5}$ infinitely often.

An application to a special case of Schinzel Hypothesis

Theorem (Richert, 1969)

Supposef is an irreducible polynomial of degree k with integral coefficients, and $n f(n)$ has no fixed prime factors. Then there exist infinitely many primes p, such that $f(p)=P_{2 k+1}$. In particular, $p^{2}+2=P_{5}$ infinitely often.

Theorem (J. Wu-X., 2017)

(i) There are infinitely many primes p such that $p^{2}+2=P_{4}$.
(ii) There are infinitely many primes p such that $P^{+}\left(p^{2}+2\right)>p^{0.847}$.

An application to a special case of Schinzel Hypothesis

Theorem (Richert, 1969)

Supposef is an irreducible polynomial of degree k with integral coefficients, and $n f(n)$ has no fixed prime factors. Then there exist infinitely many primes p, such that $f(p)=P_{2 k+1}$. In particular, $p^{2}+2=P_{5}$ infinitely often.

Theorem (J. Wu-X., 2017)

(i) There are infinitely many primes p such that $p^{2}+2=P_{4}$.
(ii) There are infinitely many primes p such that $P^{+}\left(p^{2}+2\right)>p^{0.847}$.

- Irving (2015) improved Richert's result for $k \geqslant 3$.
- Dartyge (1996) proved $P^{+}\left(p^{2}+2\right)>p^{0.78}$ infinitely often.

Related works - Shifted convolution

- $\lambda_{1}(1, n)=$ Fourier coefficient of an $\operatorname{SL}(3, \mathbf{Z})$ Hecke-Maass cusp form
- $\lambda_{2}(n)=$ Fourier coefficient of an $\operatorname{SL}(2, \mathbf{Z})$ Hecke-Maass cusp form

$$
\mathscr{D}_{h}(X)=\sum_{n \leqslant X} \lambda_{1}(1, n) \lambda_{2}(n+h)
$$

Munshi (Duke, 2013) proved that

$$
\mathscr{D}_{h}(X) \ll X^{1-\delta}, \quad \delta<\frac{1}{26} .
$$

Theorem (X., 2018)

Uniformly for $0<|h| \leqslant X$, we have

$$
\mathscr{D}_{h}(X) \ll X^{1-\delta}, \quad \delta<\frac{1}{22} .
$$

- Circle method (Jutila) + Voronoi summation + arithmetic exponent pairs

$$
h \mapsto \frac{1}{\sqrt{q}} \sum_{x(\bmod q)}^{*} \mathrm{Kl}(\bar{x}+a, q) \mathrm{e}\left(\frac{-h x}{q}\right)
$$

Related works - Pell equation

Denote by $\varepsilon_{D}=t_{0}+u_{0} \sqrt{D}$ the fundamental solution to the Pell equation

$$
t^{2}-D u^{2}=1
$$

For $\alpha>0$ and $x \geqslant 2$, define

$$
S^{\mathrm{f}}(x, \alpha):=\#\left\{2 \leqslant D \leqslant x: D \neq \square, \varepsilon_{D} \leqslant D^{\frac{1}{2}+\alpha}\right\}
$$

Hooley (1984) proved that for $\left.\alpha \in] 0, \frac{1}{2}\right]$,

$$
S^{\mathrm{f}}(x, \alpha) \sim \frac{4 \alpha^{2}}{\pi^{2}} \sqrt{x} \log ^{2} x
$$

Conjecture (Hooley, Crelle (1984))

Uniformly for $\left.\alpha \in] \frac{1}{2}, 1\right]$, we have

$$
S^{\mathrm{f}}(x, \alpha) \sim \frac{1}{\pi^{2}}(4 \alpha-1) \sqrt{x} \log ^{2} x
$$

Related works - Pell equation

- Fouvry (Crelle, 2016): For $\left.\alpha \in] \frac{1}{2}, 1\right]$,

$$
S^{\mathrm{f}}(x, \alpha) \geqslant \frac{1}{\pi^{2}}\left(4 \alpha-1-4\left(\alpha-\frac{1}{2}\right)^{2}-o(1)\right) \sqrt{x} \log ^{2} x .
$$

- Bourgain (IMRN, 2015): As $\alpha \rightarrow \frac{1}{2}+$,

$$
S^{\mathrm{f}}(x, \alpha) \geqslant \frac{1}{\pi^{2}}\left(4 \alpha-1+O\left(\left(\alpha-\frac{1}{2}\right)^{2+c}\right)-o(1)\right) \sqrt{x} \log ^{2} x
$$

Theorem (X., 2018)

Uniformly for $\left.\alpha \in] \frac{1}{2}, \frac{35}{69}\right]$, we have

$$
S^{\mathrm{f}}(x, \alpha) \geqslant \frac{1}{\pi^{2}}\left(4 \alpha-1-\frac{11}{5}\left(\alpha-\frac{1}{2}\right)^{2}+\frac{6}{5}\left(\alpha-\frac{1}{2}\right)^{3}\right) \sqrt{x} \log ^{2} x .
$$

Related works - Pell equation

In fact, we have the more general theorem.

Theorem (X., 2018)

For any fixed $\theta \in] 0, \frac{1}{2}[$, we have

$$
S^{\mathrm{f}}(x, \alpha) \geqslant \frac{1}{\pi^{2}}\left(4 \alpha-1-4\left(\alpha-\frac{1}{2}\right)^{2}+\frac{1}{6} \rho\left(\frac{1}{\theta}\right) F_{\theta}(\alpha)-o(1)\right) \sqrt{x} \log ^{2} x
$$

uniformly in $\alpha \in\left[\frac{1}{2}, 1\right]$, where ρ is the Dickman function and

$$
F_{\theta}(\alpha)=\left[\begin{array}{cc}
24 \alpha-4(5+2 \theta) \alpha^{2}-(7-2 \theta), & \alpha \in\left[\frac{1}{2}, \frac{6}{11+2 \theta}\right] \\
864(11+2 \theta)^{-2}-(7-2 \theta), & \left.\alpha \in] \frac{6}{11+2 \theta}, 1\right] .
\end{array}\right.
$$

Related works - Pell equation

The basic idea is transform the problem to the estimate for triple exponential sums

$$
\sum_{h \leqslant H} \sum_{\substack{m \sim M \\(2, m n)=(m, n)=1 \\ m \text { is } M^{\theta} \text {-smooth }}} \sum_{n \sim \mathcal{L}} \mathrm{e}\left(\frac{h \bar{n}^{2}}{m^{2}}\right) .
$$

Here the moduli is a perfect square, but the ideas of van der Corput method also applies.

We use $B A B$-process.

Other applications

- Bounding Dirichlet L-functions $L\left(\frac{1}{2}, \chi\right)$ to smooth moduli
- Divisor functions in arithmetic progressions to smooth moduli

$$
\sum_{\substack{n \leqslant X \\ n \equiv a(\bmod q)}} \tau_{\kappa}(n) \quad(\kappa=2,3)
$$

- Distribution of roots of reducible polynomials [Dartyge-Martin, 2019]

$$
\sum_{n \leqslant x} \sum_{\substack{a(\bmod n) \\ f(a) \equiv 0(\bmod n)}} \mathrm{e}\left(\frac{h a}{n}\right)(h \neq 0)
$$

where one may take $f(x)=x(x+1), x\left(x^{2}+1\right), x(x+1)(2 x+1)$.

In the spirit of q-van der Corput method

$$
\sum_{n \in I} F_{q}(n)
$$

- Heath-Brown (2001) proved that $P^{+}\left(n^{3}+2\right)>n^{1+10^{-303}}$ for infinitely many n, as an approximation to presenting primes by cubic polynomials.
- Pierce (2006) obtained the first non-trivial bound for the size of 3-part of the class group of $\mathbf{Q}(\sqrt{-D})$ with the help of q-vdC.
- Zhang (2014) employed similar ideas to primes in APs to smooth moduli, going beyond $\frac{1}{2}$ in the classical Bombieri-Vinogradov theorem, which allows him to prove the existence of bounded gaps between infinitely many consecutive primes. Polymath8 (2014) pushed the ideas further.
- Irving $(2015,2016)$ picked up the original ideas of Heath-Brown. He obtained a sub-Weyl bound for $L\left(\frac{1}{2}, \chi\right)$ to smooth moduli, and can also go beyond the Selberg-Hooley barrier on τ in APs (smooth moduli).
- Blomer \& Milićević (2014): moments of modular L-functions

Arithmetic exponent pairs on average

- $x \geqslant 3$ large enough, $\eta>0$ sufficiently small
- $S(Q, \eta):=\left\{Q<q \leqslant 2 Q: P^{+}(q) \leqslant Q^{\eta}, \mu^{2}(q)=1\right\}$
- K_{q} is a composite trace function $(\bmod q)$
- $I=I_{q}$ is an interval (might depend mildly on q) with $|I| \asymp \mathcal{N}$

$$
\mathfrak{S}(Q, \eta)=\frac{1}{|S(Q, \eta)|} \sum_{q \in S(Q, \eta)} \sum_{n \in I_{q}} K_{q}(n)
$$

Arithmetic exponent pairs on average

We may defined the (arithmetic) exponent pair (κ, λ) such that

$$
\begin{equation*}
\mathfrak{S}(Q, \eta) \ll Q^{\varepsilon}(Q /|I|)^{\kappa}|I|^{\lambda} \tag{1}
\end{equation*}
$$

holds for all K_{q} in a suitable family.

Theorem (X., 202+)

If (κ, λ) is an exponent pair of suitable width, then so is

$$
C \cdot(\kappa, \lambda)=\left(\frac{1+2 \kappa}{2(5+4 \kappa-2 \lambda)}, \frac{3+3 \kappa-\lambda}{5+4 \kappa-2 \lambda}\right) .
$$

We have $C \cdot\left(\frac{1}{6}, \frac{2}{3}\right)=\left(\frac{2}{13}, \frac{17}{26}\right)$, which gives a non-trivial bound for $\mathfrak{S}(Q, \eta)$ for $|I|>Q^{\frac{4}{13}+\varepsilon}$, which beats the previous range $|I|>Q^{\frac{1}{3}+\varepsilon}$.

Arithmetic exponent pairs: averaged

By elaborating A - and B-processes more effectively, we will encounter the transform

$$
h \mapsto \sum_{a \in \mathbf{F}_{p}} \widehat{\widehat{K}}_{p}(a) \widehat{K}_{p}(a+v) \psi(-h a) .
$$

In particular, we have to characterize the geometric features of K under the above transform. More basically, we need to study the sheaf

$$
\mathrm{FT}_{\psi}\left(\mathrm{FT}_{\psi}(\mathcal{F})^{\vee} \otimes\left([+v]^{*} \mathrm{FT}_{\psi}(\mathcal{F})\right)\right)
$$

and hope some essential properties can be kept under such transformations!

Concluding remarks

- With the input from algebraic geometry, Kloosterman sums, as well as many other algebraic exponential sums, may provide powerful tools in modern analytic number theory.
- Methods in analytic number theory can also be employed to demonstrate certain objects in arithmetic geometry, for instance, counting rational points on projective varieties.
- More interfaces to be done!

Thank you for your attention!

