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1. What is arithmetic Dijkgraaf-Witten theory ?

What is arithmetic Dijkgraaf-Witten theory ?

⇐⇒

• What is Dijkgraaf-Witten theory ?

• What does “arithmetic” mean ?
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1. What is arithmetic Dijkgraaf-Witten theory ?

Dijkgraaf-Witten theory

= a (2+1)-dim. topological quantum field theory (TQFT)

　 defined by Chern-Simons action with finite gauge group.

TQFT is a framework which provides topological invariants of manifolds,
knots and links.
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1. What is arithmetic Dijkgraaf-Witten theory ?

What doest “arithmetic” mean ?

arithmetic = arithmetic analogue,

based on the analogies in arithmetic topology:

3-dim. topology number theory

3-manifold number ring

knot prime
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1. What is arithmetic Dijkgraaf-Witten theory ?

Minhyong Kim (2015):

initiated to study an arithmetic analogue of Chern-Simons gauge theory,

arithmetic Chern-Simons theory.

Arithmetic DW theory is an arithmetic analogue of DW theory, based
on Kim’s arithmetic CS theory.
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2. DW TQFT and CFT

Dijkgraaf-Witten theory = a (2+1)-dim. TQFT (Atiyah, 1989)

(2+1)-dim. TQFT = a functor

cobordism cat. of 2-manifolds → cat. of C-vector spaces,

which satisfies several axioms.
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2. DW TQFT and CFT

oriented closed surface Σ ; quantum Hilbert space HΣ

oriented compact 3-manifold M ; partition function ZM ∈ H∂M

(If ∂M = ∅, Z(M) := ZM ∈ C)

s.t.
・ multiplicativity & involutority:

HΣ1⊔Σ2 = HΣ1 ⊗HΣ2 , HΣ∗ = H∗
Σ
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2. DW TQFT and CFT

Σ1 Σ2M ∂M = Σ∗
1 ⊔ Σ2

ZM ∈ H∂M = H∗
Σ1

⊗HΣ2 = Hom(HΣ1 ,HΣ2)

⋆The partition function ZM is given by a path integral in physical contexts when
a gauge group is a Lie group. e.g. Jones polynomial (Witten).
In DW theory, ZM is given by a finite sum.
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2. DW TQFT and CFT

・ gluing property:

ΣM1 Σ∗ M2

glue

⇓
M

⇐⇒ pairing

HΣ ⊗H∗
Σ

<,>−−→ C

⇓

ZM = ⟨ZM1 , ZM2⟩
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2. DW TQFT and CFT

DW TQFT

G : finite group,
c ∈ H3(G,R/Z).

For an oriented compact manifold X with a fixed finite triangulation,
FX : the space of gauge fields,
GX = Map(X,G) : the gauge group,
FX/GX = Hom(π1(X), G)/G.

Key ingredient - transgression hom. (Kiyonori Gomi)

tgX : C3(G,R/Z) → C3−d(GX ,Map(FX ,R/Z)) (d = dim(X)){
λΣ := tgΣ(c) for a surface Σ− Chern-Simons 1-cocycle
CSM := tgM (c) for a 3-manifold M − Chern-Simons action.
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2. DW TQFT and CFT

The construction of TQFT <
Classical theory

Quantum theory
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2. DW TQFT and CFT

Classical theory

oriented closed surface Σ ; λΣ ∈ Z1(GΣ,Map(FΣ,R/Z)),
oriented compact 3-manifold M ; CSM ∈ C0(GM ,Map(FM ,R/Z))

s.t. dCSM = res∗λ∂M ,

res : FM (resp : GM ) → F∂M (resp : G∂M ): restriction map

CS 1-cocycle λΣ ; GΣ-equiv. complex line bundle on FΣ,
i.e, prequantization bundle LΣ on FΣ/GΣ.

e2π
√
−1CSM ∈ Γ(FM/GM , res∗L∂M ).
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2. DW TQFT and CFT

Quantum theory (Geometric quantization)

oriented closed surface Σ ; quantum Hilbert space HΣ

oriented compact 3-manifold M ; partition function ZM ∈ H∂M

quantum Hilbert space:

HΣ := Γ(FΣ/GΣ, LΣ)

= {θ : FΣ → C | θ(g.ρ) = e2π
√
−1λΣ(ρ)θ(ρ), (g ∈ GΣ, ρ ∈ FΣ)}

DW invariant(partition function):

ZM (ρ) :=
1

#G

∑
ρ̃∈FM

res(ρ̃)=ρ

e2π
√
−1CSM (ρ̃)

? “non-abelian Gauss sum (non-abelian finite theta function)”
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DW TQFT and CFT

Ex 1. If M is closed and c is trivial, we have

Z(M) =
#Hom(π1(M), G)

#G
.

Ex 2. Let M → S3 be the double cover ramified over a link
L = K1 ⊔ · · · ⊔ Kr (r ≥ 2).

G = Z/2Z, H3(G,R/Z) = ⟨c⟩ = Z/2Z.
DL := the mod 2 linking diagram of L.

Theorem (Hikaru Hirano, Riku Kurimaru, Deng Yuqi).

Z(M) =

{
2r−2 any connected component of DL is an Euler graph
0 otherwise,

Euler graph = one stroke writing circuit.
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2. DW TQFT and CFT

Relation with 2-dim. conformal field theory (CFT) (Witten)

2-dim. CFT = the modular functor (Segal, 1987)

cat. of 2-manifolds → cat. of C-vector spaces

oriented compact 2-manifold Σ ; the space of conformal blocks EΣ,

which satisfies several axioms.
For a closed surface Σ, EΣ ≃ HΣ (Beauville-Laszlo).

Masanori Morishita (Kyushu University) Joint with Hikaru Hirano and Junhyenog KimOn arithmetic Dijkgraaf-Witten theory PANT conference, 2021-Kyoto December 7th, 2021 16 / 41



2. DW TQFT and CFT

For the case that G is connected Lie group, the construction of EΣ uses

representations of the extension ̂C∞(∂Σ, G) of the loop group C∞(∂Σ, G)
(∂Σ = S1 ⊔ · · · ⊔ S1) :

1 −→ C× −→ ̂C∞(∂Σ, G) −→ C∞(∂Σ, G) −→ 1.

Key - Segal-Witten reciprocity law for loop groups:

“This central extension splits over Hol(Σ, G)”.

For G = C×,
SW reciprocity law =⇒ the reciprocity law for tame symbols∏

p∈Σ

{f, g}p = 1.

Masanori Morishita (Kyushu University) Joint with Hikaru Hirano and Junhyenog KimOn arithmetic Dijkgraaf-Witten theory PANT conference, 2021-Kyoto December 7th, 2021 17 / 41



2. DW TQFT and CFT

For the case that G is finite, the construction of EΣ is due to
Brylinski-McLaughlin, by using the analogy:

G: finite G: connected

groupoid C(S1, G) of pr. G-bundles loop group LG := C∞(S1, G)
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2. DW TQFT and CFT

Key ingredients - transgression hom,

tg :=

∫
S1

◦ ev∗ : H3(BG,C×) → H2(LBG,C×),

where ev : LBG× S1 → BG

• H2(LBG,C×) classifies central extensions of C(S1, G) by C×.

• Brylinski-McLaughlin reciprocity law: The extension of C(∂Σ, G)
obtained by elements of the image of tg splits over C(Σ, G).

BM also give a group theoretic construction of EΣ, using
H2(LBG,C×) = ⊕iH

2(ZG(gi),C) (gi: representatives of conjugacy
classes of G).
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2. DW TQFT and CFT

Fusion algebra

For T 2 = S1 × S1, HT 2 = VT 2 is equipped with an algebra structure by
TQFT and CFT.

• TQFT (Wakui). Let Σ be a pair of pants

and consider M := Σ× S1. By DW TQFT, we have the product

ZM : HT 2 ⊗HT 2 → HT 2 .
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2. DW TQFT and CFT

• CFT (Brylinski-McLaughlin). Use the projective representations of
ZG(gi) and the reciprocity law.

• Operator algebras (Dijkgraaf-Vafa-E. Verlinde-H. Verlinde). Physical
(orbifold model) approach. Verlinde’s formula for the structure constants.

• (Group theoretic) (Bannai, Munemasa). Fusion algebra = center of
quantum double of group Hopf algebra of G = character algebra.
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3. Arithmetic topology

Analogies

3-dim. topology number theory

3-manifold number ring

knot prime
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Arithmetic topology

Historical background

• Gauss (1777 ∼ 1855)

　・ quadratic residues
　・ linking numbers in electro-magnetic theory
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3. Arithmetic topology

Historical background

• Gauss (1777 ∼ 1855)

　・ quadratic residues → class field theory
　・ linking numbers in electro-magnetic theory → abelian CS theory
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3. Arithmetic topology

• Grothendieck, Tate, Artin and Verdier etc (middle of 20th century ∼)

　・ S1 = BZ = K(Z, 1), Spec(Fq) = BẐ = K(Ẑ, 1).
　・ Spec(Ok) enjoys an arithmetic analog of 3-dim. Poincaré duality.

=⇒

K : S1 ↪→ M(3-manifold) Spec(Ok/p) ↪→ Spec(Ok)

; Arithmetic Topology (Mazur, Kapranov, Reznikov, M.)
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3. Arithmetic topology

3-dim. Topology Number Theory

oriented, connected, closed compactified number ring
3-manifold M Xk = Spec(Ok) ⊔ {infinite primes}

knot prime
K : S1 ↪→ M {p} = Spec(Ok/p) ↪→ Xk

tubular n.b.d of a knot p-adic integer ring
VK Vp = Spec(Op)

boundary torus p-adic field
ΣK Σp = Spec(kp)

peripheral group local absolute Galois group

π1(∂VK) Πp = Gal(kp/kp)

1st homology ideal class group
H1(M) Hk

2nd homology group unit group
H2(M) O×

k
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3. Arithmetic topology

link finite set of maximal ideals
L = K1 ⊔ · · · ⊔ Kr S = {p1, . . . , pr}

tubular n.b.d of a link union of pi-adic integer rings
VL = VK1 ⊔ · · · ⊔ VKr VS = Spec(Op1) ⊔ · · · ⊔ Spec(Opr)

boundary tori union of pi-adic fields
ΣL = ΣK1 ⊔ · · · ⊔ ΣKr ΣS = Spec(kp1) ⊔ · · · ⊔ Spec(kpr)

link complement complement of a finite set of primes
XL = M \ Int(VL) XS = Xk \ S

link group maximal Galois group with
ΠL = π1(XL) given ramification ΠS = Gal(kS/k)

Dijkgraaf-Witten theory ?
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3. Arithmetic topology

link finite set of maximal ideals
L = K1 ⊔ · · · ⊔ Kr S = {p1, . . . , pr}

tubular n.b.d of a link union of pi-adic integer rings
VL = VK1 ⊔ · · · ⊔ VKr VS = Spec(Op1) ⊔ · · · ⊔ Spec(Opr)

boundary tori union of pi-adic fields
ΣL = ΣK1 ⊔ · · · ⊔ ΣKr ΣS = Spec(kp1) ⊔ · · · ⊔ Spec(kpr)

link complement complement of a finite set of primes
XL = M \ Int(VL) XS = Xk \ S

link group maximal Galois group with
ΠL = π1(XL) given ramification ΠS = Gal(kS/k)

Dijkgraaf-Witten theory arithmetic Dijkgraaf-Witten theory
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Arithmetic topology

? For an arithmetic analog of DW TQFT, we consider Σp := Spec(kp) as
an arithmetic analog of an oriented, connected surface.

• Σp enjoys “2-dim. Poincaré duality” (Tate):

invp : H2(Spec(kp), µn) = Z/nZ,
H i(Spec(kp), µn) ≃ H2−i(Spec(kp),Z/nZ) (0 ≤ i ≤ 2).

=⇒ Σp ∼ “orientable, connected, closed surface”.

• Σp ∼ “boundary torus of a tubular n.b.d of a knot”.

knot K finite prime Spec(Fp)

tubular n.b.d VK p-adic integers Spec(Op)

boundary torus ∂VK ≃ VK \ K Σp = Spec(Op) \ Spec(Fp)

torus group tame Galois group
π1(∂VK) = ⟨m, l|[m, l] = 1⟩ Πtame

p = ⟨τ, σ|τNp−1[τ, σ] = 1⟩
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Arithmetic topology

• Σp ∼ “closed surface of higher genus”

The case that kp contains a primitive p-th root of unity and [kp : Qp] = d,
p > 2.

surface group π1(Σr) pro-p Galois group Πp(p)

= ⟨α1, β1, . . . , βr|
r∏

i=1

[αi, βi] = 1⟩ = ⟨τ1, . . . , τd+2|τp
s

1 [τ1, τ2] · · · [τd+1, τd+2] = 1⟩

• Σp ∼ “punctured sphere”

The case that kp does not contain a primitive p-th root of unity and
[kp : Qp] = d.

punctured sphere group π1(S
2 \ r + 2points) free pro-p Galois group Πp(p)

= ⟨α1, αr+2|α1 · · ·αr+2 = 1⟩ = ⟨τ1, . . . , τd+2|α1 · · ·αd+2 = 1⟩
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4. Arithmetic analogies

k: a number field
Ok: the ring of alg. integers in k

For a prime ideal p of Ok,
kp: the p-adic field,
Op: the ring of p-adic integers.

Xk := Spec(Ok) ⊔ {infinite primes}

For a finite set of prime ideals S = {p1, . . . , pr},
ΣS := Spec(kp1) ⊔ · · · ⊔ Spec(kpr).
XS := Xk \ S.

Πp := π1(Spec(kp)) = Gal(kp/kp),
ΠS := π1(XS) = Gal(kS/k).
(kS : max. Galois ext. of k unramified outside S)

? We see XS like a 3-manifold with boundary surface ΣS .
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4. Arithmetic analogies

n : a fixed integer ≥ 2,
G : finite group,
c ∈ Z3(G,Z/nZ).

Assume k contains a primitive n-th root of unity ζn.

Arithmetic gauge fields

FS :=

r∏
i=1

Homcont(Πpi , G) x GS := G : conjugate action,

FXS
:= Homcont(ΠS , G) x GXS

:= G : conjugate action,

res : FXS
→ FS : restriction map.

Masanori Morishita (Kyushu University) Joint with Hikaru Hirano and Junhyenog KimOn arithmetic Dijkgraaf-Witten theory PANT conference, 2021-Kyoto December 7th, 2021 32 / 41



4. Arithmetic analogies

Arithmetic CS theory (Minhyong Kim).

CS functional Arithmetic CS functional
CS : FM → R/Z CS : FXS

→ Z/nZ
prequantization bundle Arithmetic prequantization bundle

LΣ on FΣ/GΣ LS on FS/GS

Key ingredient (M. Kim)
· conjugate action on group cochain c,
· H2(Πp,Z/nZ) = Z/nZ-torsor L(ρp) := d−1(c ◦ ρp)/B2(Πp,Z/nZ)
for ρp ∈ Fp.

(⇒ CS 1-cocycle implicit)
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Arithmetic analogies

As in the topological case, we consider the “transgression”

tgσ : C3(G,Z/nZ) → C2(G,Z/nZ) (σ ∈ G),

defined explicitly by

tgσ(c)(g1, g2) := c(σ, σ−1g1σ, σ
−1g2σ)− c(g1, σ, σ

−1g2σ) + c(g1, g2, σ),

which is interpreted by Brylinski-McLaughlin’s transgression

H3(BG,Z/nZ) → H2(LBG,Z/nZ) = ⊕iH
2(Zgi ,Z/nZ)

if σ = gi.
Using tg and Kim’s torsor, we can define the arithmetic CS 1-cocycle

λS ∈ Z1(GS ,Map(FS ,Z/nZ)),

from which we can construct arithmetic analogs of objects in DW TQFT.
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Arithmetic analogies

Arithmetic DW TQFT (H. Hirano, J. Kim, M.).

Σ ; λΣ ΣS ; λS

M ; CSM XS ; CSXS

dCSM = res∗λ∂M dCSXS
= res∗λS

prequantization bundle LΣ arith. prequantization bundle LS

e2π
√
−1CSM ∈ Γ(FM/GM , res∗L∂M ) ζ

CSXS
n ∈ Γ(FXS

/GXS
, res∗LS)

quantum Hilbert space arith. quantum space
Σ ; HΣ ΣS ; HS

HΣ := Γ(FΣ/GΣ, LΣ) HS := Γ(FS/GS , LS)
DW invariant arith. DW invariant

M ; ZM ∈ H∂M XS ; ZXS
∈ HS

ZM (ρ) :=
1

#G

∑
ρ̃∈FM

res(ρ̃)=ρ

e2π
√
−1CSM (ρ̃) ZXS

(ρ) :=
1

#G

∑
ρ̃∈FXS

res(ρ̃)=ρ

ζ
CSXS

(ρ̃)
n
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Arithmetic analogies

Basic properties

• multiplicativity:

For disjoint S1 and S2, we have

HS1⊔S2 = HS1 ⊗HS2 .

• involutority:

For S∗ = S with opposite orientation (so that λS∗ = −λS), we have

HS∗ = H∗
S .

So, for S = S1 ⊔ S2, we have the pairing

⟨·, ·⟩ : HS ×HS∗
2
→ HS1 .
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Arithmetic analogies

• For a “closed” Xk, we can define the arithmetic CS functional CSXk

and the arithmetic DW invariant Z(Xk) (M. Kim, Lee-Park, Hirano):

CSXk
: FXk

:= Homc(π1(Xk), G) → Z/nZ,

Z(Xk) :=
1

#G

∑
ρ∈FXk

ζ
CSXk

(ρ)
n .

• For VS = Spec(Op1) ⊔ · · · ⊔ Spec(Opr), we can also define the
arithmetic CS functional CSVS

and the arithmetic DW invariant ZVS
:

CSVS
: FVS

→ Z/nZ, ζCSVS
n ∈ Γ(FS , ˜res∗LS),

ZVS
∈ HS ,

where ˜res : FVS
→ FS is the restriction map.
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Arithmetic analogies

Ex 1. If c is trivial, we have

Z(Xk) =
#Hom(π1(Xk), G)

#G
.

Ex 2. Let k = Q(
√
p1 · · · pr), pi ≡ 1 mod 4, S = {p1, . . . , pr} (r ≥ 2).

G = Z/2Z, H3(G,R/Z) = ⟨c⟩ = Z/2Z.

DS = the mod 2 linking diagram of S, (−1)lk2(pi,pj) =

(
pi
pj

)
.

Theorem (Hikaru Hirano, Riku Kurimaru, Deng Yuqi).

Z(Xk) =

{
2r−2 any connected component of DS is an Euler graph,
0 otherwise.
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4. Arithmetic analogies

Gluing formula for arithmetic DW invariants (J. Kim, H. Hirano, M.).

Let ⟨·, ·⟩ : HS ×H∗
S → C be the pairing of arithmetic quantum spaces.

Then we have
⟨ZXS

, ZV ∗
S
⟩ = Z(Xk)

XS

glue

VS
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4. Arithmetic analogies

Arithmetic analogues of CFT and fusion algebras

• We can construct Brylinski type space of “conformal block” ES for the
case that G is a p-group and Πpi(p) (pi ∈ S) is the punctured sphere type
free pro-p group.

• We may construct HS as an Bannai-Munemasa’s fusion algebra for the
case that #G|(Npi − 1) and hence Homc(Πpi , G) = Hom(π1(T

2), G).
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4. Arithmetic analogies

Questions.

Can we develop arithmetic analogies of the theory of CFT and fusion
algebras ?

・ Relation between Segal-Witten-Brylinsky type reciprocity law and
Kubota’s metaplectic theory for reciprocity law.
Can we develop Kubota’s theory to obtain a non-commutative reciprocity
law of Segal-Witten-Brylinsky type in arithmetic ?
(Cf. ZXS

is a sort of non-commutative Gauss sum, HS consists of
non-commutative (finite) theta functions.)

・ arithmetic Verlinde type formula, dim HS etc ..
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