On arithmetic Dijkgraaf-Witten theory

Masanori Morishita (Kyushu University) Joint with Hikaru Hirano and Junhyenog Kim

> PANT conference, 2021-Kyoto December 7th, 2021

- 1. What is arithmetic DW theory ?
- 2. DW TQFT and CFT
- 3. Arithmetic topology
- 4. Arithmetic analogies Our results

What is arithmetic Dijkgraaf-Witten theory ?

 \iff

- What is Dijkgraaf-Witten theory ?
- What does "arithmetic" mean ?

1. What is arithmetic Dijkgraaf-Witten theory ?

Dijkgraaf-Witten theory

= a (2+1)-dim. topological quantum field theory (TQFT)

defined by **Chern-Simons action** with finite gauge group.

TQFT is a framework which provides topological invariants of manifolds, knots and links.

What doest "arithmetic" mean ?

arithmetic = arithmetic analogue,

based on the analogies in arithmetic topology:

3-dim. topology	number theory
3-manifold	number ring
knot	prime

1. What is arithmetic Dijkgraaf-Witten theory ?

Minhyong Kim (2015):

initiated to study an arithmetic analogue of Chern-Simons gauge theory,

arithmetic Chern-Simons theory.

Arithmetic DW theory is an arithmetic analogue of DW theory, based on Kim's arithmetic CS theory.

Dijkgraaf-Witten theory = a (2+1)-dim. **TQFT** (Atiyah, 1989)

(2+1)-dim. **TQFT** = a functor

cobordism cat. of 2-manifolds \to cat. of $\mathbb C\text{-vector}$ spaces, which satisfies several axioms.

oriented closed surface $\Sigma \rightsquigarrow$ quantum Hilbert space H_{Σ} oriented compact 3-manifold $M \rightsquigarrow$ partition function $Z_M \in H_{\partial M}$ (If $\partial M = \emptyset$, $Z(M) := Z_M \in \mathbb{C}$)

s.t.

multiplicativity & involutority:

$$H_{\Sigma_1 \sqcup \Sigma_2} = H_{\Sigma_1} \otimes H_{\Sigma_2}, \ H_{\Sigma^*} = H_{\Sigma}^*$$

 $Z_M \in H_{\partial M} = H^*_{\Sigma_1} \otimes H_{\Sigma_2} = \operatorname{Hom}\left(H_{\Sigma_1}, H_{\Sigma_2}\right)$

The partition function Z_M is given by a path integral in physical contexts when a gauge group is a Lie group. e.g. **Jones polynomial** (Witten). In DW theory, Z_M is given by a finite sum.

gluing property:

DW TQFT

 $\label{eq:G} \begin{array}{l} G: \mbox{finite group,} \\ c \in H^3(G, \mathbb{R}/\mathbb{Z}). \end{array}$

For an oriented compact manifold X with a fixed finite triangulation, \mathcal{F}_X : the space of gauge fields, $\mathcal{G}_X = \operatorname{Map}(X, G)$: the gauge group, $\mathcal{F}_X/\mathcal{G}_X = \operatorname{Hom}(\pi_1(X), G)/G.$

Key ingredient - transgression hom. (Kiyonori Gomi)

$$\begin{split} \operatorname{tg}_X : C^3(G, \mathbb{R}/\mathbb{Z}) &\to C^{3-d}(\mathcal{G}_X, \operatorname{Map}(\mathcal{F}_X, \mathbb{R}/\mathbb{Z})) \quad (d = \dim(X)) \\ \left\{ \begin{array}{l} \lambda_\Sigma := \operatorname{tg}_\Sigma(c) \text{ for a surface } \Sigma - \operatorname{\mathbf{Chern-Simons 1-cocycle}} \\ CS_M := \operatorname{tg}_M(c) \text{ for a 3-manifold } M - \operatorname{\mathbf{\underline{Chern-Simons action}}}. \end{array} \right. \end{split}$$

The construction of TQFT $< \frac{Classical theory}{Quantum theory}$

Masanori Morishita (Kyushu University) Joint 🛛 On arithmetic Dijkgraaf-Witten theory 🛛 <mark>PANT conference, 2021-Kyoto</mark> December 7th

Classical theory

oriented closed surface $\Sigma \rightsquigarrow \lambda_{\Sigma} \in Z^1(\mathcal{G}_{\Sigma}, \operatorname{Map}(\mathcal{F}_{\Sigma}, \mathbb{R}/\mathbb{Z})),$ oriented compact 3-manifold $M \rightsquigarrow CS_M \in C^0(\mathcal{G}_M, \operatorname{Map}(\mathcal{F}_M, \mathbb{R}/\mathbb{Z}))$

s.t.
$$dCS_M = \operatorname{res}^* \lambda_{\partial M}$$
,

 $\operatorname{res} : \mathcal{F}_M(\operatorname{resp} : \mathcal{G}_M) \to \mathcal{F}_{\partial M}(\operatorname{resp} : \mathcal{G}_{\partial M})$: restriction map

 $\begin{array}{l} \mathsf{CS} \ \texttt{1-cocycle} \ \lambda_{\Sigma} \rightsquigarrow \mathcal{G}_{\Sigma}\text{-equiv. complex line bundle on } \mathcal{F}_{\Sigma}, \\ \text{ i.e, } \mathbf{prequantization \ bundle} \ L_{\Sigma} \ \text{on } \mathcal{F}_{\Sigma}/\mathcal{G}_{\Sigma}. \end{array}$

$$e^{2\pi\sqrt{-1}CS_M} \in \Gamma(\mathcal{F}_M/\mathcal{G}_M, \operatorname{res}^*L_{\partial M}).$$

Quantum theory (Geometric quantization)

oriented closed surface $\Sigma \rightsquigarrow$ quantum Hilbert space H_{Σ} oriented compact 3-manifold $M \rightsquigarrow$ partition function $Z_M \in \mathcal{H}_{\partial M}$

quantum Hilbert space:

$$\begin{aligned} H_{\Sigma} &:= \Gamma(\mathcal{F}_{\Sigma}/\mathcal{G}_{\Sigma}, L_{\Sigma}) \\ &= \{ \theta : \mathcal{F}_{\Sigma} \to \mathbb{C} \, | \, \theta(g.\rho) = e^{2\pi\sqrt{-1}\lambda_{\Sigma}(\rho)}\theta(\rho), \; (g \in \mathcal{G}_{\Sigma}, \rho \in \mathcal{F}_{\Sigma}) \} \end{aligned}$$

DW invariant(partition function):

$$Z_M(\rho) := \frac{1}{\#G} \sum_{\substack{\tilde{\rho} \in \mathcal{F}_M \\ \operatorname{res}(\tilde{\rho}) = \rho}} e^{2\pi\sqrt{-1}CS_M(\tilde{\rho})}$$

★ "non-abelian Gauss sum (non-abelian finite theta function)"

Ex 1. If M is closed and c is trivial, we have

$$Z(M) = \frac{\# \operatorname{Hom}(\pi_1(M), G)}{\# G}$$

Ex 2. Let $M \to S^3$ be the double cover ramified over a link $\mathcal{L} = \mathcal{K}_1 \sqcup \cdots \sqcup \mathcal{K}_r \ (r \ge 2).$ $G = \mathbb{Z}/2\mathbb{Z}, \ H^3(G, \mathbb{R}/\mathbb{Z}) = \langle c \rangle = \mathbb{Z}/2\mathbb{Z}.$ $D_{\mathcal{L}} :=$ the mod 2 linking diagram of \mathcal{L} .

Theorem (Hikaru Hirano, Riku Kurimaru, Deng Yuqi).

 $Z(M) = \left\{ \begin{array}{ll} 2^{r-2} & \text{any connected component of } D_{\mathcal{L}} \text{ is an Euler graph} \\ 0 & \text{otherwise}, \end{array} \right.$

Euler graph = one stroke writing circuit.

Relation with 2-dim. conformal field theory (CFT) (Witten)

2-dim. CFT = the modular functor (Segal, 1987)

cat. of 2-manifolds \rightarrow cat. of $\mathbb C\text{-vector spaces}$

oriented compact 2-manifold $\Sigma \rightsquigarrow$ the space of **conformal blocks** E_{Σ} , which satisfies several axioms. For a closed surface Σ , $E_{\Sigma} \simeq H_{\Sigma}$ (Beauville-Laszlo).

For the case that G is connected Lie group, the construction of E_{Σ} uses representations of the extension $\widehat{C^{\infty}(\partial\Sigma, G)}$ of the loop group $C^{\infty}(\partial\Sigma, G)$ $(\partial\Sigma = S^1 \sqcup \cdots \sqcup S^1)$:

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widehat{C^{\infty}(\partial \Sigma, G)} \longrightarrow C^{\infty}(\partial \Sigma, G) \longrightarrow 1.$$

Key - Segal-Witten reciprocity law for loop groups:

"This central extension splits over $Hol(\Sigma, G)$ ".

For $G = \mathbb{C}^{\times}$, SW reciprocity law \Longrightarrow the reciprocity law for tame symbols $\prod_{p \in \overline{\Sigma}} \{f, g\}_p = 1.$ For the case that G is finite, the construction of E_{Σ} is due to **Brylinski-McLaughlin**, by using the analogy:

G: finite	G: connected
groupoid $\mathcal{C}(S^1,G)$ of pr. G -bundles	loop group $LG := C^{\infty}(S^1, G)$

Key ingredients - transgression hom,

$$\operatorname{tg} := \int_{S^1} \circ \operatorname{ev}^* : H^3(BG, \mathbb{C}^{\times}) \to H^2(LBG, \mathbb{C}^{\times}),$$

where $ev: LBG \times S^1 \to BG$

- $H^2(LBG, \mathbb{C}^{\times})$ classifies central extensions of $\mathcal{C}(S^1, G)$ by \mathbb{C}^{\times} .
- Brylinski-McLaughlin reciprocity law: The extension of $\mathcal{C}(\partial \Sigma, G)$ obtained by elements of the image of tg splits over $\mathcal{C}(\Sigma, G)$.

BM also give a group theoretic construction of E_{Σ} , using $H^2(LBG, \mathbb{C}^{\times}) = \bigoplus_i H^2(Z_G(g_i), \mathbb{C})$ (g_i : representatives of conjugacy classes of G).

Fusion algebra

For $T^2 = S^1 \times S^1$, $H_{T^2} = V_{T^2}$ is equipped with an algebra structure by TQFT and CFT.

• **TQFT** (Wakui). Let Σ be a pair of pants

and consider $M := \Sigma \times S^1$. By DW TQFT, we have the **product**

 $Z_M: H_{T^2} \otimes H_{T^2} \to H_{T^2}.$

- **CFT** (Brylinski-McLaughlin). Use the projective representations of $Z_G(g_i)$ and the reciprocity law.
- **Operator algebras** (Dijkgraaf-Vafa-E. Verlinde-H. Verlinde). Physical (orbifold model) approach. Verlinde's formula for the structure constants.
- (**Group theoretic**) (Bannai, Munemasa). Fusion algebra = center of quantum double of group Hopf algebra of G = character algebra.

Analogies

3-dim. topology	number theory
3-manifold	number ring
knot	prime

Historical background

- Gauss (1777 \sim 1855)
 - quadratic residues
 - · linking numbers in electro-magnetic theory

Historical background

- Gauss (1777 \sim 1855)
 - quadratic residues \rightarrow class field theory
 - linking numbers in electro-magnetic theory \rightarrow abelian CS theory

• Grothendieck, Tate, Artin and Verdier etc (middle of 20th century \sim)

- $S^1 = B\mathbb{Z} = K(\mathbb{Z}, 1), \operatorname{Spec}(\mathbb{F}_q) = B\hat{\mathbb{Z}} = K(\hat{\mathbb{Z}}, 1).$
- + $\operatorname{Spec}(\mathcal{O}_k)$ enjoys an arithmetic analog of 3-dim. Poincaré duality.

$K: S^1 \hookrightarrow M(3\operatorname{\mathsf{-manifold}}) \mid \operatorname{Spec}(\mathcal{O}_k/\mathfrak{p}) \hookrightarrow \operatorname{Spec}(\mathcal{O}_k)$

→ Arithmetic Topology (Mazur, Kapranov, Reznikov, M.)

3-dim. Topology	Number Theory
oriented, connected, closed	compactified number ring
3-manifold M	$X_k = \operatorname{Spec}(\mathcal{O}_k) \sqcup \{ \text{infinite primes} \}$
knot	prime
$\mathcal{K}: S^1 \hookrightarrow M$	$\{\mathfrak{p}\} = \operatorname{Spec}(\mathcal{O}_k/\mathfrak{p}) \hookrightarrow X_k$
tubular n.b.d of a knot	p-adic integer ring
$V_{\mathcal{K}}$	$V_{\mathfrak{p}}=\operatorname{Spec}(\mathcal{O}_{\mathfrak{p}})$
boundary torus	p-adic field
$\Sigma_{\mathcal{K}}$	$\Sigma_{\mathfrak{p}} = \operatorname{Spec}(k_{\mathfrak{p}})$
peripheral group	local absolute Galois group
$\pi_1(\partial V_{\mathcal{K}})$	$\Pi_{\mathfrak{p}} = \operatorname{Gal}(\overline{k}_{\mathfrak{p}}/k_{\mathfrak{p}})$
1st homology	ideal class group
$H_1(M)$	H_k
2nd homology group	unit group
$H_2(M)$	$ $ $\mathcal{O}_k^{ imes}$

3. Arithmetic topology

link	finite set of maximal ideals
$\mathcal{L} = \mathcal{K}_1 \sqcup \cdots \sqcup \mathcal{K}_r$	$S = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$
tubular n.b.d of a link	union of \mathfrak{p}_i -adic integer rings
$V_{\mathcal{L}} = V_{\mathcal{K}_1} \sqcup \cdots \sqcup V_{\mathcal{K}_r}$	$V_S = \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}_1}) \sqcup \cdots \sqcup \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}_r})$
boundary tori	union of p_i -adic fields
$\Sigma_{\mathcal{L}} = \Sigma_{\mathcal{K}_1} \sqcup \cdots \sqcup \Sigma_{\mathcal{K}_r}$	$\Sigma_S = \operatorname{Spec}(k_{\mathfrak{p}_1}) \sqcup \cdots \sqcup \operatorname{Spec}(k_{\mathfrak{p}_r})$
link complement	complement of a finite set of primes
$X_{\mathcal{L}} = \overline{M} \setminus \operatorname{Int}(V_{\mathcal{L}})$	$X_S = X_k \setminus S$
link group	maximal Galois group with
$\Pi_{\mathcal{L}} = \pi_1(X_{\mathcal{L}})$	given ramification $\Pi_S = \operatorname{Gal}(k_S/k)$

Dijkgraaf-Witten theory	?
-------------------------	---

3. Arithmetic topology

link	finite set of maximal ideals
$\mathcal{L} = \mathcal{K}_1 \sqcup \cdots \sqcup \mathcal{K}_r$	$S = \{ \mathfrak{p}_1, \dots, \mathfrak{p}_r \}$
tubular n.b.d of a link	union of \mathfrak{p}_i -adic integer rings
$V_{\mathcal{L}} = V_{\mathcal{K}_1} \sqcup \cdots \sqcup V_{\mathcal{K}_r}$	$V_S = \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}_1}) \sqcup \cdots \sqcup \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}_r})$
boundary tori	union of p_i -adic fields
$\Sigma_{\mathcal{L}} = \Sigma_{\mathcal{K}_1} \sqcup \cdots \sqcup \Sigma_{\mathcal{K}_r}$	$\Sigma_S = \operatorname{Spec}(k_{\mathfrak{p}_1}) \sqcup \cdots \sqcup \operatorname{Spec}(k_{\mathfrak{p}_r})$
link complement	complement of a finite set of primes
$X_{\mathcal{L}} = \overline{M} \setminus \operatorname{Int}(V_{\mathcal{L}})$	$X_S = \overline{X}_k \setminus S$
link group	maximal Galois group with
$\Pi_{\mathcal{L}} = \pi_1(X_{\mathcal{L}})$	given ramification $\Pi_S = \operatorname{Gal}(k_S/k)$

Dijkgraaf-Witten theory arithmetic Dijkgraaf-Witten theory

Arithmetic topology

* For an arithmetic analog of DW TQFT, we consider $\Sigma_{\mathfrak{p}} := \operatorname{Spec}(k_{\mathfrak{p}})$ as an arithmetic analog of an oriented, connected surface.

• $\Sigma_{\mathfrak{p}}$ enjoys "2-dim. Poincaré duality" (Tate):

 $\begin{aligned} &\operatorname{inv}_{\mathfrak{p}} \,:\, H^2(\operatorname{Spec}(k_{\mathfrak{p}}),\mu_n) = \mathbb{Z}/n\mathbb{Z}, \\ &H^i(\operatorname{Spec}(k_{\mathfrak{p}}),\mu_n) \simeq H_{2-i}(\operatorname{Spec}(k_{\mathfrak{p}}),\mathbb{Z}/n\mathbb{Z}) \; (0 \leq i \leq 2). \end{aligned}$

- $\Longrightarrow \Sigma_{\mathfrak{p}} \sim$ "orientable, connected, closed surface".
- $\Sigma_{\mathfrak{p}} \sim$ "boundary torus of a tubular n.b.d of a knot" .

knot ${\cal K}$	finite prime $\operatorname{Spec}(\mathbb{F}_{\mathfrak{p}})$
tubular n.b.d $V_{\mathcal{K}}$	\mathfrak{p} -adic integers $\operatorname{Spec}(\mathcal{O}_\mathfrak{p})$
boundary torus $\partial V_\mathcal{K} \simeq V_\mathcal{K} \setminus \mathcal{K}$	$\Sigma_{\mathfrak{p}} = \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}}) \setminus \operatorname{Spec}(\mathbb{F}_{\mathfrak{p}})$
torus group	tame Galois group
$\pi_1(\partial V_{\mathcal{K}}) = \langle m, l [m, l] = 1 \rangle$	$\Pi_{\mathfrak{p}}^{\text{tame}} = \langle \tau, \sigma \tau^{\mathrm{N}\mathfrak{p}-1}[\tau, \sigma] = 1 \rangle$

Arithmetic topology

• $\Sigma_{\mathfrak{p}} \sim$ "closed surface of higher genus"

The case that $k_{\mathfrak{p}}$ contains a primitive *p*-th root of unity and $[k_{\mathfrak{p}} : \mathbb{Q}_p] = d$, p > 2.

surface group
$$\pi_1(\Sigma_r)$$
 pro- p Galois group $\Pi_{\mathfrak{p}}(p)$
= $\langle \alpha_1, \beta_1, \dots, \beta_r | \prod_{i=1}^r [\alpha_i, \beta_i] = 1 \rangle$ = $\langle \tau_1, \dots, \tau_{d+2} | \tau_1^{p^s} [\tau_1, \tau_2] \cdots [\tau_{d+1}, \tau_{d+2}] = 1 \rangle$

• $\Sigma_{\mathfrak{p}} \sim$ "punctured sphere"

The case that k_p does not contain a primitive *p*-th root of unity and $[k_p : \mathbb{Q}_p] = d$.

punctured sphere group $\pi_1(S^2 \setminus r + 2points)$ free pro-*p* Galois group $\Pi_{\mathfrak{p}}(p)$ = $\langle \alpha_1, \alpha_{r+2} | \alpha_1 \cdots \alpha_{r+2} = 1 \rangle$ = $\langle \tau_1, \dots, \tau_{d+2} | \alpha_1 \cdots \alpha_{d+2} = 1 \rangle$

4. Arithmetic analogies

k: a number field \mathcal{O}_k : the ring of alg. integers in k

For a prime ideal \mathfrak{p} of \mathcal{O}_k ,

 $k_{\mathfrak{p}}$: the \mathfrak{p} -adic field,

 $\mathcal{O}_\mathfrak{p}$: the ring of $\mathfrak{p}\text{-adic}$ integers.

 $X_k := \operatorname{Spec}(\mathcal{O}_k) \sqcup \{ \text{infinite primes} \}$

For a finite set of prime ideals $S = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\},$ $\Sigma_S := \operatorname{Spec}(k_{\mathfrak{p}_1}) \sqcup \cdots \sqcup \operatorname{Spec}(k_{\mathfrak{p}_r}).$ $X_S := X_k \setminus S.$

$$\begin{split} \Pi_{\mathfrak{p}} &:= \pi_1(\operatorname{Spec}(k_{\mathfrak{p}})) = \operatorname{Gal}(\overline{k}_{\mathfrak{p}}/k_{\mathfrak{p}}), \\ \Pi_S &:= \pi_1(X_S) = \operatorname{Gal}(k_S/k). \\ (k_S: \text{ max. Galois ext. of k unramified outside } S) \end{split}$$

 \star We see X_S like a 3-manifold with boundary surface Σ_S .

 $\label{eq:generalized_states} \begin{array}{l} n: \text{ a fixed integer} \geq 2,\\ G: \text{ finite group,}\\ c \in Z^3(G, \mathbb{Z}/n\mathbb{Z}). \end{array}$

Assume k contains a primitive n-th root of unity ζ_n .

Arithmetic gauge fields

$$\begin{split} \mathcal{F}_S &:= \prod_{i=1}^r \operatorname{Hom}_{\operatorname{cont}}(\Pi_{\mathfrak{p}_i}, G) \curvearrowleft \mathcal{G}_S := G : \text{ conjugate action,} \\ \mathcal{F}_{X_S} &:= \operatorname{Hom}_{\operatorname{cont}}(\Pi_S, G) \curvearrowleft \mathcal{G}_{X_S} := G : \text{ conjugate action,} \\ \operatorname{res} : \mathcal{F}_{X_S} \to \mathcal{F}_S : \text{ restriction map.} \end{split}$$

Arithmetic CS theory (Minhyong Kim).

CS functional	Arithmetic CS functional
$CS: \mathcal{F}_M \to \mathbb{R}/\mathbb{Z}$	$CS: \mathcal{F}_{X_S} \to \mathbb{Z}/n\mathbb{Z}$
prequantization bundle	Arithmetic prequantization bundle
L_Σ on $\mathcal{F}_\Sigma/\mathcal{G}_\Sigma$	L_S on $\mathcal{F}_S/\mathcal{G}_S$

Key ingredient (M. Kim)

 $\begin{cases} \cdot \text{ conjugate action on group cochain } c, \\ \cdot H^2(\Pi_{\mathfrak{p}}, \mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z} \text{-torsor } \mathcal{L}(\rho_{\mathfrak{p}}) := d^{-1}(c \circ \rho_{\mathfrak{p}})/B^2(\Pi_{\mathfrak{p}}, \mathbb{Z}/n\mathbb{Z}) \\ \text{ for } \rho_{\mathfrak{p}} \in \mathcal{F}_{\mathfrak{p}}. \end{cases}$

 $(\Rightarrow$ CS 1-cocycle implicit)

Arithmetic analogies

As in the topological case, we consider the "transgression"

$$\mathrm{tg}_{\sigma}: C^3(G, \mathbb{Z}/n\mathbb{Z}) \to C^2(G, \mathbb{Z}/n\mathbb{Z}) \ (\sigma \in G),$$

defined explicitly by

$$tg_{\sigma}(c)(g_1, g_2) := c(\sigma, \sigma^{-1}g_1\sigma, \sigma^{-1}g_2\sigma) - c(g_1, \sigma, \sigma^{-1}g_2\sigma) + c(g_1, g_2, \sigma),$$

which is interpreted by Brylinski-McLaughlin's transgression

$$H^{3}(BG, \mathbb{Z}/n\mathbb{Z}) \to H^{2}(LBG, \mathbb{Z}/n\mathbb{Z}) = \oplus_{i} H^{2}(Z_{g_{i}}, \mathbb{Z}/n\mathbb{Z})$$

if $\sigma = g_i$.

Using tg and Kim's torsor, we can define the arithmetic CS 1-cocycle

$$\lambda_S \in Z^1(\mathcal{G}_S, \operatorname{Map}(\mathcal{F}_S, \mathbb{Z}/n\mathbb{Z})),$$

from which we can construct arithmetic analogs of objects in DW TQFT.

Arithmetic DW TQFT (H. Hirano, J. Kim, M.).

$\Sigma \rightsquigarrow \lambda_{\Sigma}$	$\Sigma_S \rightsquigarrow \lambda_S$
$M \rightsquigarrow CS_M$	$X_S \rightsquigarrow CS_{X_S}$
$dCS_M = \mathrm{res}^* \lambda_{\partial M}$	$dCS_{X_S} = \mathrm{res}^*\lambda_S$
prequantization bundle L_Σ	arith. prequantization bundle L_S
$e^{2\pi\sqrt{-1}CS_M} \in \Gamma(\mathcal{F}_M/\mathcal{G}_M, \operatorname{res}^*L_{\partial M})$	$\zeta_n^{CS_{X_S}} \in \Gamma(\mathcal{F}_{X_S}/\mathcal{G}_{X_S}, \operatorname{res}^* L_S)$
quantum Hilbert space	arith. quantum space
$\Sigma \rightsquigarrow H_{\Sigma}$	$\Sigma_S \rightsquigarrow H_S$
$H_{\Sigma} := \Gamma(\mathcal{F}_{\Sigma}/\mathcal{G}_{\Sigma}, L_{\Sigma})$	$H_S := \Gamma(\mathcal{F}_S/\mathcal{G}_S, L_S)$
DW invariant	arith. DW invariant
$M \rightsquigarrow Z_M \in H_{\partial M}$	$X_S \rightsquigarrow Z_{X_S} \in H_S$
$Z_M(\rho) := \frac{1}{\#G} \sum_{\substack{\tilde{\rho} \in \mathcal{F}_M \\ \operatorname{res}(\tilde{\rho}) = \rho}} e^{2\pi \sqrt{-1}CS_M(\tilde{\rho})}$	$Z_{X_S}(\rho) := \frac{1}{\#G} \sum_{\substack{\tilde{\rho} \in \mathcal{F}_{X_S} \\ \operatorname{res}(\tilde{\rho}) = \rho}} \zeta_n^{CS_{X_S}(\tilde{\rho})}$

Arithmetic analogies

Basic properties

• multiplicativity:

For disjoint S_1 and S_2 , we have

$$H_{S_1\sqcup S_2}=H_{S_1}\otimes H_{S_2}.$$

• involutority:

For $S^* = S$ with opposite orientation (so that $\lambda_{S^*} = -\lambda_S$), we have

$$H_{S^*} = H_S^*.$$

So, for $S = S_1 \sqcup S_2$, we have the pairing

$$\langle \cdot, \cdot \rangle : H_S \times H_{S_2^*} \to H_{S_1}.$$

• For a "closed" X_k , we can define the arithmetic CS functional CS_{X_k} and the arithmetic DW invariant $Z(X_k)$ (M. Kim, Lee-Park, Hirano):

$$CS_{X_k} : \mathcal{F}_{X_k} := \operatorname{Hom}_{c}(\pi_1(X_k), G) \to \mathbb{Z}/n\mathbb{Z},$$
$$Z(X_k) := \frac{1}{\#G} \sum_{\rho \in \mathcal{F}_{X_k}} \zeta_n^{CS_{X_k}(\rho)}.$$

• For $V_S = \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}_1}) \sqcup \cdots \sqcup \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}_r})$, we can also define the arithmetic CS functional CS_{V_S} and the arithmetic DW invariant Z_{V_S} :

$$CS_{V_S}: \mathcal{F}_{V_S} \to \mathbb{Z}/n\mathbb{Z}, \ \zeta_n^{CS_{V_S}} \in \Gamma(\mathcal{F}_S, \tilde{\mathrm{res}}^*L_S), \\ Z_{V_S} \in H_S,$$

where $\tilde{res} : \mathcal{F}_{V_S} \to \mathcal{F}_S$ is the restriction map.

Ex 1. If c is trivial, we have

$$Z(X_k) = \frac{\# \operatorname{Hom}(\pi_1(X_k), G)}{\# G}$$

Ex 2. Let $k = \mathbb{Q}(\sqrt{p_1 \cdots p_r})$, $p_i \equiv 1 \mod 4$, $S = \{p_1, \dots, p_r\}$ $(r \ge 2)$. $G = \mathbb{Z}/2\mathbb{Z}$, $H^3(G, \mathbb{R}/\mathbb{Z}) = \langle c \rangle = \mathbb{Z}/2\mathbb{Z}$. D_S = the mod 2 linking diagram of S, $(-1)^{\text{lk}_2(p_i, p_j)} = \left(\frac{p_i}{p_j}\right)$.

Theorem (Hikaru Hirano, Riku Kurimaru, Deng Yuqi).

 $Z(X_k) = \left\{ \begin{array}{ll} 2^{r-2} & \text{any connected component of } D_S \text{ is an Euler graph}, \\ 0 & \text{otherwise.} \end{array} \right.$

Gluing formula for arithmetic DW invariants (J. Kim, H. Hirano, M.).

Let $\langle\cdot,\cdot\rangle:H_S\times H^*_S\to\mathbb{C}$ be the pairing of arithmetic quantum spaces. Then we have

 $\langle Z_{X_S}, Z_{V_S^*} \rangle = Z(X_k)$

Arithmetic analogues of CFT and fusion algebras

• We can construct Brylinski type space of "conformal block" E_S for the case that G is a p-group and $\Pi_{\mathfrak{p}_i}(p)$ ($\mathfrak{p}_i \in S$) is the punctured sphere type free pro-p group.

• We may construct H_S as an Bannai-Munemasa's fusion algebra for the case that $\#G|(N\mathfrak{p}_i - 1)$ and hence $\operatorname{Hom}_c(\Pi_{\mathfrak{p}_i}, G) = \operatorname{Hom}(\pi_1(T^2), G)$.

Questions.

Can we develop arithmetic analogies of the theory of CFT and fusion algebras ?

• Relation between Segal-Witten-Brylinsky type reciprocity law and Kubota's metaplectic theory for reciprocity law. Can we develop Kubota's theory to obtain a non-commutative reciprocity law of Segal-Witten-Brylinsky type in arithmetic ? (Cf. Z_{X_S} is a sort of non-commutative Gauss sum, H_S consists of non-commutative (finite) theta functions.)

- arithmetic Verlinde type formula, dim H_S etc ...