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Previous result

Theorem(2014, K-S Kim)

Let K be the real quadratic field Q(
√

653). Then under the
GRH,

Gal(K f
ur/K ) ' A5

where K f
ur is the maximal extension of K which is unramified

over all finite places.



Idea of proof

Construction of an A5-unramified extension of K
Let L be the splitting field of

x5 + 3x3 + 6x2 + 2x + 1 (0.1)

a polynomial with complex roots. Then L is an A5-extension of
Q and 653 is the only finite prime ramified in this field with
ramification index 2. Then LK/K is unramified at all finite
places.

Abhyankar’s lemma
Let F be a local field. Let E1 and E2 be finite extensions of F
with ramification indices e1 and e2 respectively. Suppose E2 is
tamely ramified and e2|e1. Then E1E2 is an unramified
extension of E1.



Bound of [K f
ur : LK ]

If we assume GRH, then Odlyzko’s bounds imply that
[K f

ur : LK ] < 3. Therefore Gal(K f
ur/LK ) is isomorphic to C2 or

the trivial group. If Cl+(LK ) is trivial, we are done and so we
only need to deal with the case Cl(LK ) ' C2.

Finally, we found a contradiction when Cl(LK ) ' C2. Thus
Cl(LK ) is a trivial group and Gal(K f

ur/K ) ' A5 under the
assumption of GRH.



Question

Question
Is it possible to show that

Gal(K f
ur/K ) ' A5

without the assumption of GRH?

Remark
To do this, the first step is to prove that KL has class
number one.
If a number field has a large degree and discriminant, the
computation of the class number becomes quite difficult.



Main Result

Main Theorem(2016, KS Kim and John Miller)
KL has class number one without assuming GRH.

Remark
In fact, KL has degree 120, and it is the largest degree number
field proven unconditionally to have class number 1. Previously,
among such fields, the one with largest degree, the real
cyclotomic field of conductor 151, has degree 75 proven by
John Miller.



Remark on the maximal unramified extension of Q(
√

p)

Main theorem of Kim-2014
Let K be a real quadratic field Q(

√
p) with narrow class number

1, where p is a prime congruent 1 mod 4 and p 6= 5. Suppose
that there exists a totally imaginary A5-extension L over Q and
p is the only prime ramified in this field with ramification index 2.
If
√

p < B(1920,0,960), then the class number of KL is one
and K f

ur = KL.



(B(n, r1, r2) is defined as an infimum of |dF |1/nF over all number
fields F satisfying nF ≥ n and r1(F )

nF
= r1

n (resp. r2(F )
nF

= r2
n ) where

r1(F ) (resp. r2(F )) is the number of real (resp. complex) places
of a number field F .)

In B(1920,0,960), the number 1920 represents

16× the degree of KL.

Corollary
With the notations and conditions being the same as above, if
the class number of KL is smaller than 16, then the class
number of KL is exactly one.



Upper bounds on class numbers of totally complex fields

Theorem
Let K be a totally complex Galois number field of degree n, and
let

F (x) =
e−(x/c)2

cosh x
2

for some positive constant c. Suppose S is a subset of the
prime integers which are unramified in K and factor into
principal prime ideals of K of degree fp.



Let
B = γ + log 8π − log rd(K )−

∫ ∞
0

1− F (x)

2 sinh x
2

dx

+2
∑
p∈S

∞∑
m=1

log p
pfpm/2 F (fpm log p),

where γ is Euler’s constant. If B > 0 then we have an upper
bound for the class number h of K ,

h <
2c
√
π

nB
.

Proof
We apply Poitou’s version of Weil’s “explicit formula" for the
Dedekind zeta function of the Hilbert class field H(K ) of K :



log d(H(K )) = hr1
π

2
+ hn(γ + log 8π)− hn

∫ ∞
0

1− F (x)

2 sinh x
2

dx

−hr1

∫ ∞
0

1− F (x)

2 cosh x
2

dx − 4
∫ ∞

0
F (x) cosh

x
2

dx

+
∑
ρ

Φ(ρ) + 2
∑
P

∞∑
m=1

log NP

NPm/2 F (m log NP)

where γ is Euler’s constant and r1 = 0 since K is totally
complex. The first sum is over the nontrivial zeros of the
Dedekind zeta function of H(K ), the second sum is over the
prime ideals of H(K ), and Φ is defined by

Φ(s) =

∫ ∞
−∞

F (x)e(s−1/2)x dx .



By our choice of F , the real part of Φ(s) is nonnegative
everywhere in the critical strip. Indeed, on the boundary of the
critical strip, the real part

Re Φ(s) = Re

∫ ∞
−∞

e−(x/c)2

cosh x
2

e(s−1/2)x dx

=

∫ ∞
−∞

e−(x/c)2
cos(x Im s) dx = c

√
πe−(c Im s/2)2

> 0

is positive, and Re Φ(s)→ 0 as | Im s| → ∞, so by the maximum
modulus principle for harmonic functions, Re Φ(s) can not be
negative anywhere in the critical strip.



Since the root discriminant rd(K ) of K equals the root
discriminant of H(K ), we have

log d(H(K )) = hn log rd(H(K )) = hn log rd(K ),

and also
4
∫ ∞

0
F (x) cosh

x
2

dx = 2c
√
π.

We therefore we get the expression

hn log rd(K ) = hn(γ + log 8π)− hn
∫ ∞

0

1− F (x)

2 sinh x
2

dx

− 2c
√
π +

∑
ρ

Φ(ρ) + 2
∑
P

∞∑
m=1

log NP

NPm/2 F (m log NP).



We rearrange this to get the identity

h =
2c
√
π

Q
, (0.2)

where

Q =n
[
γ + log 8π − G(F )− log rd(K ) +

1
hn

∑
ρ

Φ(ρ)

+
2

hn

∑
P

∞∑
m=1

log NP

NPm/2 F (m log NP)
]
.

Here
G(F ) =

∫ ∞
0

1− F (x)

2 sinh x
2

dx .



To get an upper bound for the class number h, we need to
bound from below the sum over the zeros and the sum over the
primes. The sum

∑
ρ Φ(ρ) over the critical zeros is nonnegative

since the real part of Φ(s) is nonnegative on the critical strip.
Thus we know that

Q > nB.

In conclusion,

h =
2c
√
π

Q
<

2c
√
π

nB
, (0.3)

We note that principal ideals in K totally split in the Hilbert class
field of K .



To find a nontrivial lower bound for the sum over prime ideals of
the Hilbert class field, we consider the contribution of the hn/fp
prime ideals P of degree fp that lie over some unramified
rational prime p:

2
hn

∑
P|p

∞∑
m=1

log NP

NPm/2 F (m log NP) = 2
∞∑

m=1

log p
pfpm/2 F (fpm log p).

Summing this contribution over an arbitrary set S of unramified
primes gives a lower bound for the sum over the prime ideals,
proving the theorem.



An integral basis for KL

In order to apply the previous Theorem, we must find
sufficiently many integral elements of small prime power norm.
To do this, we first must compute a basis of the ring of integers
OKL of KL. In general, it is difficult to compute an integral basis
for a number field with such large degree and takes an
unfeasibly long time using the commonly implemented
algorithms. Fortunately, Jordi Guàrdia, Jesús Montes and Enric
Nart studied and recently implemented an algorithm that allows
for fast computation of an integral basis. In addition,we
obtained better basis

C = (c1, c2, . . . , c120), ci ∈ R120

by LLL-algorithm.



Finding elements of OKL with small multiplicative norm

Table: Generators of some small degree 1 primes in OKL

Element Norm
c2 + c17 + c46 3571
c3 − c9 + c48 5477

c14 − c41 7499
c1 − c48 + c64 8867

c11 + c75 15679
c2 − c54 + c70 17203
c3 + c12 − c100 20047

c23 + c104 25343
c25 − c74 31477

c10 − c21 + c97 34613
c49 − c80 35537

Element Norm
c71 + c74 43787
c30 + c62 44879

c1 − c17 + c77 45361
c95 46271

c2 − c28 − c62 48341
c23 − c53 + c85 54311
c2 + c31 + c76 95327

c36 + c49 111611
c3 + c22 + c66 113081

c23 − c62 137927
c7 − c89 139999



Table: Generators of some small degree 2 and degree 3 primes in
OKL

Element Norm
c9 + c62 132

c71 832

c94 892

c4 + c17 − c76 1372

c8 − c62 2272

Element Norm
c69 2292

c22 + c25 2512

c24 − c75 3832

c7 + c42 4332

c1 − c7 + c68 113



Table: Generators of some composite ideals in OKL

Element Norm
c2 + c65 132 ∗ 192

c9 − c89 132 ∗ 73

c24 − c70 132 ∗ 6361
c35 + c91 132 ∗ 10753
c68 + c93 132 ∗ 11681
c18 + c91 132 ∗ 1092

c3 + c39 − c74 132 ∗ 233

c1 + c68 + c78 192 ∗ 12619
c2 − c21 + c44 132 ∗ 16561



Table 3 list some integral elements and their norms. Consider,
for example, the element c2 + c65, which has norm 132 · 192.
Since we also know that c9 + c62 generates a degree 2 prime
ideal of norm 132, we can divide c2 + c65 by the appropriate
Galois conjugate of c9 + c62 to find an integral element of norm
192. Since 19 does not totally split in KL, we know that 19
factors into degree 2 principal prime ideals. By this way, we can
show that the following primes totally split in KL into degree 1
principal prime ideals:

6361,10753,11681,12619,16561,19963,23431,

23531,32309,33403,41621,48179,56359,58601.



An upper bound for the class number of KL

Proof of Main Theorem
By searching for elements of small norm, and taking quotients
where necessary, we find a number of primes that can be
included in the set S of unramified primes that factor into
principal prime ideals. In particular, the following 36 primes
totally split into degree 1 principal primes in KL:

3571,5477,6361,7499,8867,10753,11681,12619,15679,

16561,17203,19963,20047,23431,23531,25343,31477,

32309,33403,34613,35537,41621,43787,44879,45361,

46271,48179,48341,54311,56359,58601,95327,111611,

113081,137927,139999.



Also, the following 11 primes factor into degree 2 principal
primes in KL:

13,19,83,89,109,137,227,229,251,383,433.

Finally, the following three primes factor into degree 3 principal
primes in KL:

7,11,23.

If we include these primes in our set S and set c = 24.5, we
find that

2
∑
p∈S

∞∑
m=1

log p
pfpm/2 F (fpm log p) > 0.18797.



We can numerical calculate the integral and find that∫ ∞
0

1− F (x)

2 sinh x
2

dx < 0.70010.

Since the root discriminant of KL is
√

653, we have

B = γ + log 8π − log rd(KL)−
∫ ∞

0

1− F (x)

2 sinh x
2

dx

+2
∑
p∈S

∞∑
m=1

log p
pfpm/2 F (fpm log p)

> 0.57721+3.22417−3.24079−0.70010+0.18797 = 0.04846.



Therefore, we get an upper bound for the class number of KL:

hKL <
2c
√
π

nB
<

2× 24.5
√
π

120× 0.04846
< 14.94.

Since the class number is an integer, we deteremine that

hKL ≤ 14.

Thus we conclude that the class number of KL is 1.



Thank You For Coming.


