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Stickelberger’s theorem

Let H “ Qpµmq be the mth cyclotomic field. Then

pZ{mZq˚
–
ÝÑ G “ GalpH{Qq c ÞÑ σc pσcpζmq “ ζcmq

Stickelberger element

ΘpH{Qq “
ÿ

cPpZ{mZq˚

ˆ

1

2
´

! c

m

)

˙

σ´1
c P QrG s.

Here txu “ fractional part of x . The ideal class group ClpHq of H is a
ZrG s-module.

Stickelberger’s theorem (1890)

ΘpH{QqQrG s X ZrG s is contained in the annihilator ideal AnnZrG spClpHqq
of ClpHq.
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Relation with L-values

The element ΘpH{Qq satisfies: for any χ P Ĝ and
S “ tprime divisors of mu Y t8u

χpΘpH{Qqq “ LSpχ
´1, 0q.

Let F be a totally real field and H be a finite abelian CM extension of F .
Put G “ GalpH{F q. Let S be a finite set of primes of F containing all
those that ramify in H and all archimedian primes. Let T be a finite set of
primes of F , disjoint from S and containing at least two primes of distinct
residue characteristic.

LS,T pχ, sq “
ź

vRS

p1´ χpvqNv´sq´1
ź

vPT

p1´ χpvqNv1´sq.
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Brumer–Stark conjecture

Stickelberger element

ΘS ,T pH{F q P CrG s is such that for any χ P Ĝ

χpΘS,T pH{F qq “ LS ,T pχ
´1, 0q.

Theorem (Siegel, Klingen, Shintani, Cassou-Noguès, Deligne–Ribet)

ΘS ,T pH{F q P ZrG s.

Let ideal class group ClpHq is a ZrG s-module.

Brumer–Stark–Tate conjecture

ΘS ,T pH{F q is contained in the annihilator ideal AnnZrG spClpHqq of ClpHq.
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Strong Brumer–Stark conjecture

For any ZrG s-module M, we put M´ “ pZ
“

1
2

‰

rG s bMq{p1` cq, where c
is the complex conjugation. We also put M_ for the Pontryagin dual of M.
We have an involution # : ZrG s Ñ ZrG s induced by g ÞÑ g´1.

Theorem (Dasgupta–K), The strong Brumer–Stark conjecture

Θ#
S ,T pH{F q P FittZrG s´pClpHq

´,_q.

Theorem (Dasgupta-K)

ΘS ,T pH{F q P AnnZrG s´pClpHq
´q.

Note that

(i) Fitting ideal is contained in annihilator ideal.

(ii) If M is finite, then AnnZrG spM
_q “ AnnZrG spMq

#.

(iii) ΘS ,T pH{F q annihilates M if, and only if, annihilates M´.
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A conjecture of Kurihara

Let Sram be the set of finite places of F that ramify in H and S8 be all
archimedean places.

Sinnott–Kurihara ideal

SKuT pH{F q “ pΘ#
S8,T

pH{F qq
ź

vPSram

pNIv , 1´ σvev q

where Iv is the inertia subgroup, ev “
1

#Iv
NIv “

1
#Iv

ř

σPIv
σ P QrG s.

Kurihara shows that SKuT pH{F q Ă ZrG s.

Theorem (Dasgupta–K), Conjecture of Kurihara

FittZrG s´pCl
T pHq´,_q “ SKuT pH{F q´.

ClT pHq is the quotient of fractional ideal of H modulo principal fraction
ideals pαq with α ” 1 pmod T q.
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Main technical result

Fix an odd prime p. Modify sets S and T .

Σ “ tv | p : v is ramified in Hu Y S8

Σ1 “ tv - p : v is ramified in Hu Y T .

We have the Ritter–Weiss module ∇Σ,Σ1pH{F q:

0 Ñ ClΣ,Σ1pHq
´ Ñ ∇Σ,Σ1pH{F q

´ Ñ X´H,Σ Ñ 0,

where XH,Σ is the free abelian group generated by primes above Σ and
ClΣ,Σ1pHq is the class group corresponding to the extension of H that is
unramified outside Σ1, completely split at primes above Σ and at most
tamely ramified at primes above Σ1.

Theorem (Dasgupta–K), Conjecture of Burns–Kurihara–Sano

FittZrG s´p∇Σ,Σ1pH{F q
´q “ pΘΣ,Σ1pH{F qq.
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First reduction

0 Ñ ClΣ,Σ1pHq
´ Ñ ∇Σ,Σ1pH{F q

´ Ñ X´H,Σ Ñ 0,

Theorem (Dasgupta–K)

FittZrG s´p∇Σ,Σ1pHq
´q “ pΘΣ,Σ1pH{F qq.

All the above results are deduced from this one. Firstly it is enough to show

FittZrG s´p∇Σ,Σ1pHq
´q Ă pΘΣ,Σ1pH{F qq

This uses analytic class number formula.
To prove the inclusion we use Hilbert modular forms. Using Ribet–Wiles
method we can construct global Galois cohomology classes.
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Galois cohomology description of ∇Σ,Σ1pHq´

To get a surjective homomorphism from ∇Σ,Σ1pHq
´ to a ZprG s

´-module
to B, we need to

(1) A cohomology class κ in H1pGF ,Bq that is unramified outside Σ1,
tamely ramified at Σ1 and locally trivial at Σ.

(2) If B0 is the image of restriction κ under
H1pGF ,Bq Ñ H1pGH ,Bq “ HompGH ,Bq, then X´H,Σ surjects on
B{B0.

(3) Certain compatibility in the extension group Ext1
ZprG s´

pX´H,Σ,B0q.

From now on denote ΘΣ,Σ1pH{F q by Θ.
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Construction of a cusp form

Assume that H{F is unramified. We work with a quotient R of ZprG s
´ so

that Θ# “ Θ#
S8,T

is a non-zerodivisor. This is sufficient. Let ψψψ : GF Ñ R˚

be the tautological character. Then there is a cusp form with coefficients
in R.

Fkpψψψq “ epxW1pψψψ, 1qVk´1 ´Wkpψψψ, 1q ´ xΘ#Hkpψψψqq.

(i) e is Hida’s idempotent.

(ii) Vk´1 is a level 1 form congruent to 1 modulo pk (Hida).

(iii) Hkpψψψq has constant terms so that Fkpψψψq is cuspidal (Silliman).

(iv) Wkpψψψ, 1q has q-expansion with constant coefficient Θ#
S8,T

p1´ kq.

(v) x “ ΘS8,T p1´ kq{Θ (non-zerodivisor, takes care of “trivial zeros”).
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Hecke operators

Important congruence

Fkpψψψq ” xW1pψψψ, 1q ´Wkpψψψ, 1pq pmod xΘ#q

This can be used to compute action of Hecke operators on Fkpψψψq modulo
xΘ#.
Let T be the Hecke operator over R generated by Tl for all l - p and
diamond operators Spmq. Let T̃ be generated by T and Up for all p | p.

Theorem

There is a R{pxΘ#q algebra W and a surjective R homomorphism
ϕ : T̃ÑW such that the structure map R{pxΘ#q ÑW is injective.

ϕpSpmqq “ ψψψpmq.

ϕpTlq “ εk´1
cyc `ψψψplq.

If ϕp
ś

ppUp ´ψψψppqqqy “ 0 in W for any y P R, then y P pΘ#q.
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Galois representation

Let m be the maximal ideal of containing kernel of ϕ. Put K for the total
ring of fraction of the m-adic completion of Tm. Then there exists a Galois
representation (Hida–Wiles)

ρ : GF Ñ GL2pK q

such that

(i) ρ is unramified outside p and

charpρpFroblqqpxq “ x2 ´ Tlx `ψψψplqε
k´1
cyc .

(ii) (Ordinarity at p: for every p | p,

ρ|Gp „

ˆ

ψψψη´1
p εk´1

cyc ˚

0 ηp

˙

with ηpp$
´1q “ Up.
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Ribet’s wrench

We can carefully choose a basis (global basis of eigenvectors for ρpτq, for
some τ is different than local basis) and write

ρpσq “

ˆ

apσq bpσq
cpσq dpσq

˙

.

I denote the kernel of ϕ. Then

apσq ” εk´1
cyc pσq pmod I q dpσq ” ψψψpσq pmod I q.

Let Mp “

ˆ

Ap ˚

Cp ˚

˙

be such that

ˆ

apσq bpσq
cpσq dpσq

˙

Mp “ Mp

ˆ

ψψψη´1
p εk´1

cyc ˚

0 ηp

˙

ùñ bpσq “
Ap

Cp
pψψψη´1

p εk´1
cyc pσq ´ apσqq for all σ P Gp. Note: Ap,Cp P K

˚.
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Cohomology class

Let B be the T̂m-submodule of K generated by bpσq for all σ P GF (In

general we need to include
Ap

Cp
, for all p | p that ramify in H).

Put B “ B{pI , pkqB. As ρ is a representation

bpσσ1q “ apσqbpσ1q ` bpσqdpσ1q, for all σ, σ1 P GF .

Therefore κpσq “ bpσqψψψ´1pσq P H1pGF ,Bpψψψ
´1qq.

Then we can show:

(1) This class has all the required properties to get a surjection
∇S8,T pH{F q

´ Ñ B.

(2) B is big enough so that FittRpBq Ă pΘS8,T pH{F q, p
kq. Thus

FittRp∇S8,T pH{F q
´q Ă pΘS8,T pH{F qq.
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