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Absolute Galois groups

F a field, and Fs its separable closure; GF = Gal(Fs/F ) the absolute Galois
group of F .

Fix a prime number p, GF (p)= the maximal pro-p quotient of GF .

GF is a profinite group and GF (p) is pro-p group.

We want to

Describe the absolute Galois groups of fields among profinite groups.

Describe the maximal pro-p quotients of absolute Galois groups of general
fields for a given prime number p.
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One can show that any profinite group occurs as a Galois group of some Galois
extension L/F . However not every profinite group occurs as an absolute Galois
group.

A guiding problem ["Absolute" inverse Galois problem]

What groups can occur as GF or GF (p)?
What groups cannot occur as GF or GF (p)?

(Artin-Schreier, 1927) If GF is nontrivial and finite then GF ' Z/2Z.
(Becker, 1974) If GF (p) is nontrivial and finite then p = 2 and
GF (2) ' Z/2Z.
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GF (p): F is a p-adic field

For each n ≥ 1, let µn = {z ∈ Fs | zn = 1} = 〈ζn〉.
(Shafarevich 1947) If µp 6⊆ F then GF (p) is a free pro-p group of rank
[F : Qp] + 1.

(Kawada 1954) If µp ⊆ F then GF (p) admits a presentation

1→ R → S → GF (p)→ 1,

where S is a free pro-p-group and R is a normal subgroup of S generated (as
a normal subgroup) by a single relation r .

In the case µp ⊆ F , the works of Demushkin, Serre, Labute determine the
relation r explicitly.
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GF (p): F is a p-adic field

For example, suppose p > 2 then

r = xp
s

1 [x1, x2] · · · [xn−1, xn], (1)

where n = [F : Qp] + 2 is even and ps is the highest power q of p such that F
cotains a primitive q-th root of unity. (Here [x , y ] = x−1y−1xy .)

Vague questions

If we modify r slightly, can S/〈r〉 still be GF (p) for some field F?
Must the relations in GF (p) for general field F take on only certain forms?

From now on, field F is assumed to contains µp, and p odd prime.
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A more precise question

Let p be an odd prime and n is odd. Let G = S/〈r〉, where S is a free pro-p group
on generators x1, x2, . . . , xn, and

r = xp
s

1 [x2, x3] · · · [xn−1, xn], (2)

with s ∈ N, and 〈r〉 is the smallest closed normal subgroup of S which contains r .

Question

Can G ' GF (p) for some F containing µp?
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Note that using technique involving triple Massey products in Galois cohomology,
one can show that some relations which include triple commutator [[x1, x2], x3] as
a factor cannot be in GF (p) (Mináč-T. 2017).
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Brief discussion on Massey products in Galois cohomology

Triple Massey product: partially defined and multi-valued which "generalizes"
cup product.

Let p be a prime, G a profinite group. Consider Fp as a trivial G -module.

Triple Massey product 〈α, β, γ〉 of α, β and γ in H1(G ,Fp) is defined
precisely when α ∪ β = β ∪ γ = 0 in H2(G ,Fp). And if it is defined, it is a
certain nonempty subset of H2(G ,Fp).

For any n ≥ 3 can define n-Massey products 〈α1, . . . , αn〉 for (suitable)
αi ∈ H1(G ,Fp).
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Motivated by work of Hopkins-Wickelgren 2015 some other works.

Conjecture (Mináč-T. 2017)

Let p be prime number, n ≥ 3 an integer and, F field (containing a primitive p-th
root of unity), αi ∈ H1(GF ,Fp).
If n-fold Massey product 〈α1, . . . , αn〉 is defined then it vanishes (i.e., it contains
0).

In the case n = 3, the conjecture was proved. (Hopkins-Wickelgren 2015 for
p = 2 and F local or global field, Mináč-T. 2017 for p = 2 and any F ,
Efrat-Matzri 2017 and Mináč-T. 2016 for any p and F , Matrzi 2018,
Lam-Liu-Sharifi-Wang-Wake 2020,...)

The case n ≥ 4 is still open.

Wittenberg-Harpaz arXiv 2019 prove the conjecture for the case of any n,
any p and F a number field (via the study of rational points on some
homeogenous spaces, see also Wittenberg’s ICM 2022 talk).
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The conjecture has some applications.

Providing new large family of groups which cannot be GF (p). For example,
the pro-p group

G = 〈x1, x2, x3, x4, x5 | [x4, x5][[x2, x3], x1] = 1〉

cannot be GF (p) because G does not have the vanishing property for triple
Massey products. This group could not be treated by previous known
methods. (Mináč-T. 2017)

Artin-Schreier’s theorem and Becker’s theorem can be recovered from the
vanishing of certain Massey products.
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However, for the case we are considering, G = S/〈r〉, S is a free pro-p group
on generators x1, x2, . . . , xn, and

r = xp
s

1 [x2, x3] · · · [xn−1, xn],

the relation involves only p-th powers and commutators and one cannot use
triple Massey products to deal with.

In fact, one can show that G has the vanishing triple Massey product
property (Efrat-Quadrelli 2019). That means for α, β, γ ∈ H1(G ,Fp), if
〈α, β, γ〉 is defined then this subset of H2(G ,Fp) contains 0.
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Result

Theorem (Mináč-Rogelstad-T. 2020)

F a field containing µp, p odd prime. Suppose GF (p) admits presentation

1→ R → S
π→ GF (p)→ 1,

where S is a free pro-p-group on a set of generators {x} t {yi}i∈I .
Let T be the (closed) subgroup of S generated by {yi}i∈I .
Then there is no relation of the form r = xp

`

s ∈ R, where ` ≥ 1 and s ∈ T .

For example, if G = S/〈r〉, where S is a free pro-p group on generators
x1, x2, . . . , xn, and

r = xp
s

1 [x2, x3] · · · [xn−1, xn],

then G 6' GF (p) for every F containing µp.

Nguyễn Duy Tân (Hanoi) Relations in the maximal pro-p quotients of absolute Galois groups 13 / 26



Idea of proof

Suppose that we have a Galois p-extension L/F with G = Gal(L/F ) a
p-group. Then we have a surjective homomorphism

res : GF (p) � G .

Clearly, res ◦ π(r) = 1 in G . In particular, res ◦ π(r)(a) = a for every a ∈ L.

For r = xp
`

s as in Theorem, we construct the extension L/F in a way that
res ◦ π(r) 6= 1.

Galois extensions "detect" relations.
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For example, for simplicity, suppose F contains µp2 , and suppose r = xps ∈ R,
where s ∈ T . Choose a ∈ F× and a p2-th root p2√

a of a such that

π(x)( p2√
a) = ζp2

p2√
a

π(yi )( p2√
a) = p2√

a, ∀i ∈ I .

Let L = F ( p2√
a). Then G = Gal(L/F ) ' Z/p2Z and

S
π→ GF (p)

res
� G = Z/p2Z.

Note that res(π(x)) = 1̄ in Z/p2Z and res(π(yi )) = 0̄. One has

res(π(r)) = (res(x))p res(π(s)) = p̄ 6= 0̄ ∈ Z/p2Z,

a contradiction.
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Proof of Theorem

(Proof by contradiction) Suppose r = xp
`

s, with s ∈ T .
Pick m > `. Choose a ∈ F× and a pm-th root pm

√
a of a such that

π(x)( pm
√
a) = ζpm

pm
√
a

π(yi )( pm
√
a) = pm

√
a, ∀i ∈ I .

Let L = F ( pm
√
a, ζpm). Then L/F is Galois with

G := Gal(L/F ) = Gal(L/F (ζpm)) o Gal(L/F ( pm
√
a)) ' Cpm o Cpm−k .

(Here k is the integer such that ζpk ∈ F but ζpk+1 6∈ F .) Consider

S
π→ GF (p)

res
� G = Cpm o Cpm−k .

Note that res(π(s))( pm
√
a) = pm

√
a. Hence

( pm
√
a) = π(r)( pm

√
a) = π(x)p

`

( pm
√
a).
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Case 1: π(x) acts trivially on ζpm

One has
pm
√
a = π(x)p

`

( pm
√
a) = ζp

`

pm
pm
√
a.

This implies ζp
`

pm = 1, hence pm | p`, a contradiction.
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Case 2: π(x) acts non-trivially on ζpm

Since
π(x)(ζpm)p

m−k

= π(x)(ζpk ) = ζpk = ζp
m−k

pm ,

one has
π(x)(ζpm) = ζpmζνpm−k , for some ν ∈ Z.

This implies that
pm
√
a = π(x)p

`

( pm
√
a) = ζNpm

pm
√
a,

where N =
(1 + pkν)p

` − 1

pkν
. Hence pm | N and m ≤ vp(N).

Check that for p odd prime, and α ∈ pZ then

vp((1 + α)n − 1) = vp(α) + vp(n).

Hence vp(N) = vp(pkν) + vp(p`)− vp(pkν) = `, a contradiction
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A summary result

Let F be a field such that F contains µp and it contains µ4 if p = 2. Let S be a
free pro-p-group on a set of generators {x} ∪ {yi | i ∈ I} such that

1 −→ R −→ S
π−→ GF (p) −→ 1

is a minimal presentation of GF (p). Let T be the (closed) subgroup of S

generated by {yi}i∈I . Then there is no relation of the form r = xp
lus ∈ R, where l

and u are nonzero integers with l ≥ 1, gcd(p, u) = 1, and

1 s ∈ [S ,S ]T and l < m if F contains ζpm for some m ≥ 2;

2 s ∈ [S ,S ] such that any commutator of the form [u, v ] (u, v ∈ X t X−1)
appearing is a fixed commutator expression for s has u 6= x±1 and v 6= x±1;

3 s ∈ T ;
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Thank you very much for your attention!
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G a pro-p-group, Up = Z×p the group of p-adic units with the p-adic
topology, and χ : G → Up a continuous homomorphism.

We define an action of G on Zp by σ · x = χ(σ)x for σ ∈ G , x ∈ Zp. Then
Zp, with the p-adic topology, becomes a topological G -module which we
denote by I = I(χ).

Lemma

Consider the following two statements:

1 For all m ≥ 1 the canonical homomorphism H1(G , I/pmI)→ H1(G , I/pI)
is surjective.

2 For all m ≥ 1 we may arbitrarily prescribe the values of crossed
homomorphisms of G to I/piI on a minimal system of generators of G
provided we require that for all but a finite number of generators, these
values are 0.

Then (1) implies (2).
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Now F any field containing a primitive p-th root of unity. The action of GF (p) on
µp∞ is given by a character

χp,cycl : GF (p)→ Up.

The character χp,cycl is called the p-cyclotomic character. For any σ ∈ GF (p),
χp,cycl(σ) is determined by the condition that

σ(ξ) = ξχp,cycl (σ), ∀ξ ∈ µp∞ .

Proposition

Let I = I(χp,cycl). Then for each i ≥ 1, the canonical homomorphism

H1(GF (p), I/pmI)→ H1(GF (p), I/pI)

is surjective.
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Corollary

Let F be a field containing ζp. Assume that {x} t {yi}i∈I is a minimal system of
generators for GF (p). Then for every m ≥ 1, there exists a ∈ F× and a pm-th root
pm
√
a of a such that

x( pm
√
a) = ζpm

pm
√
a and yi (

pm
√
a) = pm

√
a ∀i ∈ I .

Proof.

There exists a crossed homomorphism D : GF (p)→ µpm such that

D(x) = ζpm and D(yi ) = 1 ∀i ∈ I .

Consider D as a cocycle with values in F (p)×, then D is a 1-coboundary by
Hilbert’s Theorem 90. Thus there exists α ∈ F (p)× such that D(σ) = σ(α)/α for
all σ ∈ GF (p). Since σ(α)/α ∈ µpm for all σ ∈ GF (p), we see that αpm

=: a is in
F×.
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F p-adic field, with residue field Fq, ` 6= p, l prime.
If ` - q − 1 then GF (`) ' Zl .
If ` | q − 1 then GF (`) = 〈x , y | yxy−1 = x1+`m〉 (` 6= 2 or (if ` = 2 and m 6= 1)).
Here m is the largest integer such that F contains the `m-th roots of unity.
If ` = 2, m = 1, let n = v2(q + 1) then GF (2) = 〈x , y | yxy−1 = x−(1+2n)〉
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