On the Equivariant Polylogarithm and the Special Values of Hecke L-functions for totally real fields

Kenichi Bannai
Keio University/RIKEN
PANT-KYOTO2021, December 6, 2021

Joint work with Hohto Bekki, Kei Hagihara, Tatsuya Ohshita, Kazuki Yamada, and Shuji Yamamoto. Supported by KAKENHI 18H05233
Based on arXiv:1911.02650 [math.NT], arXiv:2003.08157 [math.NT]

Background

Case for $F=\mathbb{Q}$: Lerch Zeta Functions

The universal generating function for special values of Lerch zeta functions

Lerch Zeta Function

For ξ : root of unity in \mathbb{C}

$$
\mathcal{L}(\xi, s):=\sum_{n=1}^{\infty} \frac{\xi^{n}}{n^{n}}, \quad \operatorname{Re}(s)>1
$$

- For $\xi=1$, coincides with Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$
- Analytic continuation to $s \in \mathbb{C}$, holomorphic if $\xi \neq 1$

Lerch zeta functions related to Dirichlet L-functions

Case for $F=\mathbb{Q}$: Relation to Dirichlet L-functions

Dirichlet L-Function

$N>0$: integer, $\chi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}^{\times}:$primitive Dirichlet character

$$
L(\chi, s):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Fix ξ : primitive N-th root of unity. For $c_{\chi}(\xi):=N^{-1} \sum_{m=1}^{N} \chi(m) \xi^{-m}$, we have the finite Fourier expansion

$$
\chi(n)=\sum_{m=1}^{N} c_{\chi}\left(\xi^{m}\right) \xi^{m n}
$$

for any $n \in \mathbb{Z}$, hence

$$
L(\chi, s)=\sum_{m=1}^{N} c_{\chi}(m) \mathcal{L}\left(\xi^{m}, s\right)
$$

Case for $F=\mathbb{Q}$: Universal Generating Function

Let

$$
\mathcal{G}(t):=\frac{t}{1-t}
$$

Theorem (Classical)

For any $N>1$ and non-trivial N-th root of unity $\xi \in \mathbb{C}^{\times}$, we have

$$
\left.\left(t \frac{d}{d t}\right)^{k} G(t)\right|_{t=\xi} \mathcal{L}(\xi,-k), \quad k \in \mathbb{N}
$$

In other words, $\mathcal{G}(t)$ knows all the Lerch zeta values for ALL non-trivial roots of unity ξ at ANY non-positive integer

- $\mathcal{G}(t)$: rational function on \mathbb{G}_{m}
- $\left(t \frac{d}{d t}\right)$: algebraic differential
- Roots of unity ξ are the torsion points of \mathbb{G}_{m}

Universal Generating Function for More General Number Fields

- $F=\mathbb{Q}$ (Classical)

$$
\begin{array}{lll}
\text { Lerch Zeta Value } & \mathbb{G}_{m} & \mathcal{G}(t)=\frac{t}{1-t}
\end{array}
$$

- F: Imaginary Quadratic Field (Robert 1973, Coates-Wiles 1977, B- Kobayashi 2010)

$$
\text { Eisenstein-Kronecker Number } \quad E \times E \quad \frac{\theta(s \oplus t)}{\theta(s) \theta(t)}
$$

- F: Totally Real Field (Today)

Generalized Lerch Zeta Function \mathbb{T} Shintani Generating Class

- F: CM Field and its Extension(Kings-Sprang, arXiv:1912.03657)

Generalized Eisenstein-Kronecker Number $A \times A^{\vee}$ Eisenstein-Kronecker Class

Totally Real Field

- Eisenstein Series Siegel-Klingen, Deligne-Ribet (1980)
- Cone Zeta Function and its Generating Function Shintani (1976)
Barsky (1978), Cassou-Noguès (1979)
- Eisenstein Cocycle Sczech (1993), Solomon (1998,1999), Hu-Solomon (2001), Hill (2007), Speiss (2014), Charollois-Dasgupta (2014), Charollois-Dasgupta-Greenberg (2015),. . .
- Topological Polylogarithm Blottière (2008),
Beilinson-Kings-Levin (2018)

Outline

Part I: Generalized Algebraic Torus

Part II: Equivariant Polylogarithm Class
Case for $F=\mathbb{Q}$
Case for F : totally real

Part III: Relation to Shintani Generating Class
Case for $F=\mathbb{Q}$
Main Theorem

Conjectures

Part I: Generalized Algebraic Torus

Algebraic Torus

- F : Totally Real Field, O_{F} : Ring of Integers, $g:=[F: \mathbb{Q}]$
- a: Fractional Ideal of F.

Definition (Algebraic Torus)

$$
\mathbb{T}^{\mathfrak{a}}:=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a}, \mathbb{G}_{m}\right)
$$

- Affine algebraic group over $\mathbb{Z}, \quad \forall \mathbb{Z}$-algebra $R \quad \mathbb{T}^{\mathfrak{a}}(R)=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a}, R^{\times}\right)$

$$
\xi: \mathfrak{a} \rightarrow R^{\times} \quad \xi\left(\alpha+\alpha^{\prime}\right)=\xi(\alpha) \xi\left(\alpha^{\prime}\right) \quad \forall \alpha, \alpha^{\prime} \in \mathfrak{a}
$$

Parameterizes additive characters

- Used by N. Katz in "Another Look at p-Adic L-Functions for Totally Real Fields" Mathematische Annalen (1981)

Affine Scheme

Explicit Description

$$
\begin{gathered}
\mathbb{T}^{\mathfrak{a}}=\operatorname{Spec} \mathbb{Z}\left[t^{\alpha} \mid \alpha \in \mathfrak{a}\right] \\
t^{\alpha} t^{\alpha^{\prime}}=t^{\alpha+\alpha^{\prime}} \quad \forall \alpha, \alpha^{\prime} \in \mathfrak{a} \\
\alpha_{1}, \ldots, \alpha_{g}: \mathbb{Z} \text {-basis of } \mathfrak{a} \Rightarrow \quad \mathbb{Z}\left[t^{\alpha} \mid \alpha \in \mathfrak{a}\right]=\mathbb{Z}\left[t^{ \pm \alpha_{1}}, \ldots, t^{ \pm \alpha_{g}}\right] \\
\mathbb{T}^{\mathfrak{a}} \\
\stackrel{\text { non-canonical }}{\cong} \quad \mathbb{G}_{m} \times \cdots \times \mathbb{G}_{m}
\end{gathered}
$$

Case $F=\mathbb{Q}$ and $\mathfrak{a}=\mathbb{Z}$

$$
\mathbb{T}^{\mathbb{Z}}:=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{G}_{m}\right)=\mathbb{G}_{m}
$$

Uniformization

- Let $\mathfrak{a}^{*}=\mathfrak{a}^{-1} \mathfrak{D}^{-1}$, where \mathfrak{D} : different of F

Uniformization

$$
\begin{array}{cll}
\left(F \otimes_{\mathbb{Q}} \mathbb{C}\right) / \mathfrak{a}^{*} & \stackrel{\cong}{\longrightarrow} & \mathbb{T}^{\mathfrak{a}}(\mathbb{C})=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a}, \mathbb{C}^{\times}\right) \\
u & \mapsto & \xi_{u}(\alpha)=e^{2 \pi i \operatorname{Tr}(u \alpha)}
\end{array}
$$

- $\operatorname{Tr}(u \alpha):=\sum_{\tau \in I} u_{\tau} \alpha^{\tau} \quad I=\operatorname{Hom}(F, \mathbb{R}) \quad \alpha^{\tau}:=\tau(\alpha) \quad u=\left(u_{\tau}\right) \in F \otimes \mathbb{C} \cong \prod_{\tau \in I} \mathbb{C}$
\star Similarity to CM Elliptic Curve Case

$$
\mathbb{C} / a^{*} \quad \xrightarrow{\cong} \quad E(\mathbb{C})
$$

Case $F=\mathbb{Q}$

Uniformization

$$
\begin{array}{ccc}
\left(F \otimes_{\mathbb{Q}} \mathbb{C}\right) / \mathfrak{a}^{*} & \xrightarrow{\cong} & \mathbb{T}^{\mathfrak{a}}(\mathbb{C})=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a}, \mathbb{C}^{\times}\right) \\
u & \mapsto & \xi_{u}(\alpha)=e^{2 \pi i \operatorname{Tr}(u \alpha)}
\end{array}
$$

for the case $F=\mathbb{Q}$ and $\mathfrak{a}=\mathbb{Z}$ given for $\mathbb{T}^{\mathbb{Z}}=\mathbb{G}_{m}$ as

$$
\begin{array}{rlll}
\mathbb{C} / \mathbb{Z} & \stackrel{\cong}{\rightarrow} & \mathbb{G}_{m}(\mathbb{C})=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{C}^{\times}\right) \\
& & \\
u & & \mapsto & \xi_{u}(\alpha)=e^{2 \pi i u \alpha}
\end{array}
$$

Equivariance

- $F_{+}:=\{x \in F \mid \tau(x)>0 \forall \tau \in I\}$
- $\Delta=O_{F_{+}}^{\times} \cong \mathbb{Z}^{g-1}$: group of totally positive units $(\Delta=\{1\}$ if $F=\mathbb{Q})$
$\forall \varepsilon \in \Delta$

$$
\langle\varepsilon\rangle: \mathbb{T}^{\mathfrak{a}} \rightarrow \mathbb{T}^{\mathfrak{a}}
$$

map induced by $t^{\alpha} \mapsto t^{\varepsilon \alpha}$ gives action on $\mathbb{T}^{\mathfrak{a}}=\operatorname{Spec} \mathbb{Z}\left[t^{\alpha} \mid \alpha \in \mathfrak{a}\right\}$
(equivalent to action given by multiplication by ε on \mathfrak{a} in $\mathbb{T}^{\mathfrak{a}}=\operatorname{Hom}_{\mathbb{Z}}(\mathfrak{a}, \mathbb{C})$)

$$
\begin{aligned}
& \langle\varepsilon\rangle: \mathbb{T}^{\mathfrak{a}}(\mathbb{C}) \rightarrow \mathbb{T}^{\mathfrak{a}}(\mathbb{C}) \\
& \xi(\alpha) \quad \mapsto \quad \xi^{\varepsilon}(\alpha):=\xi(\varepsilon \alpha) \quad \forall \alpha \in \mathfrak{a}
\end{aligned}
$$

Equivariant action of Δ on $\mathbb{T}^{\text {a }}$

Equivariance: Generalized

- F_{+}^{\times}: group of totally positive elements in F

$$
\forall x \in F_{+}^{\times}
$$

$$
\langle x\rangle: \mathbb{T}^{x a} \rightarrow \mathbb{T}^{\mathfrak{a}}
$$

map induced by $t^{\alpha} \mapsto t^{x \alpha}$

$$
\begin{aligned}
&\langle x\rangle: \mathbb{T}^{x a}(\mathbb{C}) \rightarrow \mathbb{T}^{\mathfrak{a}}(\mathbb{C}) \\
& \xi(\alpha) \mapsto \quad \xi^{x}(\alpha):=\xi(x \alpha)
\end{aligned}
$$

Map from $\mathbb{T}^{x a}$ to \mathbb{T}^{a}
Idea: Take All Choices

Generalized Algebraic Torus

Definition (Generalized Algebraic Torus)

I: group of all non-zero fractional ideals of F

$$
\mathbb{T}:=\coprod_{\mathfrak{a} \in \mathfrak{I}} \mathbb{T}^{\mathfrak{a}}
$$

The map $\langle x\rangle: \mathbb{T}^{x a} \rightarrow \mathbb{T}^{a}$ for all $x \in F_{+}^{\times}$gives action

$$
\langle x\rangle: \mathbb{T} \rightarrow \mathbb{T}
$$

Equivariant action of F_{+}^{\times}on \mathbb{T}

Quotient Stack

We will consider the Equivariant Polylogarithm on \mathbb{T}, which may be regarded as the Polylogarithm on the quotient stack $\mathcal{T}:=\mathbb{T} / F_{+}^{\times}$
\mathfrak{C} : fractional ideals representing narrow class group $\mathrm{Cl}_{F}^{+}(1)$

$$
\mathcal{T}:=\mathbb{T} / F_{+}^{\times}=\left(\coprod_{\mathfrak{a} \in \mathfrak{I}} \mathbb{T}^{\mathfrak{a}}\right) / F_{+}^{\times} \cong \coprod_{\mathfrak{a} \in \mathbb{C}}\left(\mathbb{T}^{\mathfrak{a}} / \Delta\right)
$$

Isomorphic to finite sum of quotient stacks of form \mathbb{T}^{a} / Δ

- $\mathrm{Cl}_{F}^{+}(1):=\mathfrak{I} / P_{+}$
- $P_{+}:=\left\{(x) \mid x \in F_{+}^{\times}\right\}$

Torsion Points

For an integral ideal $\mathfrak{g} \subset O_{F}$, we define the group of \mathfrak{g}-torsion points by

$$
\mathbb{T}^{\mathfrak{a}}[\mathfrak{g}]:=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a} / \mathfrak{g a}, \mathbb{G}_{m}\right) \hookrightarrow \mathbb{T}^{\mathfrak{a}}=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a}, \mathbb{G}_{m}\right)
$$

We let

$$
\mathbb{T}[\mathfrak{g}]:=\coprod_{\mathfrak{a} \in \mathfrak{I}} \mathbb{T}^{a}[\mathfrak{g}], \quad \mathscr{T}[\mathfrak{g}]:=\mathbb{T}[\mathfrak{g}] / F_{+}^{\times}
$$

For any integral ideal $\mathfrak{b} \subset O_{F}$, the inclusion $\mathfrak{a b} \subset \mathfrak{a}$ induces $\mathbb{T}^{\mathfrak{a}} \rightarrow \mathbb{T}^{\mathfrak{a b}}$, which induces maps

$$
\rho(\mathfrak{b}): \mathbb{T} \rightarrow \mathbb{T}, \quad \rho(\mathfrak{b}): \mathbb{T}[\mathfrak{g}] \rightarrow \mathbb{T}[\mathfrak{g}]
$$

Lemma (B-, Hagihara, Yamada, Yamamoto)
ρ gives a transitive action of $\mathrm{Cl}_{F}^{+}(\mathfrak{g})$ on $\mathcal{T}[\mathfrak{g}]$

- $\mathrm{Cl}_{F}^{+}(\mathfrak{g}):=\mathfrak{J} / P_{+}(\mathfrak{g}), \quad P_{+}(\mathfrak{g}):=\left\{(\beta) \mid \beta \equiv 1 \bmod ^{\times} \mathfrak{g}\right\}$
- Note: Class Field Theory $\mathrm{Cl}_{F}^{+}(\mathfrak{g}) \cong \operatorname{Gal}(F(\mathfrak{g}) / F)$

Question

* Similarity to CM Elliptic Curve Case (Rough)

- K : imaginary quadratic field
- $\mathfrak{a} \in \mathfrak{I}, \quad E^{\mathfrak{a}}:$ CM elliptic curve defined over $K(1), \quad \mathrm{CM}$ in \mathfrak{a}

$$
\mathcal{E}=\left(\coprod_{\mathfrak{a} \in \mathfrak{I}} E^{\mathfrak{a}}\right) / K^{\times}, \quad \mathcal{E}[\mathfrak{g}]=\left(\coprod_{\mathfrak{a} \in \mathfrak{Y}} E^{\mathfrak{a}}[\mathfrak{g}]\right) / K^{\times}
$$

Construction similar to that of ρ gives the action of Hecke character on \mathcal{E} and $\mathcal{E}[g]$ Theory of Complex Multiplication

$$
\text { Action of } \rho \quad \Leftrightarrow \quad \text { Action of } \operatorname{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{K}\right) \text { on torsion points }
$$

Question: Is there some way to equip \mathcal{T} with a F-structure so that $\mathcal{T}[g]$ has a natural action of $\operatorname{Gal}(\mathrm{F}(\mathrm{g}) / \mathrm{F})$, which is compatible with the action of ρ ?

Part II: Equivariant Polylogarithm Class Work in Progress

Case for $F=\mathbb{Q}$

The cohomology

$$
\mathscr{H}:=H^{1}\left(\mathbb{G}_{m}(\mathbb{C}), \mathbb{R}\right)^{\vee}=\mathbb{R}(1)
$$

has a Hodge structure of pure weight 2.

Definition (The Logarithm Sheaf)

The Logarithm Sheaf is a certain admissible unipotent pro-variation of mixed \mathbb{R}-Hodge structures \mathbb{L} og on $\mathbb{G}_{m}(\mathbb{C})$ such that

$$
\mathrm{Gr}_{\cdot}^{W} \mathbb{L o g} \cong \prod_{k \geq 0} \mathrm{Sym}^{k} \mathscr{H} \cong \prod_{k \geq 0} \mathbb{R}(k)
$$

For any torsion point $\xi \in \mathbb{G}_{m}(\mathbb{C})$, the Logarithm sheaf satisfies the splitting principle

$$
i_{\xi}^{*} \mathbb{L o g} \cong \prod_{k \geq 0} \mathbb{R}(k)
$$

Case for $F=\mathbb{Q}$: The Polylogarithm Class

Let $U^{\mathbb{Z}}:=\mathbb{G}_{m} \backslash\{1\}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$. The residue at 1 gives a canonical isomorphism

$$
H_{\mathscr{D}}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right) \cong \mathbb{R}
$$

where $H_{\mathscr{D}}^{1}\left(U^{\mathbb{Z}}, \mathbb{L} \circ \mathrm{g}\right)$ is the Deligne-Beilinson cohomology of $U^{\mathbb{Z}}$ with coefficients in $\mathbb{L o g}$, given as

$$
H_{\mathscr{D}}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right)=\operatorname{Ext}_{\mathrm{VMHS}_{\mathbb{R}}\left(U^{\mathbb{Z}}\right)}^{1}(\mathbb{R}(0), \mathbb{L o g})
$$

Definition (Beilinson-Deligne, Huber-Wildeshaus)

The polylogarithm class is the element

$$
\mathrm{pol} \in H_{\mathscr{D}}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right)
$$

which maps to 1 through the isomorphism $H_{\mathscr{D}}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right) \cong \mathbb{R}$.

Case for $F=\mathbb{Q}$: Construction is Motivic

Let $U^{\mathbb{Z}}:=\mathbb{G}_{m} \backslash\{1\}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$. By the works of Beilinson and Deligne, there exists a motivic meaning to the sheaf $\mathbb{L o g}$, and the residue at 1 gives a canonical isomorphism

$$
H_{\text {mot }}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right) \cong \mathbb{Q}
$$

where $H_{\text {mot }}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right)$ is the motivic cohomology of $U^{\mathbb{Z}}$ with coefficients in Log. We may define the motivic polylogarithm pol $\in H_{\text {mot }}^{1}\left(U^{\mathbb{Z}}, \mathbb{L o g}\right)$ similarly. We have a commutative diagram

where $r_{\mathscr{D}}$ is the regulator map.

Case for $F=\mathbb{Q}$: Specialization to Torsion Points

Theorem (Beilinson-Deligne, Huber-Wildeshaus)

For any torsion point $\xi \in U^{\mathbb{Z}}$, the specialization

$$
i_{\xi}^{*} \mathrm{pol} \in H_{\mathscr{D}}^{1}\left(\xi, i_{\xi}^{*} \mathbb{L o g}\right) \cong \prod_{k \geq 0} H_{\mathscr{D}}^{1}(\xi, \mathbb{R}(k)) \cong \prod_{k>0} \mathbb{R}
$$

satisfies

$$
i_{\xi}^{*} \mathrm{pol}=\left(\mathrm{Li}_{k}(\xi)\right)_{k>0}
$$

Here,

$$
\mathrm{Li}_{k}(t)=\sum_{n=1}^{\infty} \frac{t^{n}}{n^{k}}
$$

is the polylogarithm function

Case for $F=\mathbb{Q}$: Implications

$$
\mathrm{pol} \longmapsto\left(c_{k}(\xi)\right)
$$

$$
\mathrm{pol} \longmapsto\left(\mathrm{Li}_{k}(\xi)\right)
$$

Commutativity: The polylogarithm values are the image by $r_{\mathscr{D}}$ of motivic objects $c_{k}(\xi)$
\Rightarrow Beilinson conjecture for Dirichlet L-functions
See for example Neukirch 1988 [4]

Motivation and Results

The construction of the polylogarithm extended from \mathbb{G}_{m} to general algebraic groups (Huber and Kings, 2018 [2]).

Question

By considering the equivariant polylogarithm for $\mathbb{T}=\bigcup_{\mathfrak{a} \in \mathfrak{J}} \mathbb{T}^{\mathfrak{a}}$, can the same method be used to attack the Beilinson conjecture for Hecke L-functions of totally real fields?

Not yet clear. We give some observations.

Our Results

- Construction of the Polylogarithm in Equivariant Deligne-Beilinson Cohomology
- Relation to Shintani Generating Class

Logarithm Sheaf

Let $\mathbb{T}=\coprod_{a \in \mathcal{Y}} \mathbb{T}^{a}$ with action of F_{+}^{\times}, and let $U=\coprod_{a \in \mathfrak{I}} U^{\mathfrak{a}}$ for $U^{a}=\mathbb{T}^{\mathfrak{a}} \backslash\{1\}$. Let

$$
\mathscr{H}_{a}:=H^{1}\left(\mathbb{T}^{\mathrm{a}}, \mathbb{R}\right)^{\vee}=\bigoplus_{j=1}^{g} \mathbb{R}(1),
$$

and let \mathscr{H} be the sheaf on \mathbb{T} given by \mathscr{H}_{a} on \mathbb{T}^{a}

Definition (The Logarithm Sheaf)

The Logarithm Sheaf is a certain F_{+}^{\times}-equivariant admissible unipotent pro-variation of mixed \mathbb{R}-Hodge structures $\mathbb{L o g}$ on $\mathbb{T}(\mathbb{C})$ such that

$$
\mathrm{Gr}_{\bullet}^{W} \mathbb{L o g} \cong \prod_{k \geq 0} \mathrm{Sym}^{k} \mathscr{H}
$$

This Logarithm sheaf also satisfies the splitting principle

Equivariant Variation of mixed \mathbb{R}-Hodge structures

- We define a variation of mixed \mathbb{R}-Hodge structures \mathbb{V} on \mathbb{T}, to be a family of variation of mixed \mathbb{R}-Hodge structures $\mathbb{V}=\left(\mathbb{V}_{\mathfrak{a}}\right)_{\mathfrak{a} \in \mathscr{I}}$ on $\mathbb{T}^{\mathfrak{a}}(\mathbb{C})$
- It is F_{+}^{\times}-equivariant, if we fix isomorphisms $\iota_{x, \mathfrak{a}}$ for $x \in F_{+}^{\times}$and $\mathfrak{a} \in \mathfrak{J}$

$$
\iota_{x, \mathfrak{a}}:\langle x\rangle^{*} \mathbb{V}_{\mathfrak{a}} \stackrel{\cong}{\Longrightarrow} \mathbb{V}_{x \mathfrak{a}}
$$

satisfying standard compatibility with respect to composition

- Equivariant cohomology $H^{m}\left(\mathbb{T} / F_{+}^{\times}, \mathbb{V}\right)$ is equipped with mixed \mathbb{R}-Hodge structure
- There exists spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(F_{+}^{\times}, H^{q}(\mathbb{T}, \mathbb{V})\right) \Rightarrow H^{p+q}\left(\mathbb{T} / F_{+}^{\times}, \mathbb{V}\right)
$$

Cohomology of $\mathbb{L o g}_{\mathfrak{a}}$ on $\mathbb{T}^{\mathfrak{a}}$

Let $g=[F: \mathbb{Q}]$

Theorem (cf. Huber-Kings)

We have

$$
H^{m}\left(\mathbb{T}^{\mathfrak{a}}, \log _{\mathfrak{a}}\right)= \begin{cases}\mathbb{R}(-g) & m=g \\ \{0\} & m \neq g\end{cases}
$$

Let $U^{\mathfrak{a}}:=\mathbb{T} \backslash\{1\}$. We may calculate the cohomology on U via the localizing sequence

$$
\cdots \rightarrow H^{m}\left(\mathbb{T}^{\mathfrak{a}}, \mathbb{L o g}_{a}\right) \rightarrow H^{m}\left(U, \mathbb{L o g}_{\mathfrak{a}}\right) \rightarrow H_{\{1\}}^{m+1}\left(\mathbb{T}^{\mathfrak{a}}, \mathbb{L o g}_{\mathfrak{a}}\right) \rightarrow \cdots
$$

noting that

$$
H_{\{1\}}^{m}\left(\mathbb{T}^{\mathfrak{a}}, \log _{\mathfrak{a}}\right)= \begin{cases}\left(\prod_{k=0}^{\infty} \operatorname{Sym}^{k} \mathscr{H}_{\mathfrak{a}}\right)(-g) & m=2 g \\ 0 & m \neq 2 g\end{cases}
$$

Cohomology of $\mathbb{L o g}_{\mathfrak{a}}$ on $U^{\mathfrak{a}}$

Let $U^{\mathfrak{a}}:=\mathbb{T}^{\mathfrak{a}} \backslash\{1\}$

Theorem (cf. Huber-Kings)
If $g>1$, we have

$$
H^{m}\left(U^{\mathfrak{a}}, \log _{\mathfrak{a}}\right)= \begin{cases}\mathbb{R}(-g) & m=g \\ \left(\prod_{k=0}^{\infty} \operatorname{Sym}^{k} \mathscr{H}_{\mathfrak{a}}\right)(-g) & m=2 g-1 \\ \{0\} & \text { otherwise }\end{cases}
$$

If $g=1$, we have

$$
H^{m}\left(U^{a}, \mathbb{L o g}_{a}\right)= \begin{cases}\mathbb{R}(-1) \oplus \prod_{k=0}^{\infty} \mathbb{R}(k-1) & m=1 \\ \{0\} & m \neq 1\end{cases}
$$

Equivariant Cohomology of \mathbb{L} og on U

Calculate equivariant cohomology of $\mathbb{L o g}_{a}$ on U^{a}

$$
E_{2}^{p, q}=H^{p}\left(\Delta, H^{q}\left(U^{\mathfrak{a}}, \mathbb{L o g}_{a}\right)\right) \Rightarrow H^{p+q}\left(U^{\mathfrak{a}} / \Delta, \mathbb{L o g}_{a}\right)
$$

noting that $H^{g-1}(\Delta, \mathbb{R}(-g))=\mathbb{R}(-g)$ and $H^{0}\left(\Delta\right.$, Sym $\left.^{k} \mathscr{H}_{\mathfrak{a}}\right)= \begin{cases}\mathbb{R}(k) & g \mid k \\ \{0\} & \text { otherwise }\end{cases}$

Theorem (B-, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)

For any $g \geq 1$, we have an exact sequence

$$
0 \rightarrow \mathbb{R}(-g) \rightarrow H^{2 g-1}\left(U^{\mathfrak{a}} / \Delta, \log _{\mathfrak{a}}\right) \rightarrow \prod_{n=0}^{\infty} \mathbb{R}((n-1) g) \rightarrow 0
$$

Cohomology $H^{m}\left(U^{\mathfrak{a}} / \Delta, \log _{a}\right)$ for $m<2 g-1$ vanish or have weight $2 g$

The Polylogarithm Class

For $U=\amalg_{a \in \mathfrak{I}} U^{a}$

$$
H^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \cong \bigoplus_{\mathfrak{a} \in \mathscr{C}} H^{2 g-1}\left(U^{\mathfrak{a}} / \Delta, \mathbb{L o g}_{\mathfrak{a}}\right)
$$

Equivariant Deligne-Beilinson cohomology is defined to fit into the spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}}^{p}\left(\mathbb{R}(0), H^{q}\left(U / F_{+}^{\times}, \mathbb{L o g}\right)\right) \Rightarrow H_{\mathscr{D}}^{p+q}\left(U / F_{+}^{\times}, \mathbb{L o g}\right)
$$

Previous theorem gives canonical isomorphism

$$
H_{\mathscr{D}}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \cong \bigoplus_{\mathrm{Cl}_{F}^{ \pm}(1)} \operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}}^{0}\left(\mathbb{R}(0), H^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right)\right) \cong \bigoplus_{\mathrm{Cl}_{F}^{ \pm}(1)} \mathbb{R}
$$

noting that we have

$$
\operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}}^{0}(\mathbb{R}(0), \mathbb{R}(n)) \cong\left\{\begin{array} { l l }
{ \mathbb { R } } & { n = 0 } \\
{ \{ 0 \} } & { n \neq 0 }
\end{array} \quad \operatorname { E x t } _ { \mathrm { MHS } _ { \mathbb { R } } } ^ { 1 } (\mathbb { R } (0) , \mathbb { R } (n)) \cong \left\{\begin{array}{ll}
(2 \pi i)^{n-1} \mathbb{R} & n>0 \\
\{0\} & n \leq 0
\end{array}\right.\right.
$$

The Polylogarithm Class

Our argument shows that we have a canonical isomorphism

$$
H_{\mathscr{D}}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \cong \bigoplus_{\mathrm{Cl}_{F}^{+}(1)} \mathbb{R}
$$

Definition (B-, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)

We define the equivariant polylogarithm class for the generalized torus to be the element

$$
\mathrm{pol} \in H_{\mathscr{D}}^{2 g-1}\left(U / F_{+}^{\times}, \log \right)
$$

which maps to $(1, \ldots, 1)$ through the isomorphism $H_{\mathscr{D}}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \cong \bigoplus_{\mathrm{Cl}_{F}^{+}(1)} \mathbb{R}$

Part III: Relation to Shintani Generating Class

Case for $F=\mathbb{Q}$: Lerch Zeta Functions

The universal generating function for special values of Lerch zeta functions

Lerch Zeta Function

For ξ : root of unity in \mathbb{C}

$$
\mathcal{L}(\xi, s):=\sum_{n=1}^{\infty} \frac{\xi^{n}}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

- For $\xi=1$, coincides with Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$
- Analytic continuation to $s \in \mathbb{C}$, holomorphic if $\xi \neq 1$
- Since $\mathbb{G}_{m}(\mathbb{C})=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{C}^{\times}\right), \quad \xi$ may be viewed as a character $\xi(n)=\xi^{n}$ for $n \in \mathbb{Z}$

Lerch zeta functions related to Dirichlet L-functions, and also to the polylogarithm function

$$
\mathcal{L}(\xi, k)=\operatorname{Li} i_{k}(\xi)
$$

Case for $F=\mathbb{Q}$: Relation to Dirichlet L-functions

Dirichlet L-Function

$N>0$: integer, $\chi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}^{\times}:$primitive Dirichlet character

$$
L(\chi, s):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Fix ξ : primitive N-th root of unity. For $c_{\chi}(\xi):=N^{-1} \sum_{m=1}^{N} \chi(m) \xi^{-m}$, we have the finite Fourier expansion

$$
\chi(n)=\sum_{m=1}^{N} c_{\chi}\left(\xi^{m}\right) \xi^{m n}
$$

for any $n \in \mathbb{Z}$, hence

$$
L(\chi, s)=\sum_{m=1}^{N} c_{\chi}(m) \mathcal{L}\left(\xi^{m}, s\right)
$$

Case for $F=\mathbb{Q}$: Shintani Generating Function

Let

$$
\mathcal{G}(t):=\frac{t}{1-t} \quad \in \quad H^{0}\left(U^{\mathbb{Z}}, O_{U^{z}}\right)
$$

Theorem (Classical)

For any $N>1$ and non-trivial N-th root of unity $\xi \in \mathbb{C}^{\times}$, we have

$$
\left.\left(t \frac{d}{d t}\right)^{k} \mathcal{G}(t)\right|_{t=\xi}=\mathcal{L}(\xi,-k), \quad k \in \mathbb{N}
$$

$\mathcal{G}(t)$ is the universal generating function of non-positive Lerch zeta value
Shintani Generating Class is the generalization to the case of totally real fields of $\mathcal{G}(t)$

Finite Hecke Character

For a finite Hecke character

$$
\chi: \mathrm{Cl}_{F}^{+}(\mathrm{g}) \rightarrow \mathbb{C}^{\times}
$$

of conductor \mathfrak{g}, we may extend χ by zero to a function on the group of fractional ideals \mathfrak{I}.

Hecke L-function

Hecke L-function of χ defined as

$$
L(\chi, s):=\sum_{\mathfrak{a} \subset O_{F}} \frac{\chi(\mathfrak{a})}{N a^{s}}
$$

This function converges for $\operatorname{Re}(s)>1$, has analytic continuation to $s \in \mathbb{C}$

Case $F=\mathbb{Q}$: finite Hecke character

For $F=\mathbb{Q}$ and $\mathfrak{g}=(N)$ for $N>0$, let

$$
\chi: \mathrm{Cl}_{\mathbb{Q}}^{+}(\mathfrak{g}) \rightarrow \mathbb{C}^{\times}
$$

be a finite Hecke character. Let

$$
\chi_{\mathbb{Z}}(n):=\chi((n)), \quad n: \text { integer }>0,
$$

then this defines a Dirichlet character $\chi_{\mathbb{Z}}:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$. The Hecke L-function for χ coincides with the Dirichlet L-function for $\chi_{\mathbb{Z}}$ in this case.

$$
L(\chi, s)=L\left(\chi_{\mathbb{Z}}, s\right)=\sum_{m=1}^{N} c_{\chi \bar{Z}}\left(\xi^{m}\right) \mathcal{L}\left(\xi^{m}, s\right)
$$

What is the generalization of Lerch zeta function for totally real fields?

Lerch Zeta Function: General F

Definition (Our Definition of Lerch Zeta Function)

For any $\mathfrak{a} \in \mathrm{Cl}_{F}^{+}(1)$ and finite additive character $\xi \in \mathbb{T}^{\mathfrak{a}}(\mathbb{C}):=\operatorname{Hom}_{\mathbb{Z}}\left(\mathfrak{a}, \mathbb{C}^{\times}\right)$, let

$$
\mathcal{L}(\xi \Delta, s):=\sum_{\alpha \in \Delta \backslash \mathfrak{a}_{+}} \frac{\xi \Delta(\alpha)}{N\left(\mathfrak{a}^{-1} \alpha\right)^{s}}
$$

where $\xi \Delta:=\sum_{\varepsilon \in \Delta / \Delta_{\xi}} \xi^{\epsilon}, \quad \Delta_{\xi}=\left\{\varepsilon \in \Delta \mid \xi^{\varepsilon}=\xi\right\}$
Then for any finite Hecke character $\chi: \mathrm{Cl}_{F}^{+}(\mathfrak{g}) \rightarrow \mathbb{C}^{\times}$, we have

$$
L(\chi, s)=\sum_{\mathfrak{a} \in \mathrm{Cl}_{F}^{\dagger}(1)} \sum_{\xi \in \mathbb{T}^{\mathrm{T}}[\mathrm{~g}] / \Delta} c_{\chi}(\xi) \mathcal{L}(\xi \Delta, s)
$$

for suitable constants $c_{\chi}(\xi)$. Hecke L-function expressed by Lerch zeta function!

Shintani Generating Class

The Shintani Generating Class is a canonical equivariant coherent cohomology class

$$
\mathcal{G}(t) \in H^{g-1}\left(U / F_{+}^{\times}, O_{U}\right)
$$

Differential given by $\partial\left(t^{\alpha}\right)=N(\alpha) t^{\alpha}$ induces a differential on $H^{g-1}\left(U / F_{+}^{\times}, \mathscr{O}_{\mathbb{T}}\right)$.

Theorem (B., Hagihara, Yamada, Yamamoto)

For any integer $k \geq 0$ and any torsion point ξ in $U(\overline{\mathbb{Q}})$, we have

$$
\begin{array}{cc}
H^{g-1}\left(U / F_{+}^{\times}, \mathscr{O}_{\mathbb{T}}\right) & \partial^{k} \mathcal{G}(t) \\
\|_{\xi}^{i_{\xi}^{*}} \\
H^{g-1}\left(\xi \Delta / \Delta, \mathscr{O}_{\xi \Delta}\right)=\mathbb{Q}(\xi) & \left.\partial^{k} \mathcal{G}(t)\right|_{t=\xi \Delta}=\mathcal{L}(\xi \Delta,-k),
\end{array}
$$

where $i_{\xi}: \xi \Delta \rightarrow U$ is equivariant with respect to the action of Δ.

de Rham Shintani Generating Class

There exists a natural homomorphism

$$
H^{g-1}\left(U / F_{+}^{\times}, \mathscr{O}_{\mathbb{T}}\right) \rightarrow H_{\mathrm{dR}}^{2 g-1}\left(U / F_{+}^{\times}, \mathcal{L} \mathrm{og}\right)
$$

obtained via wedge product with

$$
\frac{d t^{\alpha_{1}}}{t^{\alpha_{1}}} \wedge \cdots \wedge \frac{d t^{\alpha_{g}}}{t^{\alpha_{g}}}
$$

on each open set $\cup_{\alpha_{1}, \ldots, \alpha_{g}}^{\mathfrak{a}}:=\mathbb{T}^{\mathfrak{a}} \backslash\left(\left\{t^{\alpha_{1}} \neq 1\right\} \cup \cdots \cup\left\{t^{\alpha_{g}} \neq 1\right\}\right)$ for $\alpha_{1}, \ldots, \alpha_{g} \in \mathfrak{a}$

Definition

We define the de Rham Shintani generating class \mathcal{S} to be the image of $\mathcal{G}(t)$ with respect to the above homorphism

Case $g=1$

$$
\mathcal{G}(t)=\frac{t}{1-t} \quad \mapsto \quad \mathcal{S}=\frac{d t}{1-t}
$$

Main Theorem

There exists a natural injection

$$
\begin{aligned}
i: H_{\mathscr{D}}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) & \stackrel{\cong}{\rightarrow} \operatorname{Hom}_{\mathrm{MHS}_{\mathbb{R}}}\left(\mathbb{R}(0), H^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right)\right) \\
& \hookrightarrow H_{\mathrm{dR}}^{2 g-1}\left(U / F_{+}^{\times}, \mathcal{L} \mathrm{og}\right)
\end{aligned}
$$

Theorem (B-, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)
In $H_{d R}^{2 g-1}\left(U / F_{+}^{\times}, \mathcal{L}\right.$ og $)$ we have

$$
i(\mathrm{pol})=\mathcal{S}
$$

In other words, the polylogarithm coincides wth the de Rham Shintani class
Proof: The residue of Shintani generating class is 1 at 1 on each component ※ Shintani generating class is the de Rham realization of the polylogarithm class

Remark

- Beilinson-Kings-Levin ([1] 2018) gives relation between Topological Polylogarithm and Special Values of Hecke L-functions
- Classical Polylogarithm Function

$$
\mathrm{Li}_{k+1}(s)=\int_{0}^{s} \mathrm{Li}_{k}(t) \frac{d t}{t}, \quad \operatorname{Li}(t) \frac{d t}{t}=\frac{d t}{1-t}=\mathcal{S}
$$

de Rham Shintani generating class gives the algebraic differential which is the "start" of the iterated integral of polylogarithm function

- We may hope that the "specialization" of the polylogarithm in this case may be related to special values of Hecke L-functions - even in the noncritical case

Appendix: Conjectures

Specialization

For torsion $\xi \in \mathbb{T}$, there exists an equivariant inclusion $i_{\xi \Delta}: \xi \Delta \rightarrow \mathbb{T}$, which induces the specialization

$$
H_{\mathscr{D}}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \xrightarrow{i_{\xi \Delta}^{*}} H_{\mathscr{D}}^{2 g-1}\left(\xi \Delta / \Delta, i_{\xi \Delta}^{*} \mathbb{L} \mathrm{Log}\right) \cong \prod_{k>0}^{\infty} H_{\mathscr{D}}^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))
$$

PROBLEM: We have

$$
H_{\mathscr{D}}^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))=\operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}}^{g}\left(\mathbb{R}(0), H^{g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))\right)
$$

which is zero for $g>1$ since Ext^{g} in the category of mixed \mathbb{R}-Hodge structures

Specialization

IDEA: Use the category of mixed plectic \mathbb{R}-Hodge structures $\mathrm{MHS}_{\mathbb{R}}^{\prime}$ proposed by Nekovar and Scholl 2016 [3]. Assuming the existence of such theory, plectic Deligne-Beilinson cohomology should fit into the spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}^{\prime}}^{p}\left(\mathbb{R}(0), H^{q}\left(U / F_{+}^{\times}, \mathbb{L o g}\right)\right) \Rightarrow H_{\mathscr{D}}^{p+q}\left(U / F_{+}^{\times}, \mathbb{L o g}\right),
$$

where $\mathrm{MHS}_{\mathbb{R}}^{\prime}$ is the category of mixed plectic \mathbb{R}-Hodge structures. Assuming such theory, we may prove

$$
H_{\mathscr{D}}^{p+q}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \cong H_{\mathscr{D}}^{p+q}\left(U / F_{+}^{\times}, \mathbb{L o g}\right)
$$

We have the specialization

$$
H_{\mathscr{O}^{\prime}}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \xrightarrow{i_{\xi \Delta}^{*}} H_{\mathscr{D}^{\prime}}^{2 g-1}\left(\xi \Delta / \Delta, i_{\xi \Delta}^{*} \mathbb{L o g}\right) \cong \prod_{k>0}^{\infty} H_{\mathscr{D}^{\prime}}^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))
$$

Conjecture

We have

$$
H_{\mathscr{D}^{\prime}}^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))=\operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}^{\prime}}^{g}\left(\mathbb{R}(0), H^{g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))\right),
$$

and we have $\operatorname{Ext}_{\mathrm{MHS}_{\mathbb{R}}^{\prime}}^{g}\left(\mathbb{R}(0), H^{g-1}(\xi \Delta / \Delta, \mathbb{R}(g k))\right) \cong \mathbb{R}$ for $k>0$.

Conjecture

For any torsion point $\xi \in U^{\mathbb{Z}}$, the specialization

$$
i_{\xi \Delta}^{*} \mathrm{pol} \in H_{\mathscr{D}}^{2 g-1}\left(\xi \Delta / \Delta, i_{\xi}^{*} \mathbb{L o g}\right) \cong \prod_{k \geq 0} H_{\mathscr{D}^{\prime}}^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(g k)) \cong \prod_{k>0} \mathbb{R}
$$

satisfies

$$
i_{\xi \Delta}^{*} \mathrm{pol}=(\mathcal{L}(\xi \Delta, k))_{k>0}
$$

This is a generalization of the result of Beilinson-Deligne for the case $F=\mathbb{Q}$.

Conjecture

$$
\text { pol l.. }\left(c_{k}(\xi \Delta)\right)
$$

$$
\text { pol } \longmapsto \quad(\mathcal{L}(\xi \Delta, k))
$$

$$
\begin{aligned}
& H_{\text {mot }}^{2 g-1}\left(U / F_{+}^{\times}, \mathbb{L o g}\right) \xrightarrow{i_{\xi \Delta}^{*}} \prod_{k>0} H_{\text {mot }^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(k))}
\end{aligned}
$$

Conclusion

There exists an isomorphism

$$
H_{\mathscr{D}}^{2 g-1}(\xi \Delta / \Delta, \mathbb{R}(g k)) \cong \bigwedge^{g} H_{\mathscr{D}}^{1}(\xi, \mathbb{R}(k)) .
$$

If we can further prove that:

- The construction of the equivariant polylogarithm is motivic
- There are motivic version of the plectic specialization maps
- Everything is functorial, i.e. the diagrams are commutative

Then for Hecke character χ which is totally non-critical,
Conjecture \Rightarrow Beilinson conjecture for Hecke L-function of χ

Bibliography

[1] Alexander Beilinson, Guido Kings, and Andres Levin, Topological polylogarithms and p-adic interpolation of L-values of totally real fields, Math. Ann. 371 (2018), no. 3-4, 1449-1495, DOI 10.1007/s00208-018-1645-4. MR3831278
[2] Annette Huber and Guido Kings, Polylogarithm for families of commutative group schemes, J. Algebraic Geom. 27 (2018), 449-495.
[3] J. Nekovár and A. J. Scholl, Introduction to plectic cohomology, Advances in the theory of automorphic forms and their L-functions, Contemp. Math., vol. 664, Amer. Math. Soc., Providence, RI, 2016, pp. 321-337, DOI 10.1090/conm/664/13107. MR3502988
[4] Jürgen Neukirch, The Bě̆linson conjecture for algebraic number fields, Bě̆linson's conjectures on special values of L-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 193-247. MR944995

