On the first derivative of the cyclotomic Katz *p*-adic *L*-functions

Ming-Lun Hsieh

PANT 2020 Kyoto

December 6th, 2021

Ming-Lun Hsieh On the first derivatives of *p*-adic *L*-functions

- Trivial zeros of Dirichlet *L*-functions and *p*-adic Kubota-Leopoldt *p*-adic *L*-functions.
- The existence of the trivial zero of the Katz *p*-adic *L*-functions.
- The *p*-adic regulators and conjectures on the higher derivatives of the Katz *p*-adic *L*-functions at the trivial zero.
- Results for general CM fields under the Leopoldt conjectures.

Let $\chi : (\mathbf{Z}/N\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$ be a primitive Dirichlet character modulo N and let $L_{\infty}(s, \chi)$ be the Dirichlet *L*-function associated with χ . If χ is even, i.e. $\chi(-1) = 1$, then the functional equation reads

$$\pi^{\frac{s}{2}} \cdot \Gamma(\frac{s}{2}) L_{\infty}(s,\chi) = \mathfrak{g}(\chi) N^{-s} \cdot \pi^{\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) \cdot L(1-s,\chi^{-1}).$$

Here $\mathfrak{g}(\chi)$ is the Gauss sum of χ . The fact that $\Gamma(s/2)$ has a simple pole at s = 0 implies that

$$\operatorname{ord}_{s=0} L_{\infty}(0,\chi) = 1.$$

These zeros caused by the poles of archimedean *L*-factors are referred to trivial zeros.

Derivatives of complex *L*-functions at trivial zeros

Let $\zeta_N = e^{\frac{2\pi i}{N}}$. A classical formula: if $\chi \neq 1$ is even, then

$$L'_{\infty}(0,\chi) = -2^{-1} \sum_{a=1}^{N} \chi(a) \log(1-\zeta_N^a).$$

Let $F = \mathbf{Q}(\zeta_N)^+ = \mathbf{Q}(\cos \frac{2\pi}{N}) \hookrightarrow \mathbf{R}$ and regard χ as a character of $\operatorname{Gal}(F/\mathbf{Q})$ via the Artin map. Then

$$L'_{\infty}(0,\chi) = \frac{-1}{2} \sum_{\sigma \in \operatorname{Gal}(F/\mathbf{Q})} \chi(\sigma) \log \mathbf{c}_N^{\sigma},$$

where $\mathbf{c}_{N} := (1 - \zeta_{N})(1 - \zeta_{N}^{-1}) \in F^{\times}$ is a totally positive element.

Let p > 2 be a prime and fix an isomorphism $\iota_p : \mathbb{C} \simeq \mathbb{C}_p$ once and for all. Denote by $\omega : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ the Teichmüller character induced by ι_p . To each $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ a primitive odd Dirichlet character modulo N, we can associate the Kubota-Leopodlt p-adic L-function $L_p(s, \chi\omega) : \mathbb{Z}_p \to \mathbb{C}_p$, which enjoys the interpolation formula

$$L_p(1-k,\chi\omega) = (1-\chi\omega^{1-k}(p)p^{k-1})L_{\infty}(1-k,\chi\omega^{1-k})$$
 for $k \ge 1$.

In particular, $L_p(0, \chi \omega) = (1 - \chi(p))L_\infty(0, \chi)$, and hence

$$L_p(0, \chi \omega) = 0$$
 if $\chi(p) = 1$.

In this case, s = 0 is called the trivial zero for s = 0 is the pole of the local *L*-factor $(1 - \chi(p)p^{-s})^{-1}$.

$\mathscr{L} ext{-invariant}$

Suppose that $\chi(p) = 1$. Let *H* be the abelian extension of **Q** cut out by χ . Let $\mathcal{O}_{H,p}^{\times}$ be the group of *p*-units. The χ -isotypic part of $\mathcal{O}_{H,p}^{\times}$ is defined by

$$\mathcal{O}_{H,\rho}^{\times}[\chi] = \left\{ u \in \mathcal{O}_{H,\rho}^{\times} \otimes_{\mathsf{Z}} \mathsf{C}_{\rho} \mid (\sigma \otimes 1)u = (1 \otimes \chi(\sigma))u, \, \sigma \in \operatorname{Gal}(H/\mathsf{Q})
ight\}$$

It is known that $\dim_{\mathbf{C}_{\rho}} \mathcal{O}_{H,\rho}^{\times}[\chi] = 1$. Let $\log_{\rho} : \mathbf{C}_{\rho}^{\times} \to \mathbf{C}_{\rho}$ be the Iwasawa logarithm. Let \mathfrak{P} be the prime of \mathcal{O}_{H} induced by ι_{ρ} and let

$$\begin{split} \log_{\mathfrak{P}} : & \mathcal{H}^{\times} \otimes \mathsf{C}_{\rho} \to \mathsf{C}_{\rho}, \quad \log_{\mathfrak{P}}(\alpha \otimes x) = \log_{\rho}(\iota_{\rho}(\alpha))x, \\ & \mathrm{ord}_{\mathfrak{P}} : & \mathcal{H}^{\times} \otimes \mathsf{C}_{\rho} \to \mathsf{C}_{\rho}, \quad \mathrm{ord}_{\mathfrak{P}}(\alpha \otimes x) = \mathrm{ord}_{\mathfrak{P}}(\alpha)x. \end{split}$$

Define the \mathscr{L} -invariant by

$$\mathscr{L}(\chi) := -rac{\mathsf{log}_\mathfrak{P}(u)}{\mathrm{ord}_\mathfrak{P}(u)}, \quad u
eq \mathsf{0} \in \mathcal{O}_{H, p}^{ imes}[\chi].$$

Derivatives of *p*-adic *L*-functions at trivial zeros

Theorem (Gross)

We have

$$L'_{p}(0,\chi\omega) = \mathscr{L}(\chi)L_{\infty}(0,\chi).$$

As a consequence, $\operatorname{ord}_{s=0} L_p(s, \chi \omega) = 1$.

This was proved by combining the Gross-Koblitz formula and the theorem of Ferrero-Greenberg. The non-vanishing of $\mathscr{L}(\chi)$ follows from the Brumer-Baker Theorem. The generalization of this derivative formula to totally real fields was solved in a series work of Darmon-Dasgupta-Pollack (2011), Ventullo (2015), and Dasgupta-Kakade-Ventullo (2018) by using the Eisenstein congruence of Hilbert modular forms

Today we will present an analogue of this result for the Katz p-adic L-functions over CM fields by adapting their ideas to the CM congruence of Hilbert modular forms

Let $K \hookrightarrow \mathbf{C}$ be an imaginary quadratic field with the fundamental discriminant $d_K > 0$. Let χ be a primitive Hecke character modulo \mathfrak{f} . The classical Hecke *L*-function of χ is defined by

$$L_{\infty}(s,\chi) := \sum_{(\mathfrak{a},\mathfrak{f})=1} \chi(\mathfrak{a}) \mathrm{N}\mathfrak{a}^{-s},$$

where a runs over ideals of $\mathcal{O}_{\mathcal{K}}$ and N is the norm from \mathcal{K} to Q.

If χ has the infinity type (a, b), i.e. $\chi(\alpha \mathcal{O}_{\mathcal{K}}) = \alpha^{-a}\overline{\alpha}^{-b}$ with $\alpha \equiv 1 \pmod{\mathfrak{f}}$, then the complete *L*-function is defined by

$$L(s,\chi) := 2(2\pi)^{-s+\max\{a,b\}} \Gamma(s+\max\{a,b\}) L_{\infty}(s,\chi).$$

There is a functional equation relating $L(s, \chi)$ and $L(1 - s, \chi^{-1})$.

Derivatives of L-functions for imaginary quadratic fields at the trivial zero

When χ has the infinity type (0,0), i.e. χ is a ray class character of conductor \mathfrak{f} , $L_{\infty}(s,\chi)$ has a trivial zero at s = 0 by the functional equation. Let $K(\mathfrak{f})$ be the ray class field of K of conductor \mathfrak{f} . Regarding χ as a character of $\operatorname{Gal}(K(\mathfrak{f})/K)$,we have $\operatorname{ord}_{s=0}L_{\infty}(s,\chi) = 1$ and a classical formula:

$$L'_{\infty}(0,\chi) = \frac{-1}{12 f w_{\mathfrak{f}}} \sum_{\sigma \in \operatorname{Gal}(\mathcal{K}(\mathfrak{f})/\mathcal{K})} \chi(\sigma) \log \left| \varphi_{\mathfrak{f}}^{\sigma} \right|_{\mathsf{C}},$$

where

- *w*_f is the number of roots of unity in *K*[×] congruent to 1 modulo f,
- f is the smallest positive integer in f;
- $\varphi_{\mathfrak{f}} \in \mathcal{K}(\mathfrak{f})^{\times}$ is the Robert's invariant (elliptic units).

Before going into the p-adic world, we need to introduce some notation:

- K: CM field and F, a totally imaginary quadratic extension of a totally real subfield of F.
- Let **c** be the complex conjugation.
- \mathcal{W} : a finite extension of the Witt ring $W(\overline{\mathbb{F}}_p)$.
- $\chi : \operatorname{Gal}(\mathcal{K}(\mathfrak{f})/\mathcal{K}) \to \mathcal{W}^{\times}$: a ray class character of conductor \mathfrak{f} .
- K_{∞} : the cyclotomic \mathbf{Z}_{p} -extension of K,
- $\varepsilon_{\rm cyc}: {\rm Gal}(K_\infty/K) \xrightarrow{\sim} 1 + p{\sf Z}_p$ is the *p*-adic cyclotomic character,
- $\mathcal{K}(p^{\infty}) := \cup_{n=1}^{\infty} \mathcal{K}(p^n)$ the ray class field of conductor p^{∞} .

The Katz *p*-adic *L*-functions over CM fields

Let Σ be a CM type of ${\cal K},$ i.e. Σ is a subset of ${\rm Hom}({\cal K},{\textbf C})$ such that

$$\Sigma \cap \overline{\Sigma} = \emptyset; \quad \Sigma \cup \overline{\Sigma} = \operatorname{Hom}(\mathcal{K}, \mathbf{C}), \quad (\overline{\Sigma} := \Sigma \circ \mathbf{c}).$$

Let $S_p(K)$ be the set of *p*-adic places of *K* above *p*. Let $\Sigma_p \subset S_p(K)$ be the set of *p*-adic places of *K* induced by $\iota_p \circ \Sigma$. We say Σ is a *p*-ordinary CM type if

$$\Sigma_{\rho} \cap \overline{\Sigma}_{\rho} = \emptyset; \quad \Sigma_{\rho} \cup \overline{\Sigma}_{\rho} = S_{\rho}(K).$$

We assume the following *p*-ordinary condition:

Every prime factor of
$$p$$
 in F splits in K . (ord)

The assumption (ord) assures the existence of *p*-ordinary CM types. Fixing a *p*-ordinary CM type Σ , let $\mathcal{L}_{\Sigma}(\chi) \in \mathcal{W}[\![\operatorname{Gal}(K_{\infty}/K)]\!]$ be the Katz *p*-adic *L*-function constructed by Katz (when $\mathfrak{f} = (1)$) and Hida-Tilouine (when $\mathfrak{f} \neq (1)$).

Interpolation formula

The *p*-adic *L*-function $\mathcal{L}_{\Sigma}(\chi)$ is characterized by the following interpolation property: there exists a complex period $\Omega = (\Omega_{\sigma})_{\sigma \in \Sigma} \in (\mathbb{C}^{\times})^{\Sigma}$ and a *p*-adic period $\Omega_p = (\Omega_{p,\sigma})_{\sigma \in \Sigma} \in (\mathcal{W}^{\times})^{\Sigma}$ such that for every crystalline characters $\nu : \operatorname{Gal}(K_{\infty}/K) \to \mathbb{C}_p^{\times}$ of weight $k\Sigma + j(1 - \mathbf{c})$, we have

$$\frac{\nu(\mathcal{L}_{\Sigma}(\chi))}{\Omega_{\rho}^{k\Sigma+2j}} = \frac{[\mathcal{O}_{K}^{\times}:\mathcal{O}_{F}^{\times}]}{2^{d}\sqrt{\Delta_{F}}} \cdot \frac{1}{(\sqrt{-1})^{k\Sigma+j}} \cdot \frac{L(0,\chi\nu_{\infty})}{\Omega^{k\Sigma+2j}} \\ \times \prod_{\mathfrak{P}\in\Sigma_{\rho}} (1-\chi\nu_{\infty}(\overline{\mathfrak{P}}))(1-\chi\nu_{\infty}(\mathfrak{P}^{-1})\mathrm{N}\mathfrak{P}^{-1})$$

 $(k > 0 \text{ and } j \in \mathbf{Z}_{\geq 0}[\Sigma] \text{ or } k \leq 1 \text{ and } k\Sigma + j \in \mathbf{Z}_{>0}[\Sigma]).$ Here

- ν_∞ is the grossencharacter of type A₀ associated with φ such that ν_∞(Ω) is the value of ν at the geometric Frobenius Frob_Ω at primes Ω ∤ p,
- $L(s, \chi \nu_{\infty})$ denotes the complete Hecke *L*-function for $\chi \nu_{\infty}$, including the Gamma functions at the archimedean places.

The conjecture on the vanishing order of p-adic L-functions at the trivial zero

We consider the cyclotomic Katz *p*-adic *L*-function $L_{\Sigma}(s, \chi) : \mathbb{Z}_p \to \mathbb{C}_p$ defined by

$$L_{\Sigma}(s,\chi) := \varepsilon_{\rm cyc}^{s}(\mathcal{L}_{\Sigma}(\chi)).$$

Put

$$r_{\Sigma}(\chi) := \# \left\{ \mathfrak{P} \in \Sigma_{\rho} \mid \chi(\overline{\mathfrak{P}}) = 1 \right\}.$$

The following is an analogue of Gross' conjecture for the vanishing order of the Katz *p*-adic *L*-functions at the trivial zero:

Conjecture

Suppose that $\chi \neq 1$. Then we have

$$\operatorname{ord}_{s=0} L_{\Sigma}(s, \chi) = r_{\Sigma}(\chi).$$

Since s = 0 is not a critical value for χ and is outside the range of interpolation, it is not clear that $L_{\Sigma}(0, \chi) = 0$ if $r_{\Sigma}(\chi) > 0$. In the case of imaginary quadratic fields, it follows from the *p*-adic Kronecker limit formula that $L_{\Sigma}(0, \chi) = 0$ if $r_{\Sigma}(\chi) > 0$.

Our first main result asserts that under certain Leopoldt hypothesis, the trivial zeros occur precisely when $r_{\Sigma}(\chi) > 0$.

The Σ -Leopoldt conjecture for χ

Let $H = \overline{\mathbf{Q}}^{\operatorname{Ker} \chi} \subset \mathcal{K}(\mathfrak{f})$ be the extension cut out by χ . We introduce the following

Conjecture (Σ -Leopoldt conjecture for χ)

The Σ_p -logarithm map

 $\log_{\Sigma_{\rho}}: \mathcal{O}_{H}^{\times}[\chi] \longrightarrow (\mathbf{C}_{\rho})^{\Sigma}, \quad x \mapsto \log_{\Sigma_{\rho}}(x) := (\log_{\rho}(\iota_{\rho}(\sigma(x)))_{\sigma \in \Sigma})$

is injective.

Remark

- The Σ -Leopoldt conjecture for χ is a standard consequence of the Schanuel's conjecture in transcendental number theory.
- When F is a real quadratic field over Q and p splits in F and $\chi \neq \chi^{c}$, then there exist at least two p-ordinary CM types Σ such that the Σ -Leopoldt conjecture for χ holds in view of D. Roy's strong six exponential theorem.

The existence of the trivial zero

Let Δ_F be the absolute discriminant of F. Let $\mathfrak{d}_{K/F}$ be the relative discriminant of K/F and $h_{K/F} = h_K/h_F$ be the relative class number of K/F.

Theorem A (Adel Betina and H.)

Suppose that

- (i) $p \nmid 6\Delta_F h_{K/F}$;
- (ii) χ is of prime-to-p order and is unramified at primes dividing $p\mathfrak{d}_{K/F}$.
- (iii) The Leopoldt conjecture for F and the Σ -Leopoldt conjecture for χ hold.

Then we have

 $\operatorname{ord}_{s=0} L_{\Sigma}(s,\chi) > 0$ if and only if $r_{\Sigma}(\chi) > 0$.

Let K_{Σ_p} be the maximal \mathbb{Z}_p -extension of K unramified outside Σ_p . Let $\varepsilon_{\Sigma} : \operatorname{Gal}(K_{\Sigma_p}/K) \to \overline{\mathbb{Z}}_p^{\times}$ be a character such that $\varepsilon_{\Sigma} \circ \mathscr{V}$ is the p-adic cyclclotomic character, where $\mathscr{V} : G_F^{\mathrm{ab}} \to G_K^{\mathrm{ab}}$ is the transfer map and let $\varepsilon_{\overline{\Sigma}} := \varepsilon_{\Sigma}^{\mathbf{c}}$ be the complex conjugation of ε_{Σ} . Define the two-variable Katz p-adic L-function $\mathscr{L}_{\Sigma}(-,-,\chi) : \mathbb{Z}_p^2 \to \mathscr{W}$ by

$$\mathcal{L}_{\Sigma}(s,t,\chi) := \varepsilon_{\Sigma}^{s} \varepsilon_{\overline{\Sigma}}^{t} \left(\mathcal{L}_{\Sigma}(\chi) \right).$$

Remark

Let $h = h_K$. We have

$$\mathcal{L}_{\Sigma}(hs, hs, \chi) = L_{\Sigma}(hs, \chi).$$

Proposition

There exists an one-variable (improved) p-adic L-function $\mathcal{L}^*_{\Sigma}(s,\chi): \mathbf{Z}_p \to \mathcal{W}$ such that

$$\mathcal{L}_{\Sigma}(s,0,\chi) = \mathcal{L}^{*}_{\Sigma}(s,\chi) \prod_{\mathfrak{P} \in \Sigma_{P}} (1 - \chi \varepsilon^{s}_{\Sigma}(\overline{\mathfrak{P}})).$$

This *p*-adic function $\mathcal{L}^*_{\Sigma}(s, \chi)$ can be viewed as the *p*-adic *L*-function for χ along the \mathbb{Z}_p -extension K_{Σ_p}/K .

We introduce the improved Katz *p*-adic Eisenstein measure and construct $\mathcal{L}^*_{\Sigma}(s,\chi)$ by the evaluation of this Eisenstein measure at CM points.

The proof of Theorem A boils down to proving the non-vanishing of the special value $\mathcal{L}^*_{\Sigma}(0,\chi)$.

If K is an imaginary quadratic field, we have

$$\mathcal{L}_{\Sigma}^{*}(0,\chi) = -\frac{1}{12 f w_{\mathfrak{f}}} \sum_{\sigma \in \operatorname{Gal}(\mathcal{K}(\mathfrak{f})/\mathcal{K})} \chi(\sigma^{-1}) \log_{\rho}(\sigma(\varphi_{\mathfrak{f}}))$$

by the *p*-adic Kronecker limit formula, so we get $\mathcal{L}^*_{\Sigma}(0,\chi) \neq 0$ by the Brumer-Baker theorem.

For general CM fields, we deduce the non-vanishing of $\mathcal{L}^*_{\Sigma}(0,\chi)$ from our previous work on the one-sided divisibility of the Iwasawa main conjecture for CM fields and the Σ -Leopoldt conjecture.

The *p*-adic regulator \mathscr{R}_{χ}

Let \log_{Σ} be the complex logarithm given by

$$\log_{\Sigma}: \mathcal{O}_{H}^{\times}[\chi] \longrightarrow \mathbf{C}^{\Sigma} \simeq \mathbf{C}_{p}^{\Sigma}, \quad x \mapsto (\log(\sigma(x))_{\sigma \in \Sigma}.$$

Define the *p*-adic regulator \mathscr{R}_{χ} of $\mathcal{O}_{H}^{\times}[\chi]$ by

$$\mathscr{R}_{\chi} := \mathsf{det}\left(\mathsf{log}_{\Sigma_p} \circ \mathsf{log}_{\Sigma}^{-1}\right).$$

Let $\mathcal{O}_{H,\overline{\Sigma}_{p}}^{\times}$ be the group of $\overline{\Sigma}_{p}$ -units. Then $\dim_{\mathbf{C}_{p}} \mathcal{O}_{H,\overline{\Sigma}_{p}}^{\times}[\chi] = [F : \mathbf{Q}] + r_{\Sigma}(\chi).$

Put

$$V_{\chi} := \ker \left\{ \log_{\Sigma_{\rho}} : \mathcal{O}_{H, \overline{\Sigma}_{\rho}}^{\times}[\chi] \longrightarrow \mathbf{C}_{\rho}^{\Sigma} \right\}.$$

With the $\Sigma\text{-Leopoldt}$ conjecture for χ ($\iff \mathscr{R}_\chi \neq$ 0), we have

$$\mathcal{O}_{H,\overline{\Sigma}_{p}}^{\times}[\chi] = \mathcal{O}_{H}^{\times}[\chi] \oplus V_{\chi}; \quad \dim V_{\chi} = r_{\Sigma}(\chi).$$

Let
$$\Sigma_{\rho}^{0} = \{\mathfrak{P} \in \Sigma_{\rho} \mid \chi(\overline{\mathfrak{P}}) = 1\}$$
. Put
 $\operatorname{ord}_{\Sigma_{\rho}^{0}} : V_{\chi} \longrightarrow C_{\rho}^{\Sigma_{\rho}^{0}}, \quad \operatorname{ord}_{\Sigma_{\rho}^{0}}(x) = (\operatorname{ord}_{\mathfrak{P}}(x))_{\mathfrak{P} \in \Sigma_{\rho}^{0}}$
 $\ell_{\Sigma_{\rho}^{0}}^{\operatorname{cyc}} : V_{\chi} \longrightarrow C_{\rho}^{\Sigma_{\rho}^{0}}, \quad \ell_{\Sigma_{\rho}^{0}}^{\operatorname{cyc}}(x) = (\log_{\rho}(N_{K_{\mathfrak{P}}/\mathbb{Q}_{\rho}}(x))_{\mathfrak{P} \in \Sigma_{\rho}^{0}}.$

Define the cyclotomic \mathscr{L} -invariant of V_{χ} by

$$\mathscr{L}_{\chi} := \mathsf{det} \left(\ell^{\mathrm{cyc}}_{\Sigma^{\mathbf{0}}_{\rho}} \circ \mathrm{ord}^{-1}_{\Sigma^{\mathbf{0}}_{\rho}} \right).$$

Higher derivatives of the Katz p-aduc L-functions at the trivial zero

Conjecture

Assume the Σ -Leopoldt conjecture holds for χ . We have $\operatorname{ord}_{s=0} L_p(s,\chi) \ge e := r_{\Sigma}(\chi)$, and $\frac{L_p(s,\chi)}{s^e}\Big|_{s=0} = \mathscr{L}_{\chi} \cdot (-1)^e \mathscr{R}_{\chi}$ $\times \prod_{\mathfrak{P} \in \Sigma_p} (1 - \chi(\mathfrak{P}^{-1}) \mathbb{N} \mathfrak{P}^{-1}) \prod_{\mathfrak{P} \in \Sigma_p \setminus \Sigma_0^0} (1 - \chi(\overline{\mathfrak{P}})) \cdot L^*(0,\chi).$

Here $L^*(0, \chi)$ is the leading coefficient of $L(s, \chi)$.

Buyukboduk and Sakamoto in 2019 proved that this formula is a consequence of several open conjectures, including the existence of the conjectural Rubin-Stark units and the Iwasawa main conjecture for CM fields.

Inspired by the work of Buyukboduk-Sakamoto, we expect that

Conjecture $\mathcal{L}_{\Sigma}^{*}(0,\chi) = (-1)^{r_{\Sigma}(\chi)} \mathscr{R}_{\chi} \prod_{\mathfrak{P} \in \Sigma_{\rho}} (1 - \chi(\mathfrak{P}^{-1}) \mathbb{N} \mathfrak{P}^{-1}) \cdot \mathcal{L}^{*}(0,\chi).$

The first derivative formula of $L_{\Sigma}(s,\chi)$

Define the complex conjugation $\chi^{\mathbf{c}}$ of χ by $\chi^{\mathbf{c}}(\sigma) = \chi(\mathbf{c}\sigma\mathbf{c})$. Recall that we say χ is anticyclotomic if $\chi^{\mathbf{c}} = \chi^{-1}$

Theorem B (B.-H.)

Suppose that χ is anticyclotomic. With the same hypotheses in Theorem A, we have

$$\frac{\mathcal{L}_{\Sigma}(s,\chi)}{s}\bigg|_{s=0} = \mathscr{L}_{\chi} \cdot \mathscr{L}_{\Sigma}^{*}(0,\chi) \prod_{\mathfrak{P} \in \Sigma_{\rho} \setminus \Sigma_{\rho}^{0}} (1-\chi(\overline{\mathfrak{P}})).$$

In particular, this shows that

$$\operatorname{ord}_{s=0}L_{\Sigma}(s,\chi)=1$$
 if and only if $r_{\Sigma}(\chi)=1$ and $\mathscr{L}_{\chi}\neq 0$.

Remark

If $r_{\Sigma}(\chi) = 1$, the non-vanishing of \mathscr{L}_{χ} is a consequence of the Four Exponential conjecture in transcendental number theory.

The proof of Theorem B uses the two-variable *p*-adic *L*-function:

- Use the Proposition to compute the first derivative $\frac{d}{ds}\mathcal{L}_{\Sigma}(s,0,\chi)|_{s=0}$.
- Adapt the method of Dasgupta, Kakde and Ventullo [DKV] to the CM congruence to compute the higher derivatives of the anticylotomic *p*-adic *L*-function L_Σ(s, -s, χ).
- Theorem B follows from the equation

$$\frac{L_{\Sigma}(s,\chi)}{s}\Big|_{s=0} = \frac{2\mathcal{L}_{\Sigma}(s,0,\chi) - \mathcal{L}_{\Sigma}(s,-s,\chi)}{s}\Big|_{s=0}$$

Higher derivatives of the anticyclotomic p-adic L-functions

Choose
$$u_{\mathfrak{P}} \in \mathcal{O}_{H,\mathfrak{P}}^{\times}[\chi]$$
 with $\operatorname{ord}_{\mathfrak{P}}(u_{\mathfrak{P}}) = 1$ and put
 $\mathscr{L}_{\mathfrak{P}} := \log_{\rho} \left(\operatorname{N}_{\mathcal{K}_{\mathfrak{P}}/\mathbf{Q}_{\rho}}(u_{\mathfrak{P}}) \right)$. Define the anticyclotomic logarithm
 $\ell_{\mathfrak{P}}^{\operatorname{ac}} := 2\mathscr{L}_{\mathfrak{P}} \cdot \operatorname{ord}_{\mathfrak{P}} - \log_{\rho} \circ \operatorname{N}_{\mathcal{K}_{\mathfrak{P}}/\mathbf{Q}_{\rho}}$ for $\mathfrak{P} \in \Sigma_{\rho}^{0}$.

Theorem C (B.-H.)

With the same hypotheses in Theorem A, we have

•
$$\operatorname{ord}_{s=0}\mathcal{L}_{\Sigma}(s, -s, \chi) \geq r_{\Sigma}(\chi);$$

$$\frac{\mathcal{L}_{\Sigma}(s,-s,\chi)}{s'^{\Sigma(\chi)}}\bigg|_{s=0} = \mathscr{L}_{\chi}^{\mathrm{ac}} \cdot \mathcal{L}_{\Sigma}^{*}(0,\chi) \prod_{\mathfrak{P} \in \Sigma_{\rho} \setminus \Sigma_{\rho}^{0}} (1-\chi(\overline{\mathfrak{P}})).$$

Here \mathscr{L}_{χ}^{ac} is the anticyclotomic p-adic regulator with $\log \circ N_{\mathcal{K}_{\mathfrak{P}}/\mathbf{Q}_{p}}$ replaced by $\ell_{\mathfrak{P}}^{ac}$ in the definition.

The proof is divided into the two steps:

- Choose a nice ray class character φ such that χ = φ^{1-c}. Note that φ ≠ φ^c as χ ≠ 1 and construct an explicit congruence between the Hida family of CM forms θ_{φ^c} and non-CM forms.
- Apply Ribet's method and the techniques of [DKV] to get the higher derivative formula.

Now we briefly explain the first step in the case of F = Q.

ordinary A-adic forms

Let \mathscr{A} be the ring of rigid analytic functions on the closed unit disk $\mathbf{D} := \left\{ s \in \mathbf{C}_p \mid |s|_p \leq 1 \right\}$. Let N be a prime-to-p integer and ξ be a Dirichlet character. Let $\mathbf{S}(N,\xi)$ be the space of ordinary \mathscr{A} -adic cusp forms, consisting of

$$F(s) = \sum_{n>0} a(n,F)(s)q^n \in \mathscr{A}\llbracket q
rbracket \quad (s \in \mathsf{D})$$

such that for any positive integer $k \in \mathbf{D}$ with $k \equiv 0 \pmod{p-1}$,

$$F(k) = \sum_{n>0} a(n,F)(k)q^n$$

is the q-expansion of some p-ordinary elliptic modular form of weight k + 1, level Np and nebentypus ξ .

Then $S(N,\xi)$ is a \mathscr{A} -module with the usual action of Hecke operators. A classical result in Hida theory asserts that $S(N,\xi)$ is a finite free \mathscr{A} -module.

If ϕ : Gal $(K(\mathfrak{c})/K) \to F^{\times}$ is a primitive ray class character with $(\mathfrak{c}, pd_K) = 1$, we put

$$oldsymbol{ heta}_{\phi}(s) := \sum_{(\mathfrak{a},\mathfrak{p}\mathfrak{c})=1} \phi(\mathfrak{a}) (arepsilon_{\Sigma}(\mathrm{Frob}_{\mathfrak{a}}))^{-s} q^{\mathrm{N}\mathfrak{a}} \in \mathscr{A}\llbracket q
rbracket \quad (s \in \mathsf{D}).$$

Then $\theta_{\phi} \in \mathbf{S} := \mathbf{S}(\Delta_{K} \mathrm{N} \mathfrak{c}, \phi_{+} \tau_{K/F})$ is a Hecke eigenform, where $\phi_{+} : (\mathbf{Z}/\mathrm{N} \mathfrak{c} \mathbf{Z})^{\times} \to \mathbf{C}^{\times}$ is the character $\phi_{+}(a) := \phi(a\mathcal{O}_{K})$ for $a \in \mathbf{Z}$ prime to N \mathfrak{c} . We call θ_{ϕ} the \mathscr{A} -adic CM forms associated with ϕ .

Let \mathscr{A}^{\dagger} be the stalk of \mathscr{A} at s = 0, i.e.

$$\mathscr{A}^{\dagger} = \left\{ \sum_{n \ge 0} a_n s^n, \, a_n \in \mathbf{C}_p \mid \lim_{n \to \infty} |a_n|_p \, r^n = 0 \text{ for some } r > 0 \right\}$$

Put $S^{\dagger} = S \otimes_{\mathscr{A}} \mathscr{A}^{\dagger}$. There is a spectral decomposition of Hecke modules

$$\mathsf{S}^{\dagger}\otimes_{\mathscr{A}^{\dagger}}\mathscr{K}=\mathscr{K}\cdot \boldsymbol{ heta}_{\phi}igoplus \mathscr{K}\cdot \boldsymbol{ heta}_{\phi^{\mathsf{c}}}igoplus \mathsf{S}^{\perp}.$$

Here \mathscr{K} is the fractional field of \mathscr{A}^{\dagger} and S^{\perp} is \mathscr{A}^{\dagger} -submodule of S^{\dagger} generated by forms orthogonal to θ_{ϕ} and $\theta_{\phi^{c}}$.

Let $\mathbf{T}^{\perp} \subset \operatorname{End}_{\mathscr{A}^{\dagger}} \mathbf{S}^{\perp}$ be the \mathscr{A}^{\dagger} -algebra acting on \mathbf{S}^{\perp} generated by Hecke operators $\{\mathcal{T}_{\ell}\}_{\ell \nmid pN}$ and $\{U_q\}_{q \mid pN}$. In view of the works of Darmon,-Dasgupta-Pollack and Dasgupta-Kakde-Ventullo, to compute the \mathscr{L} -invariant, we will need to construct a non-zero \mathscr{A}^{\dagger} -adic form $\mathscr{H} \in \mathbf{S}^{\perp}$ such that

• \mathscr{H} is a generalized Hecke eigenform modulo s^{r+1} , where $r = \operatorname{ord}_{s=0} \mathcal{L}_{\Sigma}(s, -s, \chi)$.

ℋ (mod s^r) shares the same Hecke eigenvalues with θ_{φ^c} (mod s^r).

The method of [DKV] tells us that $\mathscr{L}_{\chi}^{\mathrm{ac}}$ can be computed from the Hecke eigenvalues of $\mathscr{H} \pmod{s^{r+1}}$.

The construction of \mathcal{H} is achieved by the explicit *p*-adic Rankin-Selberg method.

The *p*-adic Rankin-Selberg method

Let $\zeta_{F,p}(s) = L_p(s, 1)$ be the *p*-adic Riemann zeta function. For any integer $C \mid N$, define

$$G_C(s) := 1 + rac{2}{\zeta_p(1-s)} \sum_{n>0} \left(\sum_{d|n} \langle d \rangle^{s-1} \right) q^{Cn}$$

Here $\langle d \rangle = d\omega(d)^{-1}$. Then $G_C = G_C(s)$ is a *p*-adic family of Eisenstein series and since $\zeta_p(1-s)$ has a pole at s = 1,

$$G_C(0)=1.$$

Let

$$heta_\phi := \sum_{(\mathfrak{a},\mathfrak{c})=1} \phi(\mathfrak{a}) q^{\mathrm{N}\mathfrak{a}}$$

be the weight one CM form associated with ϕ . Consider

$$e_{\mathrm{ord}}(G_{\mathcal{C}} heta_{\phi})\in \mathsf{S}(\mathsf{N},\phi_{+} au_{\mathsf{K}/\mathsf{F}})\otimes_{\mathscr{A}}\hat{\mathscr{A}_{0}}.$$

Here $e_{\mathrm{ord}} = \lim_{n o \infty} U_{
ho}^{n!}$ is Hida's ordinary projector.

By the spectral decomposition, there exist unique A and B in $\mathscr{K} = \operatorname{Frac} \mathscr{A}$ such that

$$\mathscr{H} := e_{\mathrm{ord}}(\mathsf{G}_{\mathsf{C}}(s) heta_{\phi}) - rac{1}{A}oldsymbol{ heta}_{\phi} - rac{1}{B}oldsymbol{ heta}_{\phi^{\mathsf{c}}} \in \mathsf{S}^{\perp}.$$

Proposition (The explicit *p*-adic Rankin-Selberg convolution)

With a good choice of ϕ and C, the meromorphic function B = B(s) is given by

$$B(s) = \frac{L(0,\tau_{K/F})\mathcal{L}_{\Sigma}(s,-s,\chi)}{2\mathcal{L}_{\Sigma}^{*}(s,0,\chi)} \langle \Delta_{K} \rangle^{s} \cdot \frac{\zeta_{F,p}(1-s)}{\mathcal{L}_{\Sigma}^{*}(s,0,1)}$$

Let $r_B := \operatorname{ord}_{s=0}(B)$ and $r_A = \operatorname{ord}_{s=0}(A)$. We put

$$\mathscr{F} := B \cdot \mathscr{H} \text{ if } r_B \geq r_A; \quad \mathscr{F} = A \cdot \mathscr{H} \text{ if } r_A > r_B$$

We thus get a non-trivial congruence modulo s^{r_B} (resp. s^{r_A} between non-CM form \mathscr{F} in S^{\perp} and CM forms θ_{ϕ^c} (resp. θ_{ϕ}).

To assure we obtain sufficiently many congruence, we need to know $r_B = \operatorname{ord}_{s=0} \mathcal{L}_{\Sigma}(s, -s, \chi)$. This is done by proving the following special case of the *p*-adic Kronecker limit formula:

Proposition

Suppose that the Leopoldt conjecture for F holds. For each character χ of the ideal class group of K, we have

$$\frac{2^{d}\mathcal{L}_{\Sigma}^{*}(s,0,\chi)}{\zeta_{F,p}(1-s)}\Big|_{s=0} = \begin{cases} h_{K/F} & \text{if } \chi = \mathbf{1}, \\ 0 & \text{if } \chi \neq \mathbf{1}. \end{cases}$$

Thank you very much for the attension!