Class numbers of large degree nonabelian number fields

Kwang-Seob Kim (Chosun University)

(joint work with John Miller)
2021/12/08

Previous result

Theorem(2014, K-S Kim)

Let K be the real quadratic field $\mathbb{Q}(\sqrt{653})$. Then under the GRH,

$$
\operatorname{Gal}\left(K_{u r}^{f} / K\right) \simeq A_{5}
$$

where $K_{u r}^{f}$ is the maximal extension of K which is unramified over all finite places.

Idea of proof

Construction of an A_{5}-unramified extension of K

Let L be the splitting field of

$$
\begin{equation*}
x^{5}+3 x^{3}+6 x^{2}+2 x+1 \tag{0.1}
\end{equation*}
$$

a polynomial with complex roots. Then L is an A_{5}-extension of
\mathbb{Q} and 653 is the only finite prime ramified in this field with ramification index 2 . Then $L K / K$ is unramified at all finite places.

Abhyankar's lemma

Let F be a local field. Let E_{1} and E_{2} be finite extensions of F with ramification indices e_{1} and e_{2} respectively. Suppose E_{2} is tamely ramified and $e_{2} \mid e_{1}$. Then $E_{1} E_{2}$ is an unramified extension of E_{1}.

Bound of $\left[K_{u r}^{f}: L K\right]$

If we assume GRH, then Odlyzko's bounds imply that $\left[K_{u r}^{f}: L K\right]<3$. Therefore $\operatorname{Gal}\left(K_{u r}^{f} / L K\right)$ is isomorphic to C_{2} or the trivial group. If $\mathrm{Cl}^{+}(L K)$ is trivial, we are done and so we only need to deal with the case $\mathrm{Cl}(L K) \simeq C_{2}$.

Finally, we found a contradiction when $\mathrm{Cl}(L K) \simeq C_{2}$. Thus $\mathrm{Cl}(L K)$ is a trivial group and $\operatorname{Gal}\left(K_{u r}^{f} / K\right) \simeq A_{5}$ under the assumption of GRH.

Question

Question

Is it possible to show that

$$
\operatorname{Gal}\left(K_{u r}^{f} / K\right) \simeq A_{5}
$$

without the assumption of GRH?

Remark

- To do this, the first step is to prove that $K L$ has class number one.
- If a number field has a large degree and discriminant, the computation of the class number becomes quite difficult.

Main Result

Main Theorem(2016, KS Kim and John Miller)

$K L$ has class number one without assuming GRH.

Remark

In fact, $K L$ has degree 120, and it is the largest degree number field proven unconditionally to have class number 1. Previously, among such fields, the one with largest degree, the real cyclotomic field of conductor 151, has degree 75 proven by John Miller.

Remark on the maximal unramified extension of $\mathbb{Q}(\sqrt{p})$

Main theorem of Kim-2014

Let K be a real quadratic field $\mathbb{Q}(\sqrt{p})$ with narrow class number 1 , where p is a prime congruent $1 \bmod 4$ and $p \neq 5$. Suppose that there exists a totally imaginary A_{5}-extension L over \mathbb{Q} and p is the only prime ramified in this field with ramification index 2.
If $\sqrt{p}<B(1920,0,960)$, then the class number of $K L$ is one and $K_{u r}^{f}=K L$.
($B\left(n, r_{1}, r_{2}\right)$ is defined as an infimum of $\left|d_{F}\right|^{1 / n_{F}}$ over all number fields F satisfying $n_{F} \geq n$ and $\frac{r_{1}(F)}{n_{F}}=\frac{r_{1}}{n}$ (resp. $\frac{r_{2}(F)}{n_{F}}=\frac{r_{2}}{n}$) where $r_{1}(F)$ (resp. $r_{2}(F)$) is the number of real (resp. complex) places of a number field F.)

In $B(1920,0,960)$, the number 1920 represents $16 \times$ the degree of $K L$.

Corollary

With the notations and conditions being the same as above, if the class number of $K L$ is smaller than 16 , then the class number of $K L$ is exactly one.

Upper bounds on class numbers of totally complex fields

Theorem

Let K be a totally complex Galois number field of degree n, and let

$$
F(x)=\frac{e^{-(x / c)^{2}}}{\cosh \frac{x}{2}}
$$

for some positive constant c. Suppose S is a subset of the prime integers which are unramified in K and factor into principal prime ideals of K of degree f_{p}.

Let

$$
\begin{aligned}
B=\gamma+ & \log 8 \pi-\log r d(K)-\int_{0}^{\infty} \frac{1-F(x)}{2 \sinh \frac{x}{2}} d x \\
& +2 \sum_{p \in S} \sum_{m=1}^{\infty} \frac{\log p}{p^{f_{p} m / 2}} F\left(f_{p} m \log p\right)
\end{aligned}
$$

where γ is Euler's constant. If $B>0$ then we have an upper bound for the class number h of K,

$$
h<\frac{2 c \sqrt{\pi}}{n B}
$$

Proof

We apply Poitou's version of Weil's "explicit formula" for the Dedekind zeta function of the Hilbert class field $H(K)$ of K :

$$
\begin{aligned}
& \log d(H(K))=h r_{1} \frac{\pi}{2}+h n(\gamma+\log 8 \pi)-h n \int_{0}^{\infty} \frac{1-F(x)}{2 \sinh \frac{x}{2}} d x \\
& -h r_{1} \int_{0}^{\infty} \frac{1-F(x)}{2 \cosh \frac{x}{2}} d x-4 \int_{0}^{\infty} F(x) \cosh \frac{x}{2} d x \\
& \quad+\sum_{\rho} \Phi(\rho)+2 \sum_{\mathfrak{P}} \sum_{m=1}^{\infty} \frac{\log N \mathfrak{P}}{N \mathfrak{P}^{m / 2}} F(m \log N \mathfrak{P})
\end{aligned}
$$

where γ is Euler's constant and $r_{1}=0$ since K is totally complex. The first sum is over the nontrivial zeros of the Dedekind zeta function of $H(K)$, the second sum is over the prime ideals of $H(K)$, and Φ is defined by

$$
\Phi(s)=\int_{-\infty}^{\infty} F(x) e^{(s-1 / 2) x} d x
$$

By our choice of F, the real part of $\Phi(s)$ is nonnegative everywhere in the critical strip. Indeed, on the boundary of the critical strip, the real part

$$
\begin{gathered}
\operatorname{Re} \Phi(s)=\operatorname{Re} \int_{-\infty}^{\infty} \frac{e^{-(x / c)^{2}}}{\cosh \frac{x}{2}} e^{(s-1 / 2) x} d x \\
=\int_{-\infty}^{\infty} e^{-(x / c)^{2}} \cos (x \operatorname{lm} s) d x=c \sqrt{\pi} e^{-(c \operatorname{lm} s / 2)^{2}}>0
\end{gathered}
$$

is positive, and $\operatorname{Re} \Phi(s) \rightarrow 0$ as $|\operatorname{lm} s| \rightarrow \infty$, so by the maximum modulus principle for harmonic functions, $\operatorname{Re} \Phi(s)$ can not be negative anywhere in the critical strip.

Since the root discriminant $\operatorname{rd}(K)$ of K equals the root discriminant of $H(K)$, we have

$$
\log d(H(K))=h n \log r d(H(K))=h n \log r d(K),
$$

and also

$$
4 \int_{0}^{\infty} F(x) \cosh \frac{x}{2} d x=2 c \sqrt{\pi} .
$$

We therefore we get the expression

$$
\begin{aligned}
h n \log r d(K) & =h n(\gamma+\log 8 \pi)-h n \int_{0}^{\infty} \frac{1-F(x)}{2 \sinh \frac{x}{2}} d x \\
& -2 c \sqrt{\pi}+\sum_{\rho} \Phi(\rho)+2 \sum_{\mathfrak{F}} \sum_{m=1}^{\infty} \frac{\log N \mathfrak{F}}{N \mathfrak{P}^{m / 2}} F(m \log N \mathfrak{P}) .
\end{aligned}
$$

We rearrange this to get the identity

$$
\begin{equation*}
h=\frac{2 c \sqrt{\pi}}{Q} \tag{0.2}
\end{equation*}
$$

where

$$
\begin{aligned}
Q= & n\left[\gamma+\log 8 \pi-\mathcal{G}(F)-\log r d(K)+\frac{1}{h n} \sum_{\rho} \Phi(\rho)\right. \\
& \left.+\frac{2}{h n} \sum_{\mathfrak{P}} \sum_{m=1}^{\infty} \frac{\log N \mathfrak{P}}{N \mathfrak{P}^{m / 2}} F(m \log N \mathfrak{P})\right] .
\end{aligned}
$$

Here

$$
\mathcal{G}(F)=\int_{0}^{\infty} \frac{1-F(x)}{2 \sinh \frac{x}{2}} d x
$$

To get an upper bound for the class number h, we need to bound from below the sum over the zeros and the sum over the primes. The sum $\sum_{\rho} \Phi(\rho)$ over the critical zeros is nonnegative since the real part of $\Phi(s)$ is nonnegative on the critical strip. Thus we know that

$$
Q>n B
$$

In conclusion,

$$
\begin{equation*}
h=\frac{2 c \sqrt{\pi}}{Q}<\frac{2 c \sqrt{\pi}}{n B} \tag{0.3}
\end{equation*}
$$

We note that principal ideals in K totally split in the Hilbert class field of K.

To find a nontrivial lower bound for the sum over prime ideals of the Hilbert class field, we consider the contribution of the $h n / f_{p}$ prime ideals \mathfrak{P} of degree f_{p} that lie over some unramified rational prime p :

$$
\frac{2}{h n} \sum_{\mathfrak{P} \mid p} \sum_{m=1}^{\infty} \frac{\log N \mathfrak{P}}{N \mathfrak{P}^{m / 2}} F(m \log N \mathfrak{P})=2 \sum_{m=1}^{\infty} \frac{\log p}{p^{t_{p} m / 2}} F\left(f_{p} m \log p\right) .
$$

Summing this contribution over an arbitrary set S of unramified primes gives a lower bound for the sum over the prime ideals, proving the theorem.

An integral basis for $K L$

In order to apply the previous Theorem, we must find sufficiently many integral elements of small prime power norm. To do this, we first must compute a basis of the ring of integers $\mathcal{O}_{K L}$ of $K L$. In general, it is difficult to compute an integral basis for a number field with such large degree and takes an unfeasibly long time using the commonly implemented algorithms. Fortunately, Jordi Guàrdia, Jesús Montes and Enric Nart studied and recently implemented an algorithm that allows for fast computation of an integral basis. In addition, we obtained better basis

$$
\mathcal{C}=\left(c_{1}, c_{2}, \ldots, c_{120}\right), \quad c_{i} \in \mathbb{R}^{120}
$$

by LLL-algorithm.

Finding elements of $\mathcal{O}_{K L}$ with small multiplicative norm

Table: Generators of some small degree 1 primes in $\mathcal{O}_{K L}$

Element	Norm
$c_{2}+c_{17}+c_{46}$	3571
$c_{3}-c_{9}+c_{48}$	5477
$c_{14}-c_{41}$	7499
$c_{1}-c_{48}+c_{64}$	8867
$c_{11}+c_{75}$	15679
$c_{2}-c_{54}+c_{70}$	17203
$c_{3}+c_{12}-c_{100}$	20047
$c_{23}+c_{104}$	25343
$c_{25}-c_{74}$	31477
$c_{10}-c_{21}+c_{97}$	34613
$c_{49}-c_{80}$	35537

Element	Norm
$c_{71}+c_{74}$	43787
$c_{30}+c_{62}$	44879
$c_{1}-c_{17}+c_{77}$	45361
c_{95}	46271
$c_{2}-c_{28}-c_{62}$	48341
$c_{23}-c_{53}+c_{85}$	54311
$c_{2}+c_{31}+c_{76}$	95327
$c_{36}+c_{49}$	111611
$c_{3}+c_{22}+c_{66}$	113081
$c_{23}-c_{62}$	137927
$c_{7}-c_{89}$	139999

Table: Generators of some small degree 2 and degree 3 primes in $\mathcal{O}_{K L}$

Element	Norm
$c_{9}+c_{62}$	13^{2}
c_{71}	83^{2}
c_{94}	89^{2}
$c_{4}+c_{17}-c_{76}$	137^{2}
$c_{8}-c_{62}$	227^{2}

Element	Norm
c_{69}	229^{2}
$c_{22}+c_{25}$	251^{2}
$c_{24}-c_{75}$	383^{2}
$c_{7}+c_{42}$	433^{2}
$c_{1}-c_{7}+c_{68}$	11^{3}

Table: Generators of some composite ideals in $\mathcal{O}_{K L}$

Element	Norm
$c_{2}+c_{65}$	$13^{2} * 19^{2}$
$c_{9}-c_{89}$	$13^{2} * 7^{3}$
$c_{24}-c_{70}$	$13^{2} * 6361$
$c_{35}+c_{91}$	$13^{2} * 10753$
$c_{68}+c_{93}$	$13^{2} * 11681$
$c_{18}+c_{91}$	$13^{2} * 109^{2}$
$c_{3}+c_{39}-c_{74}$	$13^{2} * 23^{3}$
$c_{1}+c_{68}+c_{78}$	$19^{2} * 12619$
$c_{2}-c_{21}+c_{44}$	$13^{2} * 16561$

Table 3 list some integral elements and their norms. Consider, for example, the element $c_{2}+c_{65}$, which has norm $13^{2} \cdot 19^{2}$. Since we also know that $c_{9}+c_{62}$ generates a degree 2 prime ideal of norm 13^{2}, we can divide $c_{2}+c_{65}$ by the appropriate Galois conjugate of $c_{9}+c_{62}$ to find an integral element of norm 19^{2}. Since 19 does not totally split in KL, we know that 19 factors into degree 2 principal prime ideals. By this way, we can show that the following primes totally split in $K L$ into degree 1 principal prime ideals:

$$
6361,10753,11681,12619,16561,19963,23431
$$

$23531,32309,33403,41621,48179,56359,58601$.

An upper bound for the class number of $K L$

Proof of Main Theorem

By searching for elements of small norm, and taking quotients where necessary, we find a number of primes that can be included in the set S of unramified primes that factor into principal prime ideals. In particular, the following 36 primes totally split into degree 1 principal primes in $K L$:
$3571,5477,6361,7499,8867,10753,11681,12619,15679$,
16561, 17203, 19963, 20047, 23431, 23531, 25343, 31477,
$32309,33403,34613,35537,41621,43787,44879,45361$,
46271, 48179, 48341, 54311, 56359, 58601, 95327, 111611,
113081, 137927, 139999.

Also, the following 11 primes factor into degree 2 principal primes in $K L$:

$$
13,19,83,89,109,137,227,229,251,383,433 .
$$

Finally, the following three primes factor into degree 3 principal primes in $K L$:

$$
7,11,23 .
$$

If we include these primes in our set S and set $c=24.5$, we find that

$$
2 \sum_{p \in S} \sum_{m=1}^{\infty} \frac{\log p}{p^{f_{p} m / 2}} F\left(f_{p} m \log p\right)>0.18797
$$

We can numerical calculate the integral and find that

$$
\int_{0}^{\infty} \frac{1-F(x)}{2 \sinh \frac{x}{2}} d x<0.70010
$$

Since the root discriminant of $K L$ is $\sqrt{653}$, we have

$$
\begin{gathered}
B=\gamma+\log 8 \pi-\log r d(K L)-\int_{0}^{\infty} \frac{1-F(x)}{2 \sinh \frac{x}{2}} d x \\
\quad+2 \sum_{p \in S} \sum_{m=1}^{\infty} \frac{\log p}{f_{p} m / 2} F\left(f_{p} m \log p\right) \\
>0.57721+3.22417-3.24079-0.70010+0.18797=0.04846 .
\end{gathered}
$$

Therefore, we get an upper bound for the class number of $K L$:

$$
h_{K L}<\frac{2 c \sqrt{\pi}}{n B}<\frac{2 \times 24.5 \sqrt{\pi}}{120 \times 0.04846}<14.94
$$

Since the class number is an integer, we deteremine that

$$
h_{K L} \leq 14
$$

Thus we conclude that the class number of $K L$ is 1 .

Thank You For Coming.

