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The subject is the relationship between the following two matters:

@ Distribution of roots of polynomials

(half-planes) s (the unit circle)

@ Inverse problem of (quasi) canonical systems

T 1st order systems of ODEs
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@ The Schur—Cohn Test

© Quasi Canonical Systems

© Results

@ Inductive construction of H
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The Schur—Cohn Test

o The Schur—Cohn Test
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The Schur—Cohn Test

For polynomial
f(x) = agx? +ag_1x? 14+ 4 ax+a € C[x],

we define Do(f) :=1,

ad ao
a ag ag—1 a al ao
Di(f) :=det | =410 | Dy(f):=det | 4=t 9d 1 <0 |
ao | ad ao a1 | ad ad-1
ao aqd
ay = ;
ad—1 ad ar ao
_ ad—2 ad-1 a4 | a2 EN aop
Ds(f) := det == ——— |, , Dy(f).
ao a a |ad Aad-1 ad-2
ao a ad  ad-1
L ao aq |

The sign change of D,(f) is related to the distribution of roots of f.
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The Schur—Cohn Test

\ The Schur—Cohn Test\

Schur (1917, 1918), Cohn (1922)

Let f(x) € C[x], deg f = d.
Suppose that D,(f) # 0 for all 1 < n < d and let
q :=f of sign changes in (Do(f), D1(f),. .., Da(f)).

Then
e f(x) has no roots on T = {|x| =1},
e f(x) has exactly d — g roots inside T counting multiplicity.

In particular, all roots of f lie inside T iff D,(f) >0 forall 1 < n<d.
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The Schur—Cohn Test

For
f(x)=02x—1i)(x—2)(x—13)

= 2x3 — (10 4 i)x* + (12 + 5i)x — 6/,

we have Do(f) =1, Di(f) = det [ 2 . 6'} =32,

—6i 2
2 6i
_ ~10-i 2 |12-5 6 | _
Do(f) =det | %52 —q0r7| — 1800,
—6i 2
2 6i
“10-i 2 12-5 6
_ 1245 —10—; 2 |-10+/ 12-5 6 | _
Ds(f) = det | =G5 —o—7| 2 —to+7 15| — 187200
~6i  12+5i 2 —10+i
—~6i 2

(Do, D1, Dy, D3) = (1, —-32,—1800, 187200) has 2 sign changes.

We confirm that d — g = 3 — 2 = 1 is the number of roots inside T.
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Quasi Canonical Systems

© Quasi Canonical Systems

8/32



Quasi Canonical Systems

The most simple case

The theory of canonical systems generalizes the exponential function
from the perspective of Fourier analysis (Paley-Wiener).

e/ =1[0,a),0<a<oo, u(t,z): I xC—C>*,
0 0 —-1||1 O . 1
au(t, z)+z [1 0 ] [0 1} u(t,z) =0, tlgna u(t,z) = [O] .

At ,z) - zB(t,z) =0 A'(t,z) + zA(t,z) =0
< / < "
B(t,z)+ zA(t,z) =0 B'(t,z) +zB(t,z) =0
The unique solutions is

cos((a — t)z)

u(t, z) = Lin((a— t)z)}

cos((a —t)z) —isin((a — t)z) = exp(—i(a — t)z).

and
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Quasi Canonical Systems

o

H(t) : | =[to,t1) — Symy(R) = {[5 5] Ca, B,y € R}, measurable

e The first order system

0 -1

1 O]H(t)u(t,z)zo, zeC

9]
au(t, z)+z [

for unknown function u(t,z): | x C — C?*!is called a quasi canonical
system on | (QCS/QCS(H) for short). H(t) is called Hamiltonian.

e QCS is called a canonical system (CS/CS(H)) if
H(t) > 0foraetel,
H(t)#0on"JC |, |J] >0,
H(t) = (hy(e). hy(t) € Lb.(1).
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Quasi Canonical Systems

Several classical ODEs are reduced to canonical systems.

‘ Schrédinger equation ‘

—y"(x,2) + q(x)y(x,2) = zy(x,2), q(x) € L'(I)

a(x), B(x): the solutions for z = 0 with W = &/8 — a8’ = —1. Define

=[5 2T [ 9],
Then u(x, z) satisfies CS(H) with
Ho) - [a('i()xﬁ)fx) a%gx)] .

Other examples: Dirac equation, string equation, etc.
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Quasi Canonical Systems

The solution of a canonical system

Suppose that u(t,z) = *(A(t, z), B(t, z)) solves a CS on | = [to, t1) with

lim u(t, z) = H .

t—t

Then E(t,z) = A(t,z) — iB(t, z) belongs to the Hermite—Biehler class HB
for Vt € I. E € HIB is a generalization of the exponential function which is
defined to be an entire function satisfying

E(2)| < |E(z)] for S(2)>0 J

and E(z) #0, Vz € R.

o H ~ CS(H) 0° F c HB (direct problem)
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Quasi Canonical Systems

Inverse problem for canonical systems

e H ~ CS(H) 0° F c HB (direct problem)

Q: Does any E € HB come from H (CS(H)) ? (inverse problem)
A: Yes! L. de Branges (1960 +¢)

But, in general, it is difficult to determine H explicitly from a given E
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Results

© Results
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Results

Associating a polynomial to a canonical system

For f(x) = agx? 4+ ag_1x971 + ... 4+ a9 € C[x], we consider

1, d=degf :even,

Eiz2) = eirdz/2f efirz . r=
(2) (e™) {2, d = deg f : odd.

(the definition of r is for technical reason)

aje™ 7 4 age”?, degf =1,

Ei(2) are”Z 4+ a1 + ape”?, degf =2,
z) = ; . . .

f a3e 37 4+ ape™7 4 aje 4 aped?, degf =3,

age 27 4 aze™7 4 a5 + a1e + aoez"z7 degf =4,...

o All roots of f are inside T <> Ef(z) € HB (elementary).

~+ FH¢(t) (Hamiltonian) by de Branges' result
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Results

A few natural questions

o All roots of f are inside T <= Ef(z) € HB (elementary).

~+ FH¢(t) (Hamiltonian) by de Branges' result

Q1. What is the explicit formula of H¢(t) 7

Q2. Even if f has a root outside the unit circle,
can we get E¢(z) from the solution of a QCS(H) ?

Q3. If the answer to Q2 is yes, what is the explicit formula of H ?
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‘Theorem 1 (inverse problem)‘ Let f(x) € C[x], d = degf.

Suppose that £(0) # 0, Dy(f) # 0.Then 7Hy., € Sym} (R) (1 < n < d)
s.t.
Ef(z) = A(0,z) — iB(0, z)

for the unique solution *(A(t, z), B(t, z)) of QCS for the Hamiltonian

S
D, _1(F)Dy(F)

—1
H n, =1 ™M <y

Hr(t) = 2 = 2’

on [0,rd/2) (r=1if d is even, r =2 if d is odd) and

i [;\Ei iﬂ _ F(Ef(OHEf(O))

tosrdl 2 S(Ef(0) — Ef(0))]

e He(t) > 0 on [0, rd/2) if all roots of f lie inside T.

(i.e This Hf is H in de Branges inverse theorem)
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For f(x) = agx? + ag_1x9 1+ -+ a;x + a9 € C[x], we define

ad dd-1
ad
Mp(f) ==
nxn
Then

ad—n+1
ad—n+2

ad

Dy(f) = det

a a1 an—1
do dn—2
, Np(f) =
nxXn
a0
M, () N, (f)
£Ny(f)  My(f)
2nx2n
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Results

For every 1 < n < d, using the solutions of linear equations

[z (1) ] [0
z4(2) ,
: 0
[tM,,(f) j:th(f)] zy(n) | |2z
AN (F)  Ma(F) ||z | T f2a
2nx2n zi(n—1) 0
L@ | Lol
for unknowns z£(1) ..., zE(n), we define the matrix Hr , by
R(zf (1) Sz ()] [ R(z11) Sz (1)] [0 -1
[%(znu)) R(zy (1)) [%é{(l» Rz (1 >)} [ 0}”‘"
_ [0 1] P%(Z,T 1)) C‘\Y(ZIT(]')):| { R(z (1)) (Zfr(l))}
=1 0] [-3(z, (1)) R(z, (1)) Sz (1) Rz )]

Then | Dp_1(F)Dn(f)Hs.p = Hy p | O
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For f(x) = (2x — i)(x — 2)(x — 3) = 2x> — (10 + i)x? + (12 + 5i)x — 61,

Hep f0<t<l,
we have He(t) = Q Hrn if1<t <2, with
Hes if2<t<3,

1 — 1 40 —24]
(=32) |24 40 :

[40,256 35,648] 9

2= Di(Do(f) T? T (—32)- (—1800) |35,648 113,984

B 1 898,617,600 988,300,800 <0
~ (—1800) - 187200 |988,300,800 121,328,6400 '
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Results

Result for the direct problem

e H¢(t): locally const., taking values in SLa(R) N Sym,(R)

‘Theorem 2 (direct problem)‘

Let d € Zwo, Hi, ..., Hy € SLo(R) N Symy,(R), (A, B) # (0,0).
Let u(t,z) = *(A(t, z), B(t, z)) be the solution of QCS(H) with

r("_1)§t<r2", 1<n<d,

I t.z) = t(A. B).
H'Z'/z”(’z) (A, B)

Then u(t, z) is well-defined and f(e~/?) := e~"%2/2( A(0, z) — iB(0, z))
defines a polynomial.
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Results

Result for the direct problem

e If degf =d and f(0) #0, f has d — q roots inside T,
where g = of sign changes in (H1, Ha, ..., Hy).

e degf = d and f(0) # 0 if and only if

(I = iUH)( = iJH) - (1 — iJHy) [;‘} 40, ¢C [il/] ,

0 -1
whereJ—[1 0] O
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Results

Correspondence

-degf =d

- f(0) #0
feClx] |- Dg(f)#0

- nroots in T
-f(1)=1

inverse problem l T direct problem
- Hi,...,Hy € SL2(R) N Symz(R)
(Hy,...,Hg) |- # of sign changes in (H1,...,Hy)isd —n
(1 — UH)(I — iJHs) -~ (I — iJHg) H L0, ¢C [i,]
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Inductive construction of H

@ Inductive construction of H
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Inductive construction of H

|Re:Theorem 1] Let f(x) € C[x], d = deg f.

Suppose that £(0) # 0, Dy(f) # 0.Then FHy., € Sym} (R) (1< n < d)
s.t.
Ef(z) (= e™/2f(e)) = A(0, z) — iB(0, 2)

for the unique solution *(A(t, z), B(t, z)) of QCS for the Hamiltonian

1
Dy—1(f)Dp(f)

He(t) = He n,

on [0,rd/2) (r=1if diseven, r=2if dis odd) and ...

Independent of the construction of (H¢ 1, ..., Hr 4) by using solutions of
linear equations, it can also be constructed inductively.
In the rest, we explain the inductive construction.
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d/2—1

+ Z co(L —j)sin((L —J)z),

j=0
d/2—1
Bo(z) = > bo(L—j)sin((L —))z)
j=0
’ d/2
+ " do(L — j)cos((L — j)z).
j=0
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Inductive construction of H

If d is odd, we write and

(d-1)/2
Ao(z)= D ao(L—2j)cos((L—2j)z)
j=0
J(d 1)/2—1
+ Z co(L = 2j)sin((L = 2j)z),

(d— 1)/2 1
Bo(z)= > bo(L—2j)sin((L—2))z)
j=0
(Zf—n/z
+ > do(L—2j)cos((L —2j)z).
Jj=0
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Inductive construction of H

For 1 < n < d, we define

T
S

At z) =

]

I
Q o

an(L — rj)cos((L = rj — 1)2)

|
3

+ 3 el = r)sin((L— 1 — 1)2),
j=0

d—n
B,(t,z) = anL—Ij sin((L—n — t)z)
Jj=0

d—
+ > dy(L—rj)cos((L —rj—1t)z).
j=0

3

(r=1if diseven, r =2if d is odd)
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Inductive construction of H

For each 1 < n < d, there are 4(d — n + 1) indeterminates.

e Equations

or
A1(0,z) = Ao(z), Bi(0,z) =Bo(z) (n=1)
provide 4(d — n+ 1) — 2(d — n) linear equations.

e Differential equations

& An(t,2) = 2(BuAn(t,2) + 70Ba(t, 2).

d

pm Bn(t,z) = —z(anAn(t, z) + BnBn(t, 2))

provide 2(d — n) linear equations for a,(L — rj), ba(L — rj), ca(L — rj),
dn(L —1rj) (1 <j < d— n)including o, B, and v, as constants.
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Inductive construction of H

The resulting linear system for 4(d — n+ 1) indeterminates has unique
solution as long as a7y, — 5,27 # 0. The solution includes «,, 8, and v,
as constants, but they do not appear in a,(L), bn(L), cn(L), and d,(L).
Therefore, the above differential equations determine «,, 5, and 7y, as

o = bn(L)? + dn(L)? 8, = _a,,(L)d,,(L) + bp(L)cn(L)
" an(L)bn(L) — ca(L)dn(L)’ " an(L)bn(L) — ca(L)dn(L)’
_an(L)? +a(L)?
77 an(L)ba(L) — ca(L)dn(L)’
Further, we easily find that

an(L) = an—1(L) + an-1(R),  bn(L) = bn-1(L) — bn-1(R),
cn(L) = cn—1(L) — cn-1(R),  dn(L) = dn—1(L) + dn 1(R).
where R := L — r(d — n). Hence a,(k), bn(k), ca(k), dn(k) are written in

an_l(k), bn_l(k), Cn_1(k), dn_l(k) for 2 < n< d and 31( ) bl(k)
ci1(k), di(k) are written in coefficients of Ap(z ) and By(z).
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Inductive construction of H

As a result, we have

Hrp = Do1(F)Da(f) [gg fﬂ for 1<n<d. J
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Inductive construction of H

See arxiv:2106.04061 for details.
See also JFA, 281 (2021), arXiv:2012.11121 for the cases of ¢ and L.

Thank you for your kind attention !

32/32



	The Schur�ohn Test
	Quasi Canonical Systems
	Results
	Inductive construction of H

