

Arithmetic Exponent Pairs: Individual & Averaged

PING XI

School of Mathematics & Statistics, Xi'an Jiaotong University ping.xi@xjtu.edu.cn

PanAsian Number Theory Conference December 07, 2021

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 1/45

• J. Wu & P. Xi, Arithmetic exponent pairs for algebraic trace functions and applications, with an appendix by Will Sawin, to appear in *Algebra Number Theory*.

- J. Wu & P. Xi, Quadratic polynomials at prime arguments, *Math. Z.* **285** (2017), 631–646.
- P. Xi, Ternary divisor functions in arithmetic progressions to smooth moduli, *Mathematika* **64** (2018), 701–729.
- P. Xi, Counting fundamental solutions to the Pell equation with prescribed size, *Compositio Math.* **154** (2018), 2379–2402.

- Algebraic exponential sums: background
- Developing the method of arithmetic exponent pairs
- Several applications
- Arithmetic exponent pairs on average

- $e(z) := exp(2\pi i z)$
- $U = \{u_n\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R}/\mathbf{Z}$
- *I* an interval

Exponential Sum

 $\sum_{n\in I} \mathrm{e}(u_n)$

э

イロト イヨト イヨト イヨト

- $e(z) := exp(2\pi i z)$
- $U = \{u_n\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R}/\mathbf{Z}$
- *I* an interval

Exponential Sum

$$\sum_{n\in I} \mathrm{e}(u_n)$$

• (Weyl) $U = \{\alpha n^k\}_{n \leq N} : \alpha \in \mathbf{R} \setminus \mathbf{Q}, k \in \mathbf{Z}^+$ (equidistribution)

- $e(z) := exp(2\pi i z)$
- $U = \{u_n\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R}/\mathbf{Z}$
- I an interval

Exponential Sum

$$\sum_{n\in I} \mathrm{e}(u_n)$$

- (Weyl) $U = \{\alpha n^k\}_{n \leqslant N}$: $\alpha \in \mathbf{R} \setminus \mathbf{Q}, k \in \mathbf{Z}^+$ (equidistribution)
- (Hardy–Littlewood, et al) $U=\{t\log n\}_{n\leqslant N}:\ t\in {\bf R}$ (Lindel of hypothesis for $\zeta(s))$

- $e(z) := exp(2\pi i z)$
- $U = \{u_n\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R}/\mathbf{Z}$
- I an interval

Exponential Sum

$$\sum_{n\in I} \mathrm{e}(u_n)$$

- (Weyl) $U = \{\alpha n^k\}_{n \leqslant N}$: $\alpha \in \mathbf{R} \setminus \mathbf{Q}, k \in \mathbf{Z}^+$ (equidistribution)
- (Hardy–Littlewood, et al) $U=\{t\log n\}_{n\leqslant N}:\ t\in {\bf R}$ (Lindel of hypothesis for $\zeta(s))$
- (Vinogradov) $U = \{\alpha p\}_{p \leqslant \mathcal{N}}: \ \alpha \in \mathbf{R} \smallsetminus \mathbf{Q} (\text{ternary Goldbach problem})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- $e(z) := exp(2\pi i z)$
- $U = \{u_n\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R}/\mathbf{Z}$
- I an interval

Exponential Sum

$$\sum_{n\in I} \mathrm{e}(u_n)$$

- (Weyl) $U = \{\alpha n^k\}_{n \leqslant N}$: $\alpha \in \mathbf{R} \setminus \mathbf{Q}, k \in \mathbf{Z}^+$ (equidistribution)
- (Hardy–Littlewood, et al) $U=\{t\log n\}_{n\leqslant N}:\ t\in {\bf R}$ (Lindel of hypothesis for $\zeta(s))$
- (Vinogradov) $U = \{\alpha p\}_{p \leqslant \mathcal{N}}: \ \alpha \in \mathbf{R} \smallsetminus \mathbf{Q} (\text{ternary Goldbach problem})$
- (Kloosterman) $U = \{\overline{n}/p\}_{n \leq x, p \nmid n} : p \text{ is a large prime}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- $e(z) := exp(2\pi i z)$
- $U = \{u_n\} \subseteq \mathbf{R} \rightsquigarrow \mathbf{R}/\mathbf{Z}$
- I an interval

Exponential Sum

$$\sum_{n\in I} \mathrm{e}(u_n)$$

- (Weyl) $U = \{\alpha n^k\}_{n \leqslant N} : \ \alpha \in \mathbf{R} \setminus \mathbf{Q}, k \in \mathbf{Z}^+$ (equidistribution)
- (Hardy–Littlewood, et al) $U=\{t\log n\}_{n\leqslant N}:\ t\in {\bf R}$ (Lindel of hypothesis for $\zeta(s))$
- (Vinogradov) $U = \{\alpha p\}_{p \leqslant \mathcal{N}}: \ \alpha \in \mathbf{R} \smallsetminus \mathbf{Q} (\text{ternary Goldbach problem})$
- (Kloosterman) $U = \{\overline{n}/p\}_{n \leq x, p \nmid n} : p \text{ is a large prime}$
- (Hooley) $U = \{ha/n\}_{f(a) \equiv 0 \pmod{n}, n \leq x} : h \in \mathbb{Z} \setminus \{0\}$

Ping Xi (Xi'an Jiaotong University)

∃ ► ∃ • • • • • •

GOAL

$$\sum_{n\in I} \mathbf{e}(u_n) \ll |I| \Delta(I), \quad \Delta(I) \searrow 0$$

- We expect $\{u_n\}$ is randomly distributed on **R**/**Z**.
- The problem seems more difficult is I is rather short or u_n is highly oscillating
- Weyl, van der Corput, Vinogradov, Bombieri–Iwaniec, Huxley, Bourgain, Wooley, et al

- $q \ge 2$ an integer
- V a suitable algebraic variety over \mathbf{Z} or $\mathbf{Z}/q\mathbf{Z}$

х

• f a rational function over V

Algebraic Exponential Sum

$$\sum_{\mathbf{z}\in V(\mathbf{Z}/q\mathbf{Z})} e\left(\frac{f(\mathbf{x})}{q}\right)$$

Ping Xi (Xi'an Jiaotong University)

イロト イヨト イヨト イヨン

• Gauss sum

 $\tau(a,\chi) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right)$

590

• Gauss sum

$$au(a,\chi) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{ax}{q}\right)$$

• Kloosterman sum

$$\operatorname{Kl}(a,q) = \frac{1}{\sqrt{q}} \sum_{x \in (\mathbf{Z}/q\mathbf{Z})^*} \operatorname{e}\left(\frac{ax + \overline{x}}{q}\right)$$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Gauss sum

$$au(a,\chi) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{ax}{q}\right)$$

• Kloosterman sum

$$\operatorname{Kl}(a,q) = \frac{1}{\sqrt{q}} \sum_{x \in (\mathbf{Z}/q\mathbf{Z})^*} \operatorname{e}\left(\frac{ax + \overline{x}}{q}\right)$$

• hyper-Kloosterman sum $(k \ge 2)$

$$\mathrm{Kl}_{k}(a,q) = q^{\frac{1-k}{2}} \sum_{\substack{x_{1}, x_{2}, \cdots, x_{k} \in (\mathbf{Z}/q\mathbf{Z})^{*}\\x_{1}x_{2}\cdots x_{k} = a}} e\left(\frac{x_{1} + x_{2} + \cdots + x_{k}}{q}\right)$$

Ping Xi (Xi'an Jiaotong University)

æ

590

• Gauss sum

$$au(a,\chi) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) \mathrm{e}\left(\frac{ax}{q}\right)$$

• Kloosterman sum

$$\operatorname{Kl}(a,q) = \frac{1}{\sqrt{q}} \sum_{x \in (\mathbf{Z}/q\mathbf{Z})^*} \operatorname{e}\left(\frac{ax + \overline{x}}{q}\right)$$

• hyper-Kloosterman sum $(k \ge 2)$

$$\operatorname{Kl}_{k}(a,q) = q^{\frac{1-k}{2}} \sum_{\substack{x_{1}, x_{2}, \cdots, x_{k} \in (\mathbf{Z}/q\mathbf{Z})^{*} \\ x_{1}x_{2}\cdots x_{k} = a}} e\left(\frac{x_{1} + x_{2} + \cdots + x_{k}}{q}\right)$$

$$\mathcal{J}(\chi,\eta) = \sum_{x \in (\mathbf{Z}/q\mathbf{Z})^*} \chi(x)\eta(1-x)$$

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

æ

590

In many applications of harmonic analysis to analytic number theory, we usually encounter *incomplete* sums that do not have nice structures as given by suitable varieties.

For instance, we may consider

$$\sum_{n\in I}a_nF_q(n),$$

where

- F_q is defined over $\mathbf{Z}/q\mathbf{Z}$
- a_n carries the arithmetic structure of n
- *I* is an interval

A D F A B F A B F A B

• character sum

 $\sum_{n\in I}\chi(n)$

• character sum

$$\sum_{n \in I} \chi(n)$$

• incomplete Kloosterman sum

$$\sum_{\substack{n \in I \\ (n,q) = 1}} e\left(\frac{a\overline{n}}{q}\right)$$

(

イロト イポト イヨト イヨ

• character sum

$$\sum_{n \in I} \chi(n)$$

• incomplete Kloosterman sum

$$\sum_{\substack{n \in I \\ n,q) = 1}} e\left(\frac{a\overline{n}}{q}\right)$$

• bilinear form of Kloosterman sums

$$\sum_{m}\sum_{n}\alpha_{m}\beta_{n}\operatorname{Kl}(mn,q)$$

• character sum

$$\sum_{n \in I} \chi(n)$$

• incomplete Kloosterman sum

$$\sum_{\substack{n \in I \\ n,q) = 1}} e\left(\frac{a\overline{n}}{q}\right)$$

• bilinear form of Kloosterman sums

$$\sum_{m}\sum_{n}\alpha_{m}\beta_{n}\operatorname{Kl}(mn,q)$$

• sums of products of Kloosterman sums

$$\sum_{n \in I} \prod_{1 \leq j \leq r} \operatorname{Kl}(n+h_j, q)$$

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 9 / 45

イロト イポト イヨト イヨ

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya–Vinogradov.

Theorem (Pólya–Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi \pmod{q}$,

$$\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q.$$

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya–Vinogradov.

Theorem (Pólya–Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi \pmod{q}$,

$$\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q.$$

• This is non-trivial for $|I|/(\sqrt{q}\log q) \to +\infty$.

イロト イヨト イヨト イヨト

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya–Vinogradov.

Theorem (Pólya–Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi \pmod{q}$,

$$\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q.$$

- This is non-trivial for $|I|/(\sqrt{q}\log q) \to +\infty$.
- A non-trivial bound for shorter *I* is highly desired in many applications.

A basic approach to treat incomplete sums is to apply Fourier analysis, dating back to Pólya–Vinogradov.

Theorem (Pólya–Vinogradov, 1918)

For all non-trivial Dirichlet characters $\chi \pmod{q}$,

$$\sum_{n \in I} \chi(n) \ll \sqrt{q} \log q.$$

- This is non-trivial for $|I|/(\sqrt{q}\log q) \to +\infty$.
- A non-trivial bound for shorter *I* is highly desired in many applications.
- Subconvexity for Dirichlet L-functions

$$L(\frac{1}{2},\chi) \ll q^{\frac{1}{4}-\delta} \quad \leftrightarrow \quad \sum_{n \leqslant \sqrt{q}} \chi(n) \ll q^{\frac{1}{2}-\delta'}.$$

The method of Pólya-Vinogradov can be generalized extensively. Consider

$$S := \sum_{n \in I} F_q(n),$$

where *I* is a certain interval and $F_q : \mathbf{Z}/q\mathbf{Z} \to \mathbf{C}$.

Sac

The method of Pólya-Vinogradov can be generalized extensively. Consider

$$S := \sum_{n \in I} F_q(n),$$

where *I* is a certain interval and $F_q : \mathbb{Z}/q\mathbb{Z} \to \mathbb{C}$. By Plancherel, we have

$$S = \sum_{n \in \mathbf{Z}} F_q(n) I(n) = \frac{1}{\sqrt{q}} \sum_{h \in \mathbf{Z}} \widehat{F}_q(h) \overline{\widehat{I}\left(\frac{h}{q}\right)},$$

where $I(\cdot)$ denotes the characteristic function of I, and the normalized Fourier transform \hat{F}_q of F_q is given by

$$\widehat{F}_q(h) = rac{1}{\sqrt{q}} \sum_{x \in \mathbf{Z}/q\mathbf{Z}} F_q(x) \mathrm{e}\Big(rac{-hx}{q}\Big),$$

$$\widehat{I}(y) = \int_{\mathbf{R}} I(x) e(-yx) dx = \int_{I} e(-yx) dx \ll \min\{|I|, |y|^{-1}, y^{-2}\}.$$

Ping Xi (Xi'an Jiaotong University)

$$\begin{split} \left| S - \frac{1}{\sqrt{q}} \widehat{F}_q(0) \widehat{I}(0) \right| &\leq \frac{1}{\sqrt{q}} \sum_{|h| \ge 1} |\widehat{F}_q(h)| \left| \widehat{I}\left(\frac{h}{q}\right) \right| \\ &\leq \frac{1}{\sqrt{q}} \|\widehat{F}_q\|_{\infty}^* \sum_{|h| \ge 1} \left| \widehat{I}\left(\frac{h}{q}\right) \right|, \end{split}$$

where * means the norms are taken over non-zero elements.

æ

590

・ロト ・ 日 ト ・ 日 ト ・ 日

$$\begin{split} \left| S - \frac{1}{\sqrt{q}} \widehat{F}_q(0) \widehat{I}(0) \right| &\leq \frac{1}{\sqrt{q}} \sum_{|h| \ge 1} |\widehat{F}_q(h)| \left| \widehat{I}\left(\frac{h}{q}\right) \right| \\ &\leq \frac{1}{\sqrt{q}} \|\widehat{F}_q\|_{\infty}^* \sum_{|h| \ge 1} \left| \widehat{I}\left(\frac{h}{q}\right) \right|, \end{split}$$

where * means the norms are taken over non-zero elements.

• sum over *h*: bounded by $O(q^{1+\varepsilon})$

3

Sac

$$\begin{split} \left| S - \frac{1}{\sqrt{q}} \widehat{F}_q(0) \widehat{I}(0) \right| &\leq \frac{1}{\sqrt{q}} \sum_{|h| \ge 1} |\widehat{F}_q(h)| \left| \widehat{I}\left(\frac{h}{q}\right) \right| \\ &\leq \frac{1}{\sqrt{q}} \|\widehat{F}_q\|_{\infty}^* \sum_{|h| \ge 1} \left| \widehat{I}\left(\frac{h}{q}\right) \right|, \end{split}$$

where * means the norms are taken over non-zero elements.

- sum over *h*: bounded by $O(q^{1+\varepsilon})$
- sup-norm: complete sums $O(q^{\varepsilon})$?? [Riemann Hypothesis]

$$\begin{split} \left| S - \frac{1}{\sqrt{q}} \widehat{F}_q(0) \widehat{I}(0) \right| &\leq \frac{1}{\sqrt{q}} \sum_{|h| \ge 1} |\widehat{F}_q(h)| \left| \widehat{I}\left(\frac{h}{q}\right) \right| \\ &\leq \frac{1}{\sqrt{q}} \|\widehat{F}_q\|_{\infty}^* \sum_{|h| \ge 1} \left| \widehat{I}\left(\frac{h}{q}\right) \right|, \end{split}$$

where * means the norms are taken over non-zero elements.

- sum over *h*: bounded by $O(q^{1+\varepsilon})$
- sup-norm: complete sums $O(q^{\varepsilon})$?? [Riemann Hypothesis]

Ideally, one has

$$S = \widehat{F}_{q}(0) \frac{|I|}{\sqrt{q}} + O(q^{\frac{1}{2} + \varepsilon}) \ll (|I|q^{-1} + 1)q^{\frac{1}{2} + \varepsilon}$$

Ping Xi (Xi'an Jiaotong University)

Sac

•

イロト イヨト イヨト イヨト

$$\begin{split} \left| S - \frac{1}{\sqrt{q}} \widehat{F}_q(0) \widehat{I}(0) \right| &\leq \frac{1}{\sqrt{q}} \sum_{|h| \ge 1} |\widehat{F}_q(h)| \left| \widehat{I}\left(\frac{h}{q}\right) \right| \\ &\leq \frac{1}{\sqrt{q}} \|\widehat{F}_q\|_{\infty}^* \sum_{|h| \ge 1} \left| \widehat{I}\left(\frac{h}{q}\right) \right|, \end{split}$$

where * means the norms are taken over non-zero elements.

- sum over *h*: bounded by $O(q^{1+\varepsilon})$
- sup-norm: complete sums $O(q^{\varepsilon})$?? [Riemann Hypothesis]

Ideally, one has

$$S = \widehat{F}_{q}(0) \frac{|I|}{\sqrt{q}} + O(q^{\frac{1}{2} + \varepsilon}) \ll (|I|q^{-1} + 1)q^{\frac{1}{2} + \varepsilon}$$

•
$$F_q(n) = \chi(n), \hat{F}_q = \text{normalized Gauss sum}$$

Ping Xi (Xi'an Jiaotong University)

Sac

イロト イヨト イヨト イヨト

$$\begin{split} \left| S - \frac{1}{\sqrt{q}} \widehat{F}_q(0) \widehat{I}(0) \right| &\leq \frac{1}{\sqrt{q}} \sum_{|h| \ge 1} |\widehat{F}_q(h)| \left| \widehat{I}\left(\frac{h}{q}\right) \right| \\ &\leq \frac{1}{\sqrt{q}} \|\widehat{F}_q\|_{\infty}^* \sum_{|h| \ge 1} \left| \widehat{I}\left(\frac{h}{q}\right) \right|, \end{split}$$

where * means the norms are taken over non-zero elements.

- sum over *h*: bounded by $O(q^{1+\varepsilon})$
- sup-norm: complete sums $O(q^{\varepsilon})$?? [Riemann Hypothesis]

Ideally, one has

$$S = \widehat{F}_{q}(0) \frac{|I|}{\sqrt{q}} + O(q^{\frac{1}{2} + \varepsilon}) \ll (|I|q^{-1} + 1)q^{\frac{1}{2} + \varepsilon}$$

F_q(n) = χ(n), F̂_q = normalized Gauss sum
F_q(n) = e(n̄/q), F̂_q = Kloosterman sum

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

200

Developments and improvements

• (Burgess, 1960-70's)

$$\sum_{M < n \leqslant M + \mathcal{N}} \chi(n) \ll \mathcal{N}^{1 - \frac{1}{r}} q^{\frac{r+1}{4r^2} + \varepsilon}, \quad r = 1, 2, 3.$$

- 3

Developments and improvements

• (Burgess, 1960-70's)

$$\sum_{M \le n \le M + \mathcal{N}} \chi(n) \ll \mathcal{N}^{1 - \frac{1}{r}} q^{\frac{r+1}{4r^2} + \varepsilon}, \quad r = 1, 2, 3.$$

• (Heath-Brown, 1978)

$$\sum_{M < n \leq M + \mathcal{N}} \chi(n) \ll q^{\frac{1}{6}} \mathcal{N}^{\frac{1}{2} + \varepsilon} + q^{-1} \mathcal{N}^{1 + \varepsilon}, \quad q = q_1 q_2, q_1 \sim q^{\frac{1}{3}}, q_2 \sim q^{\frac{2}{3}}.$$

크

590

Developments and improvements

• (Burgess, 1960-70's)

$$\sum_{M \le n \le M + \mathcal{N}} \chi(n) \ll \mathcal{N}^{1 - \frac{1}{r}} q^{\frac{r+1}{4r^2} + \varepsilon}, \quad r = 1, 2, 3.$$

• (Heath-Brown, 1978)

 $\sum_{M \le n \le M + \mathcal{N}} \chi(n) \ll q^{\frac{1}{6}} \mathcal{N}^{\frac{1}{2} + \varepsilon} + q^{-1} \mathcal{N}^{1 + \varepsilon}, \quad q = q_1 q_2, q_1 \sim q^{\frac{1}{3}}, q_2 \sim q^{\frac{2}{3}}.$

- Nontrivial for $\mathcal{N} > q^{\frac{1}{3} + \varepsilon}$, but
 - Burgess bound: $L(\frac{1}{2},\chi) \ll q^{\frac{1}{4}-\frac{1}{16}+\varepsilon}$
 - Heath-Brown bound: $L(\frac{1}{2},\chi) \ll q^{\frac{1}{4}-\frac{1}{12}+\varepsilon}$ for special q
- Burgess' method is specially designed for periodic and completely multiplicative functions; Heath-Brown's method is flexible but only works for special *q*

Ping Xi (Xi'an Jiaotong University)

How to generalize Heath-Brown's method to other Ψ ?

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 14 / 45

• • • • • • • • • • •

Heath-Brown did not invoke the Pólya–Vinogradov method directly, before which he introduced a difference process motivated by the method of van der Corput designed for

$$\sum_{n\in I} \mathbf{e}(f(n)),$$

where $f \in \mathcal{C}(I)$ and satisfies certain assumptions on smoothness.

Heath-Brown did not invoke the Pólya–Vinogradov method directly, before which he introduced a difference process motivated by the method of van der Corput designed for

$$\sum_{n\in I} \mathrm{e}(f(n)),$$

where $f \in \mathcal{C}(I)$ and satisfies certain assumptions on smoothness.

Heath-Brown named this method as *q*-analogue of the van der Corput method.

Sac

(日)

Developments and improvements

Inventiones math. 47, 149-170 (1978)

Inventiones mathematicae © by Springer-Verlag 1978

Verschärfung der Abschätzung beim Teilerproblem.

Von

J. G. van der Corput in Freiburg (Schweiz).

Es beseichne T(n) die Anzahl der Teiler der positiven ganzen Zahl n, $\tau(x)$ die summatorische Funktion

$$\mathbf{x}(\mathbf{z}) = \sum_{\mathbf{n} \leq \mathbf{z}} T(\mathbf{n}) = \sum_{\mathbf{n} \leq \mathbf{z}} \left[\frac{\mathbf{z}}{\mathbf{n}} \right] \qquad (\mathbf{z} \geq \mathbf{0}),$$

C die Eulersche Konstante, R(z) die Funktion

$$R(x) = \tau(x) - x \log x - (2C - 1)x$$
 (x > 0).

Über Dirichlets Ergebnis

 $R(x) = O(\sqrt{x})$

war erst Voronoi¹) 1908 hinausgekommen, indem er

 $R(x) = O\left(\sqrt[4]{x} \log x\right)$

bewies. Bis jetst hat man |R(x)| nicht schärfer nach oben abschätzen können, so daß die Abschätzung

$$R(x) = O(x^{M})$$
 $(M < \frac{38}{100}, \text{ unabhängig von } x),$

welche ich in dieser Note beweisen werde, nen ist.

Aus der (mit elementarsten Mitteln beweisbaren) Relation*)

 $R(x) = -2\sum_{\substack{n \leq \sqrt{n} \\ n \leq \sqrt{n}}} \left(\frac{x}{n} - \left[\frac{x}{n}\right] - \frac{1}{2}\right) + O(1)$

2) G. Voronol, Sur un problème du calcui des fonctions asymptotiques [Journal für die reine mid augewandte Mathematik 199 (1908), S. 241-282].

⁹) Vgl. s. B. E. Landau, Uber Dirichtels Tellerproblem (Nachtlehten der K. Geseinenhaft der Wissenschaften zu Göftingen, Mathemasikels-physikalischie Klasse, 1960, S. 13-82 S. 15-16. Hybrid Bounds for Dirichlet L-Functions

D.R. Heath-Brown

Department of Pure Mathematics and Mathematical Statistics, 16, Mill Lane, Cambridge CB2 1SB, England

1. Introduction

Let χ be a character (mod q) and let $L(s, \chi)$ be the corresponding Dirichlet Lfunction. In this paper we consider the order of magnitude of $L(s, \chi)$ along the critical line $Re(s)=\frac{1}{2}$. The trivial bound in this context is

$$L(\frac{1}{2} + it, \chi) \leq (q T)^{1/4}$$
, (1)

where, as later, T=|t|+1. The estimate (1) follows, for example, from Lemma 1. Burgess [2] has given bounds for $L(s, \chi)$ that are sharper than (1) with respect to q; although he does not give the dependence on T explicitly, it is clear that his method yields

$$L(\frac{1}{2} + it, \chi) \ll q^{3/16 + \epsilon} T$$
, (2)

for any $\varepsilon > 0$. This estimate has had many applications, for example to sharpenings of the Brun-Titchmarsh theorem on primes in arithmetic progressions.

Burgess' bound (2) is weaker than the trivial bound (1) for $q \le T^{12}$. However there is an alternative method which improves upon (1) for sufficiently large T; one treats the q-dependence trivially and applies van der Corput's method to sums of the type

イロト イポト イヨト イヨト

$$\sum (nq+r)^{-s}$$

J. G. van der Corput, Verschärfung der Abschäätzung beim Teilerproblem, Math. Ann., 87 (1922), 39–65.
 D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 149–170.

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 16 / 45

Developments and improvements

Verschärfung der Abschätzung beim Teilerproblem.

Von

J. G. van der Corput in Freiburg (Schweiz).

Es beseichne T(n) die Anzahl der Teiler der positiven ganzen Zahl n, $\tau(x)$ die summatorische Funktion

$$\mathbf{r}(\mathbf{x}) = \sum_{\mathbf{x} \leq \mathbf{x}} T(\mathbf{x}) = \sum_{\mathbf{x} \leq \mathbf{x}} \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} \qquad (\mathbf{z} \geq \mathbf{0}),$$

C die Eulersche Konstante, R(z) die Funktion

$$R(x) = \tau(x) - x \log x - (2C - 1)x$$
 (x > 0).

Über Dirichlets Ergebnis

 $R(x) = O(\sqrt{x})$

war erst Voronoi1) 1908 hinausgekommen, indem er

$$R(x) = O\left(\sqrt[4]{x}\log\right)$$

bewies. Bis jetst hat man |R(x)| nicht schi können, so daß die Abschätzung

$$R(x) = O(x^{M}) \qquad (M$$

welche ich in dieser Note beweisen werde, ne Aus der (mit elementarsten Mitteln bewe

$$R(x) = -2\sum_{n \leq \sqrt{n}} \left(\frac{x}{n} - \left[\frac{x}{n}\right]\right) -$$

¹) G. Vörcnott, Sur an problem die olersi des für die reise und augewandte Mathematik 198 (1908 ⁹) Vgl. s. B. R. Landen, *Ober Deriektet Tülerge eilechatt der Wissenschaften zu Göttingen, Mathemati S.* 18-32] S. 18-546.

Inventiones math. 47, 149-170 (1978)

Inventiones mathematicae © by Springer-Verlag 1978

Hybrid Bounds for Dirichlet L-Functions

D.R. Heath-Brown

Department of Pure Mathematics and Mathematical Statistics, 16, Mill Lane, Cambridge CB2 1SB, England

1. Introduction

Let χ be a character (mod q) and let $L(s, \chi)$ be the corresponding Dirichlet Lfunction. In this paper we consider the order of magnitude of $L(s, \chi)$ along the critical line $Re(s)=\frac{1}{2}$. The trivial bound in this context is

(1)

estimate (1) follows, for example, from Lemma 1. for $L(s, \chi)$ that are sharper than (1) with respect to the dependence on T explicitly, it is clear that his

(2)

is had many applications, for example to sharpenheorem on primes in arithmetic progressions. cer than the trivial bound (1) for $q \le T^{12}$. However 1 which improves upon (1) for sufficiently large *T*; trivially and applies van der Corput's method to

J. G. van der Corput, Verschärfung der Abschäätzung beim Teilerproblem, *Math. Ann.*, **87** (1922), 39–65. D. R. Heath-Brown, Hybrid bounds for Dirichlet *L*-functions, *Invent. Math.* **47** (1978), 149–170.

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 16 / 45

van der Corput in arithmetic situations

$$S(\Psi; I) = \sum_{n \in I} \Psi(n).$$

Lemma (A- and B-processes, Heath-Brown / Irving)

• (A-process) Assume $q = q_1q_2$ with $(q_1, q_2) = 1$ and $\Psi_i : \mathbb{Z}/q_i\mathbb{Z} \to \mathbb{C}$. Define $\Psi = \Psi_1\Psi_2$, then we have

$$|S(\Psi;I)|^{2} \leq ||\Psi_{2}||_{\infty}^{2} q_{2} \Big(|I| + \sum_{0 < |\ell| \leq |I|/q_{2}} \Big| \sum_{n,n+\ell q_{2} \in I} \Psi_{1}(n) \overline{\Psi_{1}(n+\ell q_{2})} \Big| \Big)$$

• (B-process) For $\Psi : \mathbf{Z}/q\mathbf{Z} \to \mathbf{C}$, we have

$$S(\Psi; I) \ll \frac{|I|}{\sqrt{q}} \left(|\widehat{\Psi}(0)| + (\log q) \Big| \sum_{h \in \mathcal{I}} \widehat{\Psi}(h) e\left(\frac{ha}{q}\right) \Big| \right)$$

for certain $a \in \mathbb{Z}$ and some interval \mathcal{I} not containing 0 with $|\mathcal{I}| \leq q/|\mathcal{I}|$, where $\widehat{\Psi}$ denotes the (normalized) Fourier transform of Ψ .

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

To apply the A- and B-processes iteratively, one shoud expect both of

$$n \mapsto \Psi_1(n)\overline{\Psi_1(n+\ell q_2)}, \quad n \mapsto \widehat{\Psi}(n)$$

are good, in the sense that they still reveal certain oscillations. Examples –

- $\Psi(n) = \chi(n)$ (subconvexity of Dirichlet *L*-functions)
- $\Psi(n) = e(\overline{n}/q)$ (divisor functions in arithmetic progressions, prime gaps)

To apply the A- and B-processes iteratively, one shoud expect both of

$$n \mapsto \Psi_1(n)\overline{\Psi_1(n+\ell q_2)}, \quad n \mapsto \widehat{\Psi}(n)$$

are good, in the sense that they still reveal certain oscillations. Examples –

- $\Psi(n) = \chi(n)$ (subconvexity of Dirichlet *L*-functions)
- $\Psi(n) = e(\overline{n}/q)$ (divisor functions in arithmetic progressions, prime gaps)

All above can be well interpreted in the language of trace functions following the spirit of Deligne-Katz-Fouvry-Kowalski-Michel.

Trace functions as desired

Let $p \neq \ell$ be two primes, and fix an isomorphism $\iota : \overline{\mathbf{Q}}_{\ell} \to \mathbf{C}$.

• Let \mathcal{F} be an ℓ -adic middle-extension sheaf pure of weight zero, which is lisse on an open set U. The trace function associated to \mathcal{F} is defined by

$$K: x \in \mathbf{F}_p \mapsto \iota(\operatorname{tr}(\operatorname{Frob}_x \mid V_{\mathcal{F}})),$$

where Frob_x denotes the geometric Frobenius at $x \in \mathbf{F}_p$, and $V_{\mathcal{F}}$ is a finite dimensional $\overline{\mathbf{Q}}_{\ell}$ -vector space, corresponding to a continuous finite-dimensional Galois representation, is unramified at every closed point x of U.

• Define the (analytic) conductor of ${\cal F}$ to be

$$\mathfrak{c}(\mathcal{F}) = \operatorname{rank}(\mathcal{F}) + \sum_{x \in S(\mathcal{F})} (1 + \operatorname{Swan}_x(\mathcal{F})),$$

where $S(\mathcal{F}) \subset \mathbf{P}^1(\overline{\mathbf{F}}_p)$ denotes the set of singularities of \mathcal{F} , and $\operatorname{Swan}_x(\mathcal{F}) \ge 0$ denotes the Swan conductor of \mathcal{F} at x.

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 19 / 45

P. Deligne, La conjecture de Weil, II, Publ. Math. IHES 52 (1980), 137-252.

Proposition (Deligne)

Suppose $\mathcal{F}_1, \mathcal{F}_2$ are two "admissible sheaves" on $\mathbf{P}_{\mathbf{F}_p}^1$, and K_1, K_2 are the associated trace functions, respectively. If $\mathcal{F}_1, \mathcal{F}_2$ have no common geometrically irreducible components, then there exists an absolute constant C > 0 such that

$$\sum_{x \in \mathbf{F}_{p}} K_{1}(x) \overline{K_{2}(x)} \leqslant C \cdot \mathfrak{c}(\mathcal{F}_{1})^{4} \mathfrak{c}(\mathcal{F}_{2})^{4} \sqrt{p}.$$

- squareroot cancellation
- mild assumptions on $\mathcal{F}_1, \mathcal{F}_2$

(a)

Composite trace functions

Let q be a squarefree number. We consider the *composite* trace function K modulo q, given by the product

$$K(n) = \prod_{p \mid q} K_p(n),$$

where K_p is a trace function associated to some ℓ -adic middle-extension sheaf on $\mathbf{A}_{\mathbf{F}_p}^1$. The value of $K_p(n)$ may depend on the complementary divisor q/p. Moreover, we write

$$K(n) = \prod_{1 \leq j \leq j} K(n, q_j),$$

where $q = q_1 q_2 \cdots q_{\tilde{J}}$ for some $\tilde{J} \ge 1$, q_j 's are not necessarily primes but they are pairwise coprime. For each $p \mid q$, we assume $\mathfrak{c}(\mathcal{F}_p) \le \mathfrak{c}$ for some uniform $\mathfrak{c} > 0$.

Convention:
$$K(n) \equiv 1$$
 if $q = 1$.

- We concern **admissible** sheaves, which are middle-extension on $\mathbf{A}_{\mathbf{F}_{p}}^{1}$, pointwise pure of weight 0 (in the sense of Deligne) and of Fourier type.
- A composite trace function *K* (mod *q*) is called to be **admissible**, if the reduction *K*_p is admissible for each *p* | *q*.

Definition (Amiable sheaf)

- An admissible sheaf \mathcal{F}_p over \mathbf{F}_p is said to be *d*-amiable if it is geometrically isotypic and no geometrically irreducible component is geometrically isomorphic to an Artin–Schreier sheaf of the form $\mathcal{L}_{\psi(P)}$, where $P \in \mathbf{F}_p[X]$ is of degree $\leq d$. In such case, we also say the associated trace function K_p is *d*-amiable.
- A composite K (mod q) is said to be compositely *d*-amiable if for each
 p | *q*, K_p can be decomposed into a sum of *d*-amiable trace functions, in
 which case we also say the sheaf F := (F_p)_{p|q} is compositely *d*-amiable.
- A sheaf (or its associated trace function) is said to be (compositely)
 ∞-amiable if it is (compositely) amiable for any fixed *d* ≥ 1.

In *A*-process, we expect $n \mapsto K(n+a)\overline{K(n)}$ is "amiable" for each $a \in \mathbf{F}_{p}^{\times}$.

Lemma (Polymath 8, 2014)

Let d be a positive integer and p > d. Suppose \mathcal{F} is a d-amiable admissible sheaf over \mathbf{F}_p with $\mathbf{c}(\mathcal{F}) \leq p$. Then, for each $a \in \mathbf{F}_p^{\times}$, the sheaf $[+a]^* \mathcal{F} \otimes \check{\mathcal{F}}$ is compositely (d-1)-amiable with

$$\mathfrak{c}([+a]^*\mathcal{F}\otimes \check{\mathcal{F}})\leqslant 5\mathfrak{c}(\mathcal{F})^4.$$

More precisely, the trace function of $[+a]^* \mathcal{F} \otimes \check{\mathcal{F}}$ can be decomposed into the sum of $\leq 5\mathfrak{c}(\mathcal{F})^4$ of trace functions, each of which is (d-1)-amiable and has a conductor at most $5\mathfrak{c}(\mathcal{F})^4$.

Remark. For any ∞ -amiable sheaf \mathcal{F} and large prime p, $[+a]^* \mathcal{F} \otimes \check{\mathcal{F}}$ is also compositely ∞ -amiable for each $a \in \mathbf{F}_p^{\times}$.

In *B*-process, we expect $n \mapsto \widehat{K}(n)$ is also "amiable".

Lemma (Laumon, Brylinski, Katz, Fouvry-Kowalski-Michel)

Let ψ be a non-trivial additive character of \mathbf{F}_p and \mathcal{F} a Fourier sheaf on $\mathbf{A}_{\mathbf{F}_p}^1$. Then there exists an ℓ -adic sheaf $\mathrm{FT}_{\psi}(\mathcal{F})$ called the Fourier transform of \mathcal{F} , which is also an ℓ -adic Fourier sheaf, with the property that

$$K_{\mathrm{FT}_{\psi}(\mathcal{F})}(y) = \mathrm{FT}_{\psi}(K_{\mathcal{F}})(y) := \frac{-1}{\sqrt{p}} \sum_{x \in \mathbf{F}_{p}} K_{\mathcal{F}}(x) \psi(yx).$$

Furthermore, we have

- $FT_{\psi}(\mathcal{F})$ is pointwise of weight 0 on an open set, if and only if \mathcal{F} is;
- $\operatorname{FT}_{\psi}(\mathcal{F})$ is geometrically irreducible, or geometrically isotypic, if and only if \mathcal{F} is;
- We have

$$\mathfrak{c}(\mathrm{FT}_{\psi}(\mathcal{F})) \leqslant 10\mathfrak{c}(\mathcal{F})^2$$

Ping Xi (Xi'an Jiaotong University)

After several steps of *A*-processes, one may apply the *B*-process if the resultant sheaves/trace functions are sufficiently "amiable". In addition, we would also like to check the amiability after applying the *B*-process.

Lemma (J. Wu - X.)

Suppose $r \ge 1, d \ge 2$ and $a \in \mathbf{F}_p^{\times}$. If \mathcal{F} is a compositely d-amiable sheaf on $\mathbf{A}_{\mathbf{F}_p}^1$ of rank r with $\mathfrak{c}(\mathcal{F}) \le p$. Denote by \mathcal{G} the Fourier transform of $[+a]^* \mathcal{F} \otimes \check{\mathcal{F}}$.

- If r = 1, then \mathcal{G} is compositely 1-amiable when d = 2, and is compositely ∞ -amiable when $d \ge 3$.
- If $r \ge 2$, then \mathcal{G} is compositely 2-amiable. Moreover, for a given $a \in \mathbf{F}_p^{\times}$, if $[+a]^* \mathcal{F} \otimes \check{\mathcal{F}}$ is geometrically irreducible, then \mathcal{G} is geometrically irreducible and r^2 -amiable.

Examples of amiable trace functions -

- $\psi(f_1(n)\overline{f_2(n)})$, where ψ is a primitive additive character, $f_1, f_2 \in \mathbf{F}_p[X]$, $\deg(f_1) < \deg(f_2) < p$ and $\deg(f_2) \ge 1$;
- χ(f(n))ψ(g(n)), where χ is a primitive multiplicative character mod p, ψ
 is not necessarily primitive, f, g are rational functions and f is not a d-th
 power of another rational function with d being the order of χ;
- $Kl_k(n, p)$ as a normalized hyper-Kloosterman sum of rank $k \ge 2$;
- The Fourier transforms of the above examples;
- The resultant functions by applying (partially)

BA³BA²BAB

or

ABA^3BA^2BAB

to the above examples.

(日)

Arithmetic exponent pairs

- $q \ge 3$ is a squarefree number with $P^+(q) < q^{\eta}$ for any small $\eta > 0$
- K = a compositely amiable trace function mod q
- $\delta \ge 1$ with $(\delta, q) = 1$
- $W_{\delta} : \mathbf{Z}/\delta\mathbf{Z} \to \mathbf{C}$ (deformation factor)

Consider

$$\mathfrak{S}(K,W;I) := \sum_{n \in I} K(n) W_{\delta}(n),$$

where $|I| = \mathcal{N}$. We assume $\mathcal{N} < q\delta$, i.e., we work on incomplete sums.

• We expect the following bound holds for some (κ, λ, ν) :

$$\mathfrak{S}(K,W;I) \ll_{\eta,\varepsilon,\mathfrak{c}} \mathcal{N}^{\varepsilon}(q/\mathcal{N})^{\kappa} \mathcal{N}^{\lambda} \delta^{\nu} \| W_{\delta} \|_{\infty}.$$
 (**Ω**)

500

Proposition (Initial choices)

If K is compositely 1-amiable, then (Ω) holds for

$$(\kappa, \lambda, \nu) = (0, 1, 0), \quad (\frac{1}{2}, \frac{1}{2}, 1).$$

Classical vdC starts from the trivial exponent pair (0, 1); this corresponds to the *q*-analogue

$$\mathfrak{S}(K, W; I) \ll \mathcal{N}^{\varepsilon}(q/\mathcal{N})^{0} \mathcal{N}^{1} \delta^{0} \| W_{\delta} \|_{\infty}.$$

However, we can always employ *B*-process (Poisson summation), so that our initial exponent pairs are in fact related to $(\frac{1}{2}, \frac{1}{2}) = B \cdot (0, 1)$ in the classical case.

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

Let $\mathcal{J}, L \ge 1$. Denote by $\mathfrak{A}_q(\mathcal{J}, L)$ the set of trace functions $K \pmod{q}$ such that

- K is compositely \mathcal{J} -amiable
- \widehat{K} is compositely *L*-amiable

Definition (Exponent pairs)

Let $0 \leq \kappa \leq \frac{1}{2} \leq \lambda \leq 1$ and $0 \leq \nu \leq 1$.

We say (κ, λ, ν) is an exponent pair of width $(\tilde{j}; L)$, if (Ω) holds

• for all
$$K \in \mathfrak{A}_q(\mathcal{J}, L)$$
,

• for all $W_{\delta} : \mathbf{Z}/\delta\mathbf{Z} \to \mathbf{C}$.

An exponent pair of width $(\infty; L)$ with some $L \ge 1$ is called an arithmetic exponent pair.

Ping Xi (Xi'an Jiaotong University)

(日)

Arithmetic exponent pairs

Theorem (A-process)

Let $\mathcal{J} \ge 1$. If (κ, λ, ν) is an exponent pair of width $(\mathcal{J}; 1)$, then

$$A \cdot (\kappa, \lambda, \nu) = \left(\frac{\kappa}{2(\kappa+1)}, \frac{\kappa+\lambda+1}{2(\kappa+1)}, \frac{1}{2}\right)$$

is an exponent pair of width $(\mathcal{J}+1; 1)$.

Theorem (*B*-process)

If (κ, λ, ν) is an exponent pair of width (1; 1), then so is

$$B \cdot (\kappa, \lambda, \nu) = \left(\lambda - \frac{1}{2}, \kappa + \frac{1}{2}, \nu + \lambda - \kappa\right).$$

Ping Xi (Xi'an Jiaotong University)

э

イロト イヨト イヨト イヨト

The following tables give the first several exponent pairs produced by different combinations of A- and B-processes to $(\frac{1}{2}, \frac{1}{2}, 1)$.

Note that ν is omitted in the list since it is not essential in many applications.

Processes	A	A^2	A^3	BA^2
(κ,λ)	$\left(\frac{1}{6},\frac{2}{3}\right)$	$\left(\frac{1}{14},\frac{11}{14}\right)$	$\left(\tfrac{1}{30}, \tfrac{26}{30}\right)$	$\left(\frac{2}{7},\frac{4}{7}\right)$

Processes	BA^3	ABA^2	$A^2 B A^2$	$BABA^2$
(κ, λ)	$\left(\frac{11}{30},\frac{16}{30}\right)$	$\left(\frac{2}{18},\frac{13}{18}\right)$	$\left(\frac{2}{40},\frac{33}{40}\right)$	$\left(\frac{4}{18},\frac{11}{18}\right)$

An application to a special case of Schinzel Hypothesis

Conjecture (Schinzel Hypothesis)

Suppose f_1, f_2, \dots, f_k are arbitrarily irreducible polynomials with integral coefficients such that $f_1f_2 \dots f_k$ has no fixed prime factors. Then there should exist infinitely many n, such that $f_1(n), f_2(n), \dots, f_k(n)$ take prime values simultaneously. In particular,

- $n^2 + 1$ is prime infinitely often;
- p + 2 is prime infinitely often;
- $p^2 + 2$ is prime infinitely often.

An application to a special case of Schinzel Hypothesis

Conjecture (Schinzel Hypothesis)

Suppose f_1, f_2, \dots, f_k are arbitrarily irreducible polynomials with integral coefficients such that $f_1f_2 \dots f_k$ has no fixed prime factors. Then there should exist infinitely many n, such that $f_1(n), f_2(n), \dots, f_k(n)$ take prime values simultaneously. In particular,

- $n^2 + 1$ is prime infinitely often;
- p + 2 is prime infinitely often;
- $p^2 + 2$ is prime infinitely often.

The existing approaches approximating Schinzel Hypothesis include

- almost prime values: P_r
- greatest prime factors: $P^+(n)$
- prime gaps

```
• .....
```

(日)

Theorem (Richert, 1969)

Suppose f is an irreducible polynomial of degree k with integral coefficients, and nf(n) has no fixed prime factors. Then there exist infinitely many primes p, such that $f(p) = P_{2k+1}$. In particular, $p^2 + 2 = P_5$ infinitely often.

• • • • • • • • • • • •

Theorem (Richert, 1969)

Suppose f is an irreducible polynomial of degree k with integral coefficients, and nf(n) has no fixed prime factors. Then there exist infinitely many primes p, such that $f(p) = P_{2k+1}$. In particular, $p^2 + 2 = P_5$ infinitely often.

Theorem (J. Wu–X., 2017)

(i) There are infinitely many primes p such that p² + 2 = P₄.
(ii) There are infinitely many primes p such that P⁺(p² + 2) > p^{0.847}.

A D F A B F A B F A B

Theorem (Richert, 1969)

Suppose f is an irreducible polynomial of degree k with integral coefficients, and nf(n) has no fixed prime factors. Then there exist infinitely many primes p, such that $f(p) = P_{2k+1}$. In particular, $p^2 + 2 = P_5$ infinitely often.

Theorem (J. Wu–X., 2017)

(i) There are infinitely many primes p such that p² + 2 = P₄.
(ii) There are infinitely many primes p such that P⁺(p² + 2) > p^{0.847}.

- Irving (2015) improved Richert's result for $k \ge 3$.
- Dartyge (1996) proved $P^+(p^2+2) > p^{0.78}$ infinitely often.

イロト イヨト イヨト イヨト

Related works - Shifted convolution

λ₁(1, n) = Fourier coefficient of an SL(3, Z) Hecke–Maass cusp form
λ₂(n) = Fourier coefficient of an SL(2, Z) Hecke–Maass cusp form

$$\mathscr{D}_h(X) = \sum_{n \leqslant X} \lambda_1(1, n) \lambda_2(n+h)$$

Munshi (Duke, 2013) proved that

$$\mathscr{D}_h(X) \ll X^{1-\delta}, \quad \delta < \frac{1}{26}.$$

Theorem (X., 2018)

Uniformly for $0 < |h| \leq X$, we have

$$\mathscr{D}_h(X) \ll X^{1-\delta}, \quad \delta < \frac{1}{22}.$$

• Circle method (Jutila) + Voronoi summation + arithmetic exponent pairs

$$h \mapsto \frac{1}{\sqrt{q}} \sum_{x \pmod{q}}^{*} \operatorname{Kl}(\overline{x} + a, q) \operatorname{e}\left(\frac{-hx}{q}\right).$$

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 34 / 45

Related works - Pell equation

Denote by $\varepsilon_D = t_0 + u_0 \sqrt{D}$ the fundamental solution to the Pell equation

$$t^2 - Du^2 = 1.$$

For $\alpha > 0$ and $x \ge 2$, define

$$S^{\mathbf{f}}(x,\alpha) := \#\{2 \leqslant D \leqslant x : D \neq \Box, \varepsilon_D \leqslant D^{\frac{1}{2}+\alpha}\}.$$

Hooley (1984) proved that for $\alpha \in]0, \frac{1}{2}]$,

$$S^{\mathrm{f}}(x,\alpha) \sim \frac{4\alpha^2}{\pi^2} \sqrt{x} \log^2 x.$$

Conjecture (Hooley, Crelle (1984))

Uniformly for $\alpha \in]\frac{1}{2}, 1]$, we have

$$S^{\mathbf{f}}(x,\alpha) \sim \frac{1}{\pi^2} (4\alpha - 1)\sqrt{x} \log^2 x.$$

Ping Xi (Xi'an Jiaotong University)

Related works - Pell equation

• Fouvry (Crelle, 2016): For $\alpha \in]\frac{1}{2}, 1]$,

$$S^{\mathrm{f}}(x,\alpha) \geqslant \frac{1}{\pi^2} \Big(4\alpha - 1 - 4\Big(\alpha - \frac{1}{2}\Big)^2 - o(1) \Big) \sqrt{x} \log^2 x.$$

• Bourgain (IMRN, 2015): As $\alpha \rightarrow \frac{1}{2}+$,

$$S^{\mathbf{f}}(x,\alpha) \ge \frac{1}{\pi^2} \left(4\alpha - 1 + O\left(\left(\alpha - \frac{1}{2} \right)^{2+\epsilon} \right) - o(1) \right) \sqrt{x} \log^2 x.$$

Theorem (X., 2018)

Uniformly for $\alpha \in]\frac{1}{2}, \frac{35}{69}]$, we have

$$S^{f}(x,\alpha) \ge \frac{1}{\pi^{2}} \Big(4\alpha - 1 - \frac{11}{5} \Big(\alpha - \frac{1}{2} \Big)^{2} + \frac{6}{5} \Big(\alpha - \frac{1}{2} \Big)^{3} \Big) \sqrt{x} \log^{2} x.$$

Ping Xi (Xi'an Jiaotong University)

In fact, we have the more general theorem.

Theorem (X., 2018)

For any fixed $\theta \in]0, \frac{1}{2}[$, we have

$$S^{\mathrm{f}}(x,\alpha) \ge \frac{1}{\pi^2} \left(4\alpha - 1 - 4\left(\alpha - \frac{1}{2}\right)^2 + \frac{1}{6}\rho\left(\frac{1}{\theta}\right)F_{\theta}(\alpha) - o(1) \right) \sqrt{x}\log^2 x$$

uniformly in $\alpha \in [\frac{1}{2}, 1]$, where ρ is the Dickman function and

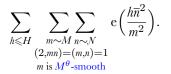
$$F_{\theta}(\alpha) = \begin{bmatrix} 24\alpha - 4(5+2\theta)\alpha^2 - (7-2\theta), & \alpha \in [\frac{1}{2}, \frac{6}{11+2\theta}], \\ 864(11+2\theta)^{-2} - (7-2\theta), & \alpha \in]\frac{6}{11+2\theta}, 1]. \end{bmatrix}$$

Ping Xi (Xi'an Jiaotong University)

- 2

(日)

The basic idea is transform the problem to the estimate for triple exponential sums



Here the moduli is a perfect square, but the ideas of van der Corput method also applies.

We use BAB-process.

Other applications

- Bounding Dirichlet L-functions $L(\frac{1}{2}, \chi)$ to smooth moduli
- Divisor functions in arithmetic progressions to smooth moduli

$$\sum_{\substack{n \leqslant X \\ n \equiv a \pmod{q}}} \tau_{\kappa}(n) \quad (\kappa = 2, 3).$$

• Distribution of roots of reducible polynomials [Dartyge-Martin, 2019]

$$\sum_{n \leq x} \sum_{\substack{a \pmod{n} \\ f(a) \equiv 0 \pmod{n}}} e\left(\frac{ha}{n}\right) \ (h \neq 0),$$

where one may take $f(x) = x(x+1), x(x^2+1), x(x+1)(2x+1).$

In the spirit of q-van der Corput method

$$\sum_{n \in I} F_q(n)$$

- Heath-Brown (2001) proved that $P^+(n^3 + 2) > n^{1+10^{-303}}$ for infinitely many *n*, as an approximation to presenting primes by cubic polynomials.
- Pierce (2006) obtained the first non-trivial bound for the size of 3-part of the class group of Q(√−D) with the help of q-vdC.
- Zhang (2014) employed similar ideas to primes in APs to smooth moduli, going beyond $\frac{1}{2}$ in the classical Bombieri–Vinogradov theorem, which allows him to prove the existence of bounded gaps between infinitely many consecutive primes. Polymath8 (2014) pushed the ideas further.
- Irving (2015, 2016) picked up the original ideas of Heath-Brown. He obtained a sub-Weyl bound for $L(\frac{1}{2}, \chi)$ to smooth moduli, and can also go beyond the Selberg–Hooley barrier on τ in APs (smooth moduli).
- Blomer & Milićević (2014): moments of modular L-functions

Arithmetic exponent pairs on average

- $x \ge 3$ large enough, $\eta > 0$ sufficiently small
- $S(Q,\eta) := \{Q \leq q \leq 2Q : P^+(q) \leq Q^\eta, \ \mu^2(q) = 1\}$
- K_q is a composite trace function (mod q)
- $I = I_q$ is an interval (might depend mildly on q) with $|I| \simeq N$

$$\mathfrak{S}(Q,\eta) = \frac{1}{|S(Q,\eta)|} \sum_{q \in S(Q,\eta)} \sum_{n \in I_q} K_q(n).$$

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 41 / 45

Arithmetic exponent pairs on average

We may defined the (arithmetic) exponent pair (κ, λ) such that

```
\mathfrak{S}(Q,\eta) \ll Q^{\varepsilon} (Q/|I|)^{\kappa} |I|^{\lambda}
```

holds for all K_q in a suitable family.

Theorem (X., 202+)

If (κ, λ) is an exponent pair of suitable width, then so is

$$C \cdot (\kappa, \lambda) = \left(\frac{1+2\kappa}{2(5+4\kappa-2\lambda)}, \frac{3+3\kappa-\lambda}{5+4\kappa-2\lambda}\right).$$

We have $C \cdot (\frac{1}{6}, \frac{2}{3}) = (\frac{2}{13}, \frac{17}{26})$, which gives a non-trivial bound for $\mathfrak{S}(Q, \eta)$ for $|I| > Q^{\frac{4}{13} + \varepsilon}$, which beats the previous range $|I| > Q^{\frac{1}{3} + \varepsilon}$.

Ping Xi (Xi'an Jiaotong University)

(日)

(1)

By elaborating A- and B-processes more effectively, we will encounter the transform

$$h\mapsto \sum_{a\in\mathbf{F}_p}\overline{\widehat{K}_p(a)}\widehat{K}_p(a+v)\psi(-ha).$$

In particular, we have to characterize the geometric features of K under the above transform. More basically, we need to study the sheaf

$$\mathrm{FT}_{\psi}(\mathrm{FT}_{\psi}(\mathcal{F})^{\vee}\otimes([+v]^*\mathrm{FT}_{\psi}(\mathcal{F}))),$$

and hope some essential properties can be kept under such transformations!

- With the input from algebraic geometry, Kloosterman sums, as well as many other algebraic exponential sums, may provide powerful tools in modern analytic number theory.
- Methods in analytic number theory can also be employed to demonstrate certain objects in arithmetic geometry, for instance, counting rational points on projective varieties.
- More interfaces to be done!

イロト イポト イヨト イヨ

Thank you for your attention !

Ping Xi (Xi'an Jiaotong University)

Arithmetic exponent pairs

December 07, 2021 45 / 45

• • • • • • • • • •