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Modular curves X0(N) and the rational cuspidal group
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Modular curves X0(N)

Let N be a positive integer. Let

Γ0(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)}.

Let H be the upper half plane. Let

Y0(N) := Γ0(N)\H

There is a compactification

X0(N) = Y0(N) ∪ {cusps},

which is called a modular curve of level N.
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Cusps of X0(N)

We have
{cusps} = Γ0(N)\P1(Q).

Cusps of X0(N)

A set of (inequivalent) cusps for Γ0(N) is given by{a
c

: c |N, (a, c) = 1, and 1 ≤ a ≤ (c ,N/c)
}
.

Example (
1 0
N 1

)
∞ =

1

N
=⇒ 1

N
∼ ∞.

The number of cusps of X0(N) is∑
1≤c|N

φ((c ,N/c)).
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Cusps of X0(N)

1 A cusp a/c is defined over Q(µd), where d = (c ,N/c) and µd
denotes a primitive d-th root of unity.

2 If σs ∈ Gal(Q(µd)/Q) sends µd to µsd , then

σs

(a
c

)
=

as∗

c
,

where s∗ is such that ss∗ ≡ 1 (mod d).

3 Let L be the largest integer such that L2|N. Then all cusps are
defined over Q(µL).

4 In particular, if N is square-free (or more generally, if N = 2rM with
r ≤ 3 and M odd squarefree), then all cusps are rational.
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A canonical model X0(N)Q

The modular curve X0(N)/C parametrizes (E ,C ), where E is an elliptic
curve over C and C is a cyclic subgroup of order N in E (C).

There is a canonical model X0(N)Q defined over the rational field Q such
that

X0(N) ∼= X0(N)Q ⊗Q C.

By abuse of notation, we also write X0(N) for X0(N)Q.
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The Jacobian J0(N) and the Mordell–Weil theorem

Let J0(N) denote the Jacobian of X0(N).

J0(N) = Div0(X0(N))/PDiv(X0(N)),

which is an abelian variety define over Q.

Div0(X0(N)) : the group of degree zero divisors on X0(N).

PDiv(X0(N)) : the group of principal divisors.

Theorem (Mordell–Weil)

The rational points J0(N)(Q) form a finitely generated abelian group.
Therefore we have

J0(N)(Q) ∼= Zr ⊕ J0(N)(Q)tor,

where r is a non-negative integer and J0(N)(Q)tor is the torsion subgroup.
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The rational cuspidal subgroup

The ultimate goal

We want to compute the torsion subgroup

J0(N)(Q)tor.

We call D ∈ Div0(X0(N)) a (degree 0) cuspidal divisor if D is supported
only on the cusps of X0(N).

CN (called the cuspidal subgroup) is the subgroup of J0(N) generated
by the cuspidal divisors.

We call CN(Q) := J0(N)(Q) ∩ CN the rational cuspidal group.

Generalized Ogg conjecture

Let N be a positive integer. Then

CN(Q) = J0(N)(Q)tor.
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Generalized Ogg conjecture

Generalized Ogg conjecture

Let N be a positive integer. Then

CN(Q) = J0(N)(Q)tor.

Theorem (Manin–Drinfeld)

CN(Q) ⊆ J0(N)(Q)tor.

Theorem (Mazur)

If N is a prime, then

〈 [0−∞] 〉 = CN(Q) = J0(N)(Q)tor.

Mazur’s theorem above was previously referred to as the Ogg conjecture.
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Mazur’s torsion theorem

In the course of proving the Ogg conjecture, Mazur was able to get his
celebrated torsion theorem:

Theorem (Mazur)

Let E be an elliptic curve defined over Q. Then the torsion points E (Q)tor
must be (isomorphic to) one of the following:

Z/NZ 1 ≤ N ≤ 10 or N = 12

Z/2Z⊕ Z/(2N)Z 1 ≤ N ≤ 4.

Moreover, each of these groups occurs infinitely many times.
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Known results for Generalized Ogg conjecture

(Lorenzini, 1995) If p 6≡ 11 (mod 12) is a prime and r ≥ 2, then

J0(pr )(Q)
(2p)
tor = CN(Q)(2p).

(Ohta, 2014) If N is squarefree, then

J0(N)(Q)
(2n)
tor = CN(Q)(2n),

where n = (3,N).

(Yoo, 2020) For any positive integer N, we have

J0(N)(Q)
(2n)
tor = CN(Q)(2n),

where n is the largest perfect square dividing 3N.

Some other results by Ling, Ren, Ligozat, Poulakis, Ozman–Siksek,
Box, and so on.
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Comparison of two cuspidal subgroups
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The rational cuspidal divisor class group

Recall

CN is the subgroup of J0(N) generated by the cuspidal divisors.

CN(Q) = J0(N)(Q) ∩ CN is the rational cuspidal group.

We define a “possibly” smaller subgroup

C(N) ⊆ CN(Q),

which is generated by (the image of) rational cuspidal divisors.

We call C(N) the rational cuspidal divisor class group.

C(N) vs CN(Q)

Let [D] be the image of D in the map Div0cusp(X0(N))→ J0(N).

C(N) = {[D] : Dσ = D for every σ ∈ GQ}.
CN(Q) = {[D] : Dσ = D + div(fσ) for some fσ for every σ ∈ GQ}.
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The Ribet–Yoo conjecture

Ribet–Yoo Conjecture

For every positive integer N, we have

C(N) = CN(Q).

Remark
1 We have

C(N) ⊆ CN(Q) ⊆ J0(N)(Q)tor.

2 All known results toward the Generalized Ogg Conjecture showed the
“stronger” equality

C(N)[`∞] = J0(N)(Q)tor[`
∞].
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The group C(N)

The group C(N) is very explicit to study.

C(N) =

〈
[
∑

(a,c)=1
0<a<c

a

c
] : c|N

〉
.

Also the structure of C(N) is known by the work of Hwajong Yoo.

Theorem (Yoo, 2019)

For every prime `, there are rational cuspidal divisors Z`(d) such that

C(N)[`∞] ∼=
⊕

1<d |N

〈[Z`(d)]〉,

where the order of [Z`(d)] can be computed.
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Known results for the Ribet–Yoo conjecture

Since we know the structure of C(N) well, it is desirable to prove
Ribet–Yoo conjecture as it can be potentially helpful in proving the
Generalized Ogg conjecture.

There are very few known cases for the Ribet–Yoo conjecture:

Suppose that N is squarefree (or more generally, N = 2rM with r ≤ 3
and M odd squarefree). Then

C(N) = CN(Q),

for a trivial reason.

(Wang–Yang, 2020) Let N = n2M for n|24 and M squarefree. Then

C(N) = CN(Q).
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(Wang–Yang, 2020) Let N = n2M for n|24 and M squarefree. Then

C(N) = CN(Q).
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such that (p,M) = 1. Then
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Explicit conditions for modular units
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Motivation for explicit conditions for modular units

Our Goal

C(N) = CN(Q).

Let [D] ∈ CN(Q). By definition, for every σ ∈ Gal(Q/Q), there exists a
modular unit fσ such that

Dσ − D = div(fσ).

A modular unit on X0(N) is a meromorphic function on X0(N) whose
divisor is supported only on cusps.

To derive the rationality of “D”, it is helpful to have an explicit condition
to be a modular unit.
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Generalized Dedekind eta function (quotient)

Eg ,h(τ) := qB2(g/N)/2
∞∏
n=1

(
1− ζhNqn−1+g/N

)(
1− ζ−hN qn−g/N

)
,

where q = e2πiτ and B2(x) = x2 − x + 1/6.

Transformation properties of Eg ,h

Eg+N,h = E−g ,−h = −ζ−hN Eg ,h, Eg ,h+N = Eg ,h.

Moreover, let γ =
(
a b
c d

)
∈ SL2(Z). Then for c = 0, we have

Eg ,h(τ + b) = eπibB2(g/N)Eg ,bg+h(τ),

and for c 6= 0,
Eg ,h(γτ) = εγe

πiδEag+ch,bg+dh(τ),

for δ ∈ Q and some root of unity εγ
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Construction of modular units

DN := {m|N : m 6= N}.

For each m ∈ DN , we fix a set Sm′′ ⊂ {1, . . . ,m′′ − 1} of representatives
of (Z/m′′Z)×/{±1}. For each α ∈ Sm′′ , let δ ∈ {1, . . . ,m′′ − 1} be an
integer such that αδ ≡ 1 (mod m′′). If m′′ 6= 2, we set

Fm,h(τ) :=
∏

α∈Sm′′

Eαm`,δhN′(N
′τ).

Then for γ ∈ Γ0(N), we have

Fm,h(γτ) = ε(γ,m, h)Fm,h(τ),

for a lcm(2m′′, 24)-th root unity ε(γ,m, h). Therefore, Fm,h is “almost” a
modular unit on X0(N).
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More notation

– DN = {m|N : m 6= N and m > 0}.
– m ∈ DN .

– `(m) : the largest integer such that `(m)2|Nm .

– L = `(1) : the largest integer such that L2|N.

We have
Fm,h = εFm,h+`(m),

for a root of unity ε.

So it suffices to consider 0 ≤ h ≤ `(m)− 1 (m ∈ DN) to construct a
modular unit with Fm,h.
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Various expressions for modular units on X0(N)

Theorem

Every modular unit on X0(N) can be uniquely expressed as

ε
∏

m∈DN

φ(`(m))−1∏
h=0

F
em,h

m,h for some em,h ∈ Z and ε ∈ C×.

Theorem

Every modular unit on X0(N) can be uniquely expressed as

ε
∏

m∈DN

φ(`(m))∏
h=1

F
em,h

m,h for some em,h ∈ Z and ε ∈ C×.
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Sketch of proof

Let

IN := {(m, h) : m ∈ DN and 0 ≤ h ≤ φ(`(m))− 1}.
UN = the (multiplicative) group of modular units on X0(N).

U0
N = subgroup of UN , which consists of the product of Fm,h,

Sketch of proof

1 The cardinality of the set IN is equal to the rank of UN , i.e., the
number of cusps of X0(N) minus one.

2 There are no multiplicative relations among Fm,h with (m, h) ∈ IN .

(related fact : ζ0`(m), ζ
1
`(m), . . . , ζ

φ(`(m))−1
`(m) are linearly independent)

3 U0
N has the same rank as UN .

4 If g ∈ UN and gk ∈ U0
N , then g ∈ U0

N .
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Criterion for a modular unit

Theorem

Let

f =
∏

m|N,m 6=N

`(m)−1∏
h=0

F
em,h

m,h for some em,h ∈ Z.

Then f L is a modular unit if the following conditions are satisfied:

1 The order of f at ∞ is an integer.

2 The order of f at 0 is an integer.

3 The order of f at 1/N0 is an integer (if N0 := N/2 ∈ Z)

4
∑

m:m′′=pr
∑`(m)−1

h=0 em,h ≡ 0 (mod 2).
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Criterion for a modular unit

Corollary

Let n = (3, L). Then∏
m|N,m 6=N

`(m)−1∏
h=1

(
Fm,h
Fm,0

)nLam,h for am,h ∈ Z.

is a modular unit.

Lemma

Let m ∈ DN . Then for an integer h, the order of Fm,h at a cusp a
c of

X0(N) is
`(N ′, c)2

4c(c ,N/c)

∑
α∈(Z/m′′Z)×

P2

(
αa′

m′′
+
δhc ′

`

)
,

where P2(x) = B2({x}) is the second Bernoulli function, a′ = N′a
(N′,c) and

c ′ = c
(N′,c) .
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Main theorems
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The main result

Theorem (Guo–Yang–Yoo–Y. (2021))

Let p be an arbitrary prime. Let N = p2M or p3M, where M is squarefree
such that (p,M) = 1. Then

C(N) = CN(Q).

Note the following two statements are equivalent.

1 C(N) = CN(Q).

2 C(N)[q∞] = CN(Q)[q∞] for any prime q.

Let D be a cuspidal divisor of degree 0 such that [D] ∈ CN(Q)[q∞]. It is
enough to show that [D] ∈ C(N), or equivalent, there exists a rational
cuspidal divisor D ′ such that [D] = [D ′].
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Case (i): q - φ(L)

Suppose that [D] ∈ CN(Q)[q∞] has order qr in J0(N). Let

D ′ :=
∑

σ∈Gal(Q(µL)/Q)

σ(D).

Then by definition, we have

φ(L)[D] = [D ′] and [D ′] ∈ C(N).

There exist a, k ∈ Z such that (k , q) = 1 and

[D] = (1 + aqr )[D] = kφ(L)[D] = k[D ′].

Therefore it follows that
[D] ∈ C(N).
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Case (ii): q | φ(L)
Recall that [D] ∈ CN(Q)[q∞] has order qr in J0(N). Then qrD = div(f )
for some modular unit f . Then

1

f =
∏

m∈DN

φ(`(m))−1∏
h=0

F
em,h

m,h for some em,h ∈ Z.

2 qr |em,h if h 6= 0.
3 The product

g =
∏

m∈D1
N

p−2∏
h=0

(
Fm,h
Fm,0

)npq
−r em,h ,

where n = (3, p), is a modular unit.

Put D ′ = npD − div(g). Then D ′ is a rational cuspidal divisor. It turns
out that there exists k coprime to q such that

[D] = k[D ′].
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Forthcoming work

Theorem (Yoo–Y.2021+)

Let N = prM or N = prqsM, where p, q are odd primes and M is
squarefree. Then

C(N) = CN(Q).

To use the same strategy as in the previous work, we need more explicit
criterion for modular units on X0(N).
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The modular unit criterion

Theorem (Yoo–Y.)

Suppose that L is odd (Recall L = max(n : n2|N)). Let

f =
∏

m|N,m 6=N

`(m)−1∏
h=0

F
k(m,h)
m,h for k(m, h) ∈ Z.

Then f is a modular unit on X0(N) if and only if the following hold.

1 The order of f at a cusp ∞ is an integer.

2 The order of f at a cusp 0 is an integer.

3 The order of f at a cusp 1/N0 is an integer.

4 (the mod L conditions)

∑
m|N,m 6=N

ψi (m)

`(m)−1∑
h=1

hk(m, h) ≡ 0 (mod L).

5 (the mod 2 condition)
∑

m:m′′=pr

∑`(m)−1
h=0 k(m, h) ≡ 0 (mod 2).
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Conjecture A

Conjecture A

Let [D] ∈ CN(Q), Suppose that the order of [D] is n, so there is a modular
unit

f =
∏

m|N,m 6=N

φ(`(m))−1∏
h=0

F
e(m,h)
m,h

such that div(f ) = nD. Then e(m, h) is divisible by n when h 6= 0.

It turns out that (when L is odd)

Conjecture A =⇒ Ribet–Yoo conjecture.
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Conjecture A =⇒ Ribet–Yoo conjecture

Let g(m, h) := 1
ne(m, h) ∈ Z if h 6= 0 and g(m, 0) := 0. We define

G =


∏

m∈D1
N

∏`(m)−1
h=0

(
Fm,h

Fm,0

)g(m,h)
if 3 - L

F 16a
N/3,0

∏
m∈D1

N

∏`(m)−1
h=0

(
Fm,h

Fm,0

)g(m,h)
if 3 | L

One can check G is a modular unit by the previous theorem. Put
D ′ = D − div(G ). Then

nD ′ =
∑

div(F
r(m)
m,0 ),

for some r(m) ∈ Z, which means D ′ is a rational cuspidal divisor.
Therefore, [D] = [D ′] ∈ C(N).
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Consequence

Theorem

Conjecture A is true if N = prM or N = prqsM, where p, q are primes
and M is squarefree.

Corollary (Yoo–Y. 2021+)

Let p, q are odd primes and let M be squarefree. Let N = prM or
N = prqsM. Then

C(N) = CN(Q).
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Thank you very much for your attention!
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