On canonical systems related to roots of polynomials

Masatoshi Suzuki

Tokyo Institute of Technology

PANT-Kyoto 2021

Research Institute for Mathematical Sciences, Kyoto University via Zoom

December 10, 2021, 10:45-11:45

The subject is the relationship between the following two matters:

• Distribution of roots of polynomials

(half-planes)
$$\overset{LFT}{\leadsto}$$
 (the unit circle)

• Inverse problem of (quasi) canonical systems

↑ 1st order systems of ODEs

- 1 The Schur-Cohn Test
- Quasi Canonical Systems
- Results
- 4 Inductive construction of H

- 1 The Schur-Cohn Test
- Quasi Canonical Systems
- Results
- 4 Inductive construction of H

For polynomial

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0 \in \mathbb{C}[x],$$

we define $D_0(f) := 1$,

$$D_1(f) := \det \left[\begin{array}{c|c} a_d & \overline{a_0} \\ \hline a_0 & \overline{a_d} \end{array} \right], \quad D_2(f) := \det \left[\begin{array}{c|c} a_d & \overline{a_0} \\ \hline a_{d-1} & a_d & \overline{a_1} & \overline{a_0} \\ \hline a_0 & a_1 & \overline{a_d} & \overline{a_{d-1}} \\ \hline a_0 & \overline{a_0} & \overline{a_d} \end{array} \right],$$

$$D_3(f) := \det egin{bmatrix} a_d & & & \overline{a_0} & & & \ a_{d-1} & a_d & & \overline{a_1} & \overline{a_0} & & \ a_{d-2} & a_{d-1} & a_d & \overline{a_2} & \overline{a_1} & \overline{a_0} & \ \hline a_0 & a_1 & a_2 & \overline{a_d} & \overline{a_{d-1}} & \overline{a_{d-2}} & \ a_0 & a_1 & & \overline{a_d} & \overline{a_{d-1}} & \overline{a_{d-1}} \ & & a_0 & & & \overline{a_d} \end{bmatrix}, \cdots, D_d(f).$$

The sign change of $D_n(f)$ is related to the distribution of roots of f.

The Schur–Cohn Test

Schur (1917, 1918), Cohn (1922)

Let
$$f(x) \in \mathbb{C}[x]$$
, deg $f = d$.

Suppose that $D_n(f) \neq 0$ for all $1 \leq n \leq d$ and let

$$q := \sharp$$
 of sign changes in $(D_0(f), D_1(f), \dots, D_d(f))$.

Then

- f(x) has no roots on $\mathbb{T} = \{|x| = 1\}$,
- f(x) has exactly d-q roots inside \mathbb{T} counting multiplicity.

In particular, all roots of f lie inside \mathbb{T} iff $D_n(f) > 0$ for all $1 \le n \le d$.

For

$$f(x) = (2x - i)(x - 2)(x - 3)$$

= $2x^3 - (10 + i)x^2 + (12 + 5i)x - 6i$,

we have $D_0(f) = 1$, $D_1(f) = \det \begin{vmatrix} 2 & 6i \\ -6i & 2 \end{vmatrix} = -32$,

$$D_2(f) = \det \left[egin{array}{c|ccc} rac{2}{-10-i} & 2 & 12-5i & 6i \ \hline -6i & 12+5i & 2 & -10+i \ & -6i & & 2 \end{array}
ight] = -1800,$$

$$D_3(f) = \det \begin{bmatrix} 2 & & 6i \\ -10-i & 2 & & 12-5i & 6i \\ \frac{12+5i & -10-i & 2}{-6i & 12+5i & -10-i} & \frac{2}{2} & -10+i & 12-5i \\ & & -6i & 12+5i & 2 & -10+i \\ & & & -6i & 2 & 2 \end{bmatrix} = 187200.$$

 $(D_0, D_1, D_2, D_3) = (1, -32, -1800, 187200)$ has 2 sign changes.

We confirm that d-q=3-2=1 is the number of roots inside \mathbb{T} .

- The Schur-Cohn Test
- Quasi Canonical Systems
- 3 Results
- 4 Inductive construction of H

The most simple case

The theory of **canonical systems** generalizes the exponential function from the perspective of Fourier analysis (Paley–Wiener).

$$\bullet I = [0, a), \ 0 < a < \infty, \ u(t, z) : I \times \mathbb{C} \to \mathbb{C}^{2 \times 1},$$

$$\frac{\partial}{\partial t} u(t, z) + z \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} u(t, z) = 0, \quad \lim_{t \to a} u(t, z) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

$$\left\{ A'(t, z) - zB(t, z) = 0 \\ B'(t, z) + zA(t, z) = 0 \right. \Leftrightarrow \left\{ A''(t, z) + zA(t, z) = 0 \\ B''(t, z) + zB(t, z) = 0 \right.$$

The unique solutions is

$$u(t,z) = \begin{bmatrix} \cos((a-t)z) \\ \sin((a-t)z) \end{bmatrix}$$

and

$$\cos((a-t)z) - i\sin((a-t)z) = \exp(-i(a-t)z).$$

$$H(t): I = [t_0, t_1) \rightarrow \operatorname{Sym}_2(\mathbb{R}) = \left\{ \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix} : \alpha, \beta, \gamma \in \mathbb{R} \right\}$$
, measurable

• The first order system

$$rac{\partial}{\partial t}u(t,z)+zegin{bmatrix}0&-1\1&0\end{bmatrix}H(t)u(t,z)=0,\quad z\in\mathbb{C}$$

for unknown function $u(t,z): I \times \mathbb{C} \to \mathbb{C}^{2\times 1}$ is called a quasi canonical system on I (QCS/QCS(H) for short). H(t) is called Hamiltonian.

- QCS is called a canonical system (CS/CS(H)) if
 - $1 H(t) \ge 0 \text{ for a.e } t \in I,$
 - $\not\supseteq H(t) \not\equiv 0 \text{ on } \forall J \subset I, |J| > 0,$
 - 3 $H(t) = (h_{ij}(t)), h_{ij}(t) \in L^1_{loc}(I).$

Several classical ODEs are reduced to canonical systems.

Schrödinger equation

$$-y''(x,z) + q(x)y(x,z) = zy(x,z), \quad q(x) \in L^{1}(I)$$

 $\alpha(x)$, $\beta(x)$: the solutions for z=0 with $W=\alpha'\beta-\alpha\beta'=-1$. Define

$$u(x,z) = \begin{bmatrix} \alpha(x) & \beta(x) \\ \alpha'(x) & \beta'(x) \end{bmatrix}^{-1} \begin{bmatrix} y(x,z) \\ y'(x,z) \end{bmatrix}.$$

Then u(x, z) satisfies CS(H) with

$$H(x) = \begin{bmatrix} \alpha(x)^2 & \alpha(x)\beta(x) \\ \alpha(x)\beta(x) & \beta(x)^2 \end{bmatrix}.$$

Other examples: Dirac equation, string equation, etc.

The solution of a canonical system

Suppose that $u(t,z) = {}^t(A(t,z),B(t,z))$ solves a CS on $I = [t_0,t_1)$ with

$$\lim_{t\to t_1}u(t,z)=\begin{bmatrix}1\\0\end{bmatrix}.$$

Then E(t,z) = A(t,z) - iB(t,z) belongs to the Hermite–Biehler class \mathbb{HB} for $\forall t \in I$. $E \in \mathbb{HB}$ is a generalization of the exponential function which is defined to be an entire function satisfying

$$|\overline{E(\overline{z})}| < |E(z)|$$
 for $\Im(z) > 0$

and $E(z) \neq 0$, $\forall z \in \mathbb{R}$.

• $H \rightsquigarrow \mathit{CS}(H) \overset{\mathrm{solve}}{\leadsto} E \in \mathbb{HB}$ (direct problem)

Inverse problem for canonical systems

•
$$H \rightsquigarrow CS(H) \stackrel{\text{solve}}{\leadsto} E \in \mathbb{HB}$$
 (direct problem)

Q: Does any $E \in \mathbb{HB}$ come from H (CS(H)) ? (inverse problem)

A: Yes! L. de Branges (1960 $\pm \varepsilon$)

But, in general, it is difficult to determine H explicitly from a given E

- The Schur-Cohn Test
- Quasi Canonical Systems
- Results
- 4 Inductive construction of H

Associating a polynomial to a canonical system

For
$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0 \in \mathbb{C}[x]$$
, we consider

$$E_f(z) := e^{irdz/2} f(e^{-irz}), \quad r = \begin{cases} 1, & d = \deg f : \text{even}, \\ 2, & d = \deg f : \text{odd}. \end{cases}$$

(the definition of r is for technical reason)

$$E_f(z) = \begin{cases} a_1 e^{-iz} + a_0 e^{iz}, & \deg f = 1, \\ a_2 e^{-iz} + a_1 + a_0 e^{iz}, & \deg f = 2, \\ a_3 e^{-3iz} + a_2 e^{-iz} + a_1 e^{iz} + a_0 e^{3iz}, & \deg f = 3, \\ a_4 e^{-2iz} + a_3 e^{-iz} + a_2 + a_1 e^{iz} + a_0 e^{2iz}, & \deg f = 4, \dots \end{cases}$$

ullet All roots of f are inside $\mathbb{T} \iff E_f(z) \in \mathbb{HB}$ (elementary).

 \rightarrow $\exists H_f(t)$ (Hamiltonian) by de Branges' result

A few natural questions

- All roots of f are inside $\mathbb{T} \stackrel{\text{iff}}{\iff} E_f(z) \in \mathbb{HB}$ (elementary).
 - \rightarrow $\exists H_f(t)$ (Hamiltonian) by de Branges' result

- **Q1.** What is the explicit formula of $H_f(t)$?
- **Q2.** Even if f has a root outside the unit circle, can we get $E_f(z)$ from the solution of a QCS(H)?
- **Q3.** If the answer to Q2 is yes, what is the explicit formula of H?

Theorem 1 (inverse problem) Let $f(x) \in \mathbb{C}[x]$, $d = \deg f$.

Suppose that $f(0) \neq 0$, $D_d(f) \neq 0$. Then $\widetilde{H}_{f,n} \in \operatorname{Sym}_2^+(\mathbb{R})$ $(1 \leq n \leq d)$ s.t.

$$E_f(z) = A(0,z) - iB(0,z)$$

for the unique solution $^t(A(t,z),B(t,z))$ of QCS for the Hamiltonian

$$H_f(t) = \frac{1}{D_{n-1}(f)D_n(f)}\widetilde{H_{f,n}}, \quad \frac{r(n-1)}{2} \le t < \frac{rn}{2}, \quad 1 \le n \le d$$

on [0, rd/2) (r = 1 if d is even, r = 2 if d is odd) and

$$\lim_{t\to rd/2} \begin{bmatrix} A(t,z) \\ B(t,z) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(E_f(0) + E_f(0)) \\ \frac{1}{2}(E_f(0) - E_f(0)) \end{bmatrix}.$$

• $H_f(t) > 0$ on [0, rd/2) if all roots of f lie inside \mathbb{T} . (i.e This H_f is H in de Branges inverse theorem)

For
$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \in \mathbb{C}[x]$$
, we define

$$M_n(f) := \begin{bmatrix} a_d & a_{d-1} & \cdots & a_{d-n+1} \\ & a_d & \cdots & a_{d-n+2} \\ & & \ddots & \vdots \\ & & & a_d \end{bmatrix}, \quad N_n(f) := \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ & a_0 & \cdots & a_{n-2} \\ & & \ddots & \vdots \\ & & & a_0 \end{bmatrix}.$$

Then
$$D_n(f) = \det \begin{bmatrix} {}^{\mathrm{t}}M_n(f) & \pm {}^{\mathrm{t}}\overline{N_n(f)} \\ \pm N_n(f) & \overline{M_n(f)} \end{bmatrix}$$
.

For every $1 \le n \le d$, using the solutions of linear equations

$$\begin{bmatrix} {}^{\mathrm{t}}M_{n}(f) & \pm^{\mathrm{t}}\overline{N_{n}(f)} \\ \pm N_{n}(f) & \overline{M_{n}(f)} \end{bmatrix} \begin{bmatrix} z_{n}^{\pm}(1) \\ z_{n}^{\pm}(2) \\ \vdots \\ z_{n}^{\pm}(n) \\ \overline{z_{n}^{\pm}(n)} \end{bmatrix} = \mp \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 2\overline{a_{0}} \\ 2a_{0} \\ 0 \\ \vdots \\ \overline{z_{n}^{\pm}(1)} \end{bmatrix}$$

for unknowns $z_n^{\pm}(1)$..., $z_n^{\pm}(n)$, we define the matrix $H_{f,n}$ by

$$\begin{bmatrix} \Re(z_{n}^{+}(1)) & \Im(z_{n}^{+}(1)) \\ -\Im(z_{n}^{-}(1)) & \Re(z_{n}^{-}(1)) \end{bmatrix} \cdots \begin{bmatrix} \Re(z_{1}^{+}(1)) & \Im(z_{1}^{+}(1)) \\ -\Im(z_{1}^{-}(1)) & \Re(z_{1}^{-}(1)) \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} H_{f,n}$$

$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \Re(z_{n}^{+}(1)) & \Im(z_{n}^{+}(1)) \\ -\Im(z_{n}^{-}(1)) & \Re(z_{n}^{-}(1)) \end{bmatrix} \cdots \begin{bmatrix} \Re(z_{1}^{+}(1)) & \Im(z_{1}^{+}(1)) \\ -\Im(z_{1}^{-}(1)) & \Re(z_{1}^{-}(1)) \end{bmatrix}.$$

Then
$$D_{n-1}(f)D_n(f)H_{f,n}=\widetilde{H_{f,n}}$$

For
$$f(x) = (2x - i)(x - 2)(x - 3) = 2x^3 - (10 + i)x^2 + (12 + 5i)x - 6i$$
,

we have
$$H_f(t) = \begin{cases} H_{f,1} & \text{if } 0 \le t < 1, \\ H_{f,2} & \text{if } 1 \le t < 2, \\ H_{f,3} & \text{if } 2 \le t < 3, \end{cases}$$
 with

$$H_{f,1} = \frac{1}{D_0(f)D_1(f)}\widetilde{H_{f,1}} = \frac{1}{1\cdot(-32)}\begin{bmatrix} 40 & -24\\ -24 & 40 \end{bmatrix} < 0,$$

$$H_{f,2} = \frac{1}{D_1(f)D_2(f)}\widetilde{H_{f,2}} = \frac{1}{(-32)\cdot(-1800)}\begin{bmatrix} 40,256 & 35,648\\ 35,648 & 113,984 \end{bmatrix} > 0,$$

$$H_{f,3} = \frac{1}{D_2(f)D_3(f)}\widetilde{H_{f,3}}$$

$$= \frac{1}{(-1800)\cdot187200}\begin{bmatrix} 898,617,600 & 988,300,800\\ 988,300,800 & 121,328,6400 \end{bmatrix} < 0.$$

Result for the direct problem

• $H_f(t)$: locally const., taking values in $\mathrm{SL}_2(\mathbb{R}) \cap \mathrm{Sym}_2(\mathbb{R})$

Theorem 2 (direct problem)

Let
$$d \in \mathbb{Z}_{>0}$$
, $H_1, \ldots, H_d \in \mathrm{SL}_2(\mathbb{R}) \cap \mathrm{Sym}_2(\mathbb{R})$, $(A, B) \neq (0, 0)$.

Let $u(t,z) = {}^{t}(A(t,z),B(t,z))$ be the solution of QCS(H) with

$$H(t) := H_n$$
 for $\frac{r(n-1)}{2} \le t < \frac{rn}{2}$, $1 \le n \le d$, $\lim_{t \to rd/2} u(t,z) = {}^t(A,B)$.

Then u(t,z) is well-defined and $f(e^{-irz}) := e^{-irdz/2}(A(0,z) - iB(0,z))$ defines a polynomial.

Result for the direct problem

- If $\deg f = d$ and $f(0) \neq 0$, f has d q roots inside \mathbb{T} , where $q = \sharp$ of sign changes in (H_1, H_2, \dots, H_d) .
- $\deg f = d$ and $f(0) \neq 0$ if and only if

$$(I-iJH_1)(I-iJH_2)\cdots(I-iJH_d)\begin{bmatrix}A\\B\end{bmatrix}\neq 0, \notin \mathbb{C}\begin{bmatrix}1\\\pm i\end{bmatrix},$$

where
$$J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Ш

Correspondence

$$\left\{ f \in \mathbb{C}[x] \middle| \begin{array}{l} \cdot \deg f = d \\ \cdot f(0) \neq 0 \\ \cdot D_d(f) \neq 0 \\ \cdot n \text{ roots in } \mathbb{T} \\ \cdot f(1) = 1 \end{array} \right\}$$

$$\left\{ (H_1, \dots, H_d) \middle| \begin{array}{l} \cdot H_1, \dots, H_d \in \operatorname{SL}_2(\mathbb{R}) \cap \operatorname{Sym}_2(\mathbb{R}) \\ \cdot \sharp \text{ of sign changes in } (H_1, \dots, H_d) \text{ is } d - n \\ \cdot (I - iJH_1)(I - iJH_2) \cdots (I - iJH_d) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq 0, \notin \mathbb{C} \begin{bmatrix} 1 \\ \pm i \end{bmatrix} \right\}$$

- The Schur-Cohn Test
- Quasi Canonical Systems
- Results
- 4 Inductive construction of H

Re:Theorem 1 Let $f(x) \in \mathbb{C}[x]$, $d = \deg f$.

Suppose that $f(0) \neq 0$, $D_d(f) \neq 0$. Then $\exists \widetilde{H_{f,n}} \in \operatorname{Sym}_2^+(\mathbb{R}) \ (1 \leq n \leq d)$ s.t.

$$E_f(z) (= e^{irdz/2} f(e^{-irz})) = A(0, z) - iB(0, z)$$

for the unique solution $^t(A(t,z),B(t,z))$ of QCS for the Hamiltonian

$$H_f(t) = \frac{1}{D_{n-1}(f)D_n(f)}\widetilde{H_{f,n}}, \quad \frac{r(n-1)}{2} \le t < \frac{rn}{2}, \quad 1 \le n \le d$$

on [0, rd/2) (r = 1 if d is even, r = 2 if d is odd) and ...

Independent of the construction of $(\widetilde{H_{f,1}},\ldots,\widetilde{H_{f,d}})$ by using solutions of linear equations, it can also be constructed inductively. In the rest, we explain the inductive construction.

Define
$$A_0(z):=rac{1}{2}(E_f(z)+\overline{E_f(ar{z})})$$
 and $B_0(z):=rac{i}{2}(E_f(z)-\overline{E_f(ar{z})})$.

If d is even, we write L = d/2 and

$$A_0(z) = \sum_{j=0}^{d/2} a_0(L-j)\cos((L-j)z) + \sum_{j=0}^{d/2-1} c_0(L-j)\sin((L-j)z),$$

$$B_0(z) = \sum_{j=0}^{d/2-1} b_0(L-j)\sin((L-j)z) + \sum_{j=0}^{d/2} d_0(L-j)\cos((L-j)z).$$

If d is odd, we write $\boxed{L=d}$ and

$$A_0(z) = \sum_{j=0}^{(d-1)/2} a_0(L-2j)\cos((L-2j)z) + \sum_{j=0}^{(d-1)/2-1} c_0(L-2j)\sin((L-2j)z),$$

$$B_0(z) = \sum_{j=0}^{(d-1)/2-1} b_0(L-2j)\sin((L-2j)z) + \sum_{j=0}^{(d-1)/2} d_0(L-2j)\cos((L-2j)z).$$

For $1 \le n \le d$, we define

$$A_{n}(t,z) = \sum_{j=0}^{d-n} a_{n}(L-rj)\cos((L-rj-t)z) + \sum_{j=0}^{d-n} c_{n}(L-rj)\sin((L-rj-t)z),$$

$$B_{n}(t,z) = \sum_{j=0}^{d-n} b_{n}(L-rj)\sin((L-rj-t)z) + \sum_{j=0}^{d-n} d_{n}(L-rj)\cos((L-rj-t)z).$$

(r = 1 if d is even, r = 2 if d is odd)

For each $1 \le n \le d$, there are 4(d - n + 1) indeterminates.

Equations

$$A_n(r(n-1)/2,z) = A_{n-1}(r(n-1)/2,z), B_n(r(n-1)/2,z) = B_{n-1}(r(n-1)/2,z)$$
 (2 \le n \le d)

or

$$A_1(0,z) = A_0(z), \quad B_1(0,z) = B_0(z) \quad (n=1)$$

provide 4(d-n+1)-2(d-n) linear equations.

Differential equations

$$\frac{d}{dt}A_n(t,z) = z(\beta_n A_n(t,z) + \gamma_n B_n(t,z)),$$

$$\frac{d}{dt}B_n(t,z) = -z(\alpha_n A_n(t,z) + \beta_n B_n(t,z))$$

provide 2(d-n) linear equations for $a_n(L-rj)$, $b_n(L-rj)$, $c_n(L-rj)$, $d_n(L-rj)$ $(1 \le j \le d-n)$ including α_n , β_n , and γ_n as constants.

The resulting linear system for 4(d-n+1) indeterminates has unique solution as long as $\alpha_n \gamma_n - \beta_n^2 \neq 0$. The solution includes α_n , β_n and γ_n as constants, but they do not appear in $a_n(L)$, $b_n(L)$, $c_n(L)$, and $d_n(L)$. Therefore, the above differential equations determine α_n , β_n and γ_n as

$$\alpha_{n} = \frac{b_{n}(L)^{2} + d_{n}(L)^{2}}{a_{n}(L)b_{n}(L) - c_{n}(L)d_{n}(L)}, \quad \beta_{n} = -\frac{a_{n}(L)d_{n}(L) + b_{n}(L)c_{n}(L)}{a_{n}(L)b_{n}(L) - c_{n}(L)d_{n}(L)},$$

$$\gamma_{n} = \frac{a_{n}(L)^{2} + c_{k}(L)^{2}}{a_{n}(L)b_{n}(L) - c_{n}(L)d_{n}(L)}.$$

Further, we easily find that

$$a_n(L) = a_{n-1}(L) + a_{n-1}(R), \quad b_n(L) = b_{n-1}(L) - b_{n-1}(R),$$

 $c_n(L) = c_{n-1}(L) - c_{n-1}(R), \quad d_n(L) = d_{n-1}(L) + d_{n-1}(R),$

where R := L - r(d - n). Hence $a_n(k)$, $b_n(k)$, $c_n(k)$, $d_n(k)$ are written in $a_{n-1}(k)$, $b_{n-1}(k)$, $c_{n-1}(k)$, $d_{n-1}(k)$ for $2 \le n \le d$, and $a_1(k)$, $b_1(k)$, $c_1(k)$, $d_1(k)$ are written in coefficients of $A_0(z)$ and $B_0(z)$.

As a result, we have

$$\widetilde{H_{f,n}} = D_{n-1}(f)D_n(f)\begin{bmatrix} \alpha_n & \beta_n \\ \beta_n & \gamma_n \end{bmatrix}$$
 for $1 \le n \le d$.

See arxiv:2106.04061 for details.

See also JFA, 281 (2021), arXiv:2012.11121 for the cases of ζ and L.

Thank you for your kind attention!