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Background



Case for F = Q: Lerch Zeta Functions

The universal generating function for special values of Lerch zeta functions

Lerch Zeta Function
For &: root of unity in C

L 9) Z & Re(s)> 1

oo 1

> For ¢ = 1, coincides with Riemann zeta function {(s) = >, +5

> Analytic continuation to s € C, holomorphic if & # 1

Lerch zeta functions related to Dirichlet L-functions



Case for F = Q: Relation to Dirichlet L-functions

Dirichlet L-Function

N > 0: integer, y : Z/NZ — C*: primitive Dirichlet character

L=y X0
n=1

n

Fix £: primitive N-th root of unity. For ¢, (¢) :== N™' 3N _. x(m)¢é™™, we have the finite
Fourier expansion

N
x(n)= )" e (™™

m=1

for any n € Z, hence

N
L(x:8) = ) e (m)LE™,s)
m=1



Case for F = Q: Universal Generating Function
Let

G(t) = ——

Theorem (Classical)

For any N > 1 and non-trivial N-th root of unity & € C*, we have
— kG L& —k keN
t ) t ‘ . } €
( it (1) t=g 63 )

In other words, G(t) knows all the Lerch zeta values for ALL non-trivial roots of unity & at
ANY non-positive integer

> G(t): rational function on Gy,

ot
» Roots of unity & are the torsion points of G,

> (tg): algebraic differential



Universal Generating Function for More General Number Fields

» F=Q (Classical)

t

Lerch Zeta Value Gnm G(t) = 1-¢

» F: Imaginary Quadratic Field (Robert 1973, Coates-Wiles 1977, B— Kobayashi 2010)

0 t
Eisenstein-Kronecker Number EXE (5o
0(s)o(t)
» F: Totally Real Field (Today)
Generalized Lerch Zeta Function T Shintani Generating Class

» F: CM Field and its Extension(Kings-Sprang, arXiv:1912.03657)

Generalized Eisenstein-Kronecker Number A x AV Eisenstein-Kronecker Class



Totally Real Field

» Eisenstein Series
Siegel-Klingen,
Deligne-Ribet (1980)

» Cone Zeta Function and its Generating Function
Shintani (1976)
Barsky (1978), Cassou-Nogues (1979)

» FEisenstein Cocycle
Sczech (1993), Solomon (1998,1999), Hu—Solomon (2001), Hill (2007), Speiss
(2014), Charollois-Dasgupta (2014), Charollois-Dasgupta-Greenberg (2015).. . .

» Topological Polylogarithm
Blottiere (2008),
Beilinson-Kings-Levin (2018)
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Part I: Generalized Algebraic Torus



Algebraic Torus

» F: Totally Real Field, Or: Ring of Integers, g := [F: Q]
» a: Fractional Ideal of F.

Definition (Algebraic Torus)

T := Homz(a, Gp)

> Affine algebraic group over Z, VZ-algebra R T(R) = Homz(a, RX)
E:a— RX Ela+a’) = Ea)é(a’) Va,a’ € a

Parameterizes additive characters

» Used by N. Katz in "Another Look at p-Adic L-Functions for Totally Real Fields"
Mathematische Annalen (1981)



Affine Scheme

Explicit Description
T® = SpecZ[t* | a € a]
t9Y = 9% Va0’ €a
a1,...,aq: Z-basisofa = Z[tY | @ € a] = Z[t*", ..., 7]
a non-canonical

Case F=Qanda=2

T? := Homz(Z, Gp) = G



Uniformization
» Leta* =a~ "', where d: different of F

Uniformization

(F ®g C)/a* = T%C) = Homg(a, ©)
U s fu(a) — e27riTr(ua)

> Tr(ua) =Y, qura®™ I =Hom(F,R) o  =71(a) u=W;)eFQC=]][.C

* Similarity to CM Elliptic Curve Case

C/a* 5 E(C)



Case F=Q
Uniformization
(FeoC)/a* =  T%C) = Homg(a,C)
u — fu(a) — e27riTr(ua)

for the case F = Q and a = Z given for T? = G, as

C/Z =  Gp(C)=HomzZ C

u — fu(a’) — e27riua



Equivariance
» FL={xeF|tx)>0Vrel}
> A=0F =79 group of totally positive units (A = {1} if F = Q)

Ve e A
(g): T* - T°
map induced by t* — t*% gives action on T* = SpecZ[t* | @ € a}

(equivalent to action given by multiplication by € on a in T* = Homz(a, C))

(£): T(C) » T(C)

&(a) — &% (a) = é(ea) Va € a

Equivariant action of A on T*



Equivariance: Generalized

> FX: group of totally positive elements in F

Vx € FY
(x): T > T°

map induced by t* - *¢

(x): T%(C) - T%(C)

&(a) > () = &(xa)
Map from T to T¢
Idea: Take All Choices



Generalized Algebraic Torus

Definition (Generalized Algebraic Torus)

3J: group of all non-zero fractional ideals of F

T::UT“

aeI

The map (x): T** — T for all x € F} gives action

x): T—>T

Equivariant action of FX on T



Quotient Stack

We will consider the Equivariant Polylogarithm on T, which may be regarded as the
Polylogarithm on the quotient stack T = T/FZX

@€: fractional ideals representing narrow class group CI£(1)

T = T/F = (]_[ TC‘)/ij = | [er/a)

ae aeC

Isomorphic to finite sum of quotient stacks of form T°/A
> ClZ(1) :=J3/Ps
> Py ={(x) [ x € F{}



Torsion Points
For an integral ideal g € OF, we define the group of g-torsion points by

T%[g] := Homz(a/ga, G) — T = Homz(a, Gy,)

We let
Tlo] == | [T'[s].  Zla] := Tlal/F}

aeI

For any integral ideal b C Of, the inclusion ab C a induces T* — T, which induces maps

p(d): T—T, p(0): T[g] — T[g],

Lemma (B—, Hagihara, Yamada, Yamamoto)

p gives a transitive action of CI£(g) on T [g]

> Cli(@) :=3/P(0),  Pi(a):={(B)| B =1mod*g}
> Note: Class Field Theory Cl£(g) = Gal(F(g)/F)



Question

* Similarity to CM Elliptic Curve Case (Rough)
» K: imaginary quadratic field
» ae3J, E" CM elliptic curve defined over K(1), CMina

&= (] |e)ms  &lol= ([ |E°Mal) /K"

aeI aeI

Construction similar to that of p gives the action of Hecke character on & and &[g]

Theory of Complex Multiplication
Action of p = Action of Gal(K?? /K) on torsion points

Question: Is there some way to equip 7~ with a F-structure so that 7 [g] has a natural
action of Gal(F(g)/F), which is compatible with the action of p?



Part II: Equivariant Polylogarithm Class
Work in Progress



Casefor F=Q

The cohomology
A = H'(Gp(C),R)Y =R(1)

has a Hodge structure of pure weight 2.

Definition (The Logarithm Sheaf)

The Logarithm Sheaf is a certain admissible unipotent pro-variation of mixed R-Hodge
structures Log on G,(C) such that

Gr¥ Log = l_[Sykaf = HR(k)

k>0 k>0

For any torsion point ¢ € G,(C), the Logarithm sheaf satisfies the splitting principle

i;Log = l_l R(k)

k>0



Case for F = Q: The Polylogarithm Class

Let UZ := G, \ {1} =P'\ {0, 1, c0}. The residue at 1 gives a canonical isomorphism
Hlﬁ(UZ, Log) = R,

where H},(U%, Log) is the Deligne-Beilinson cohomology of U* with coefficients in Log,
given as
H, (U Log) = Ext{yys. sz (R(0). Log)

Definition (Beilinson-Deligne, Huber-Wildeshaus)
The polylogarithm class is the element
pol € H1@(UZ, Log)

which maps to 1 through the isomorphism H1@(UZ, Log) = R.



Case for F = Q: Construction is Motivic

Let UZ = Gy, \ {1} =P"\ {0, 1, c0}. By the works of Beilinson and Deligne, there exists a
motivic meaning to the sheaf Log, and the residue at 1 gives a canonical isomorphism

H} o (U%, Log) = Q,

where H! . (U%, Log) is the motivic cohomology of U with coefficients in Log. We may
define the motivic polylogarithm pol € H _ (U% Log) similarly. We have a commutative

diagram
pol € H! .(U%Log) —=Q
[ o
pol € Hlj(UZ, Log) —R,

where rg is the regulator map.



Case for F = Q: Specialization to Torsion Points

Theorem (Beilinson-Deligne, Huber-Wildeshaus)

For any torsion point & € UZ, the specialization

ii pol € HY,(¢, iz Log) = 1_[ HL (& R(K)) = ]_[ R

k=0 k>0
satisfies
iz pol = (Lik(§)k>0
Here,
: o
Li(t) = pr

n=1

is the polylogarithm function



Case for F = Q: Implications

pol (ck(£))

-
3
Hmot(U Log) ——= TTk>0 Hmot (6, R(K))

f@l lf_oz
*

HL, (U7, Log) —— [Tkso HE (&, R(K)

pol (Lik(£))

Commutativity: The polylogarithm values are the image by ry of motivic objects cx(&)

= Beilinson conjecture for Dirichlet L-functions

See for example Neukirch 1988 [4]



Motivation and Results

The construction of the polylogarithm extended from Gy, to general algebraic groups
(Huber and Kings, 2018 [2]).

Question

By considering the equivariant polylogarithm for T = [[,.5 T, can the same method be
used to attack the Beilinson conjecture for Hecke L-functions of totally real fields?

Not yet clear. We give some observations.

Our Results
» Construction of the Polylogarithm in Equivariant Deligne-Beilinson Cohomology

» Relation to Shintani Generating Class



Logarithm Sheaf

Let T = [] ey T* with action of F, and let U = [[ 5 U® for U* = T\ {1}. Let

g
Hi = H(TR)Y = (HR®),

j=1
and let 7 be the sheaf on T given by J#; on T®
Definition (The Logarithm Sheaf)

The Logarithm Sheaf is a certain F}'-equivariant admissible unipotent pro-variation of
mixed R-Hodge structures Log on T(C) such that

Gr¥ Log = 1_[ Symk #

k>0

This Logarithm sheaf also satisfies the splitting principle



Equivariant Variation of mixed R-Hodge structures

» We define a variation of mixed R-Hodge structures V on T, to be a family of variation
of mixed R-Hodge structures V = (V,),c.» on T(C)

» Itis FX-equivariant, if we fix isomorphisms ¢, forx € F anda € 3

Ux,a: <X>*Va i Vxa

satisfying standard compatibility with respect to composition
» Equivariant cohomology H™(T/FX, V) is equipped with mixed R-Hodge structure
» There exists spectral sequence

ER9 = HP(FX, H(T, V) = HP*9(T/FX, V)



Cohomology of Log, on T¢

Letg = [F: Q]
Theorem (cf. Huber-Kings)
We have

m _JR(-g) m=g
H(T,Loga)—{{o} mg

Let U* := T\ {1}. We may calculate the cohomology on U via the localizing sequence

Pppp— Hm(Ta’ II--"Oga) - Hm(U’ II--"Oga) - HI{TT; (Ta’ Loga) e

noting that
(T°. Log,) = | Tio Sym* #2)(~0) m =29
i) “ o m # 2g



Cohomology of Log, on U*"

Let U® :=T"\ {1}
Theorem (cf. Huber-Kings)
Ifg > 1, we have

R(-9) m=g
H™(U", Log,) = { ([T, Sym* 74)(-g) m=2g -1
{0} otherwise

Ifg =1, we have

R[5 oRk-1) m=1

H™ (U, Log,) = {{O} I



Equivariant Cohomology of Log on U

Calculate equivariant cohomology of Log, on U®
EX? = HP(A,HI(U%, Log,)) = HP*9(U" /A, Log,),

R(k) glk

noting that H9~'(A, R(-g)) = R(—g) and H°(A, Sym* %) =
{0}  otherwise

Theorem (B—, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)

For any g > 1, we have an exact sequence

0 — R(-g) — H*7'(U"/A, Log,) — [ |R((n—1)g) > 0

n=0

Cohomology H™(U" /A, Log,) for m < 2g — 1 vanish or have weight 2g



The Polylogarithm Class
For U = [[,e5 U*
H?97 (U/FY, Log) = @5 H*~'(U" /A, Log,)

aeC

Equivariant Deligne-Beilinson cohomology is defined to fit into the spectral sequence
ESY = Ext}ys (R(0), HI(U/FZ, Log)) = HY *(U/FX, Log)
Previous theorem gives canonical isomorphism

HY ™\ (U/FY, Log) = ] ExtYyys, (R(0), H¥7'(U/F, Log)) = (P R,
Clt(1) Clt(1)

noting that we have

@r)"™ 'R n>0

0 ~ R n=0 1 =
Extyps, (R(0), R(n)) = {{0} ns0 Extyys, (R(0), R(n)) = {{O} n<o0



The Polylogarithm Class

Our argument shows that we have a canonical isomorphism

2g9—1
H2¥"(U/F}, Log) = @ R
CIE(1)

Definition (B—, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)

We define the equivariant polylogarithm class for the generalized torus to be the element
pol € H§_1(U/Ff, Log)

which maps to (1, . . ., 1) through the isomorphism H;g_1 (U/F,Log) = @CI,’;U) R



Part III: Relation to Shintani Generating Class



Case for F = Q: Lerch Zeta Functions

The universal generating function for special values of Lerch zeta functions

Lerch Zeta Function

For ¢: root of unity in C
(0] gn
L(,s) = ;_1 s’ Re(s) > 1

co 1

> For ¢ = 1, coincides with Riemann zeta function {(s) = >/°; -5

» Analytic continuation to s € C, holomorphic if & # 1
» Since G,(C) = Homz(Z,C*), ¢ may be viewed as a character £(n) = £" forn € Z

Lerch zeta functions related to Dirichlet L-functions, and also to the polylogarithm function

L& k) = Lik(&)



Case for F = Q: Relation to Dirichlet L-functions

Dirichlet L-Function

N > 0: integer, y : Z/NZ — C*: primitive Dirichlet character

L=y X0
n=1

n

Fix £: primitive N-th root of unity. For ¢, (¢) :== N™' 3N _. x(m)¢é™™, we have the finite
Fourier expansion

N
x(n)= )" e (™™

m=1

for any n € Z, hence

N
L(x:8) = ) e (m)LE™,s)
m=1



Case for F = Q: Shintani Generating Function

Let ]
g(t) = m S HO(UZ, OUz)

Theorem (Classical)

For any N > 1 and non-trivial N-th root of unity & € C*, we have

d k
(1) 60| =L@ Kken

G(t) is the universal generating function of non-positive Lerch zeta value

Shintani Generating Class is the generalization to the case of totally real fields of G(t)



Finite Hecke Character

For a finite Hecke character
x: Clf(g) » C*

of conductor g, we may extend y by zero to a function on the group of fractional ideals 3.

Hecke L-function

Hecke L-function of y defined as

L(y.s) = Z x(a)

S
aCOF NC(

This function converges for Re(s) > 1, has analytic continuation to s € C



Case F = Q: finite Hecke character

For F =Qand g = (N) for N > 0, let
x: Clg(g) — C*
be a finite Hecke character. Let

xz(n) = x((n)), n: integer > 0,

then this defines a Dirichlet character yz: (Z/NZ)* — C*. The Hecke L-function for y
coincides with the Dirichlet L-function for y7 in this case.

N

L(x:$) = L(xz9) = ) (6™ LE™ 5)

m=1

What is the generalization of Lerch zeta function for totally real fields?



Lerch Zeta Function: General F

Definition (Our Definition of Lerch Zeta Function)

For any a € CI£(1) and finite additive character £ € T*(C) := Homz(a, C*), let

L(EA, ) = Z _¢A(@)

—
acA\ay N(a a,)s

where €A = Y ca/n, &6, Ae={e€A| &5 =¢}

Then for any finite Hecke character y : Clf(g) — C*, we have

L9 = ) Z GOLES)

aeClf(1) £€Tg]

for suitable constants ¢, (¢). Hecke L-function expressed by Lerch zeta function!



Shintani Generating Class
The Shintani Generating Class is a canonical equivariant coherent cohomology class
G(t) € H(U/F, Ov).
Differential given by 8(t%) = N(a)t® induces a differential on HY""(U/F, Orp).

Theorem (B., Hagihara, Yamada, Yamamoto)

For any integer k > 0 and any torsion point & in U(Q), we have

HI~'(U/F, Or) Gt

HI" (EA/A, Ogp) = Q&) FGO)|,_pn = LEA —K).

where iz : €A — U is equivariant with respect to the action of A.



de Rham Shintani Generating Class

There exists a natural homomorphism

HIT'(U/FY, Or) — H3 | (UJFY, Log)

obtained via wedge product with

dt™ dt®

e R o

on each open set U31,...,(xg =T\N{t" #1}U---U{t% £1})foray,...,ag €a

Definition
We define the de Rham Shintani generating class S to be the image of G(t) with respect to
the above homorphism

Caseg =1
t at

|
I
0}
I
|

Gt =

-
|
~
-
~



Main Theorem

There exists a natural injection

i HY 7 (U/FY, Log) = Hommms, (R(0), H¥9~'(U/FY, Log))

— Hi% '(U/FZ, Log)

Theorem (B—, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)

In chigR_1(U/F4>-<, Log), we have
i(pol) =S

In other words, the polylogarithm coincides wth the de Rham Shintani class

Proof: The residue of Shintani generating class is 1 at 1 on each component
% Shintani generating class is the de Rham realization of the polylogarithm class



Remark

» Beilinson-Kings-Levin ([1] 2018) gives relation between Topological Polylogarithm
and Special Values of Hecke L-functions

» Classical Polylogarithm Function
dt

_ s dt . .at
Lik+1(s) = / L'k(t)T’ L'O(t)T T1ot S
A _

de Rham Shintani generating class gives the algebraic differential which is the “start"
of the iterated integral of polylogarithm function

» We may hope that the “specialization” of the polylogarithm in this case may be related
to special values of Hecke L-functions — even in the noncritical case



Appendix: Conjectures



Specialization

For torsion & € T, there exists an equivariant inclusion iza : §A — T, which induces the
specialization

_ g _ " =1 20—
H2 ™' (U/FY, Log) = HZ " (€A/A,igyLog) = | | HZ ™' (€A/A R(gh))
k>0

PROBLEM: We have
HZ T (EA/AR(gK)) = Extfs (R(0), HI™'(£A/A, R(gk)))

which is zero for g > 1 since Ext? in the category of mixed R-Hodge structures



Specialization

IDEA: Use the category of mixed plectic R-Hodge structures M HS proposed by Nekovar
and Scholl 2016 [3]. Assuming the existence of such theory, plectlc Deligne-Beilinson
cohomology should fit into the spectral sequence

EDT = Ext"z/l st (R(0), HI(U/FZ, Log)) = HL,*(U/F, Log),

where M HS{R is the category of mixed plectic R-Hodge structures. Assuming such theory,

we may prove
HY (U/FY, Log) = HY(U/F, Log)

We have the specialization

H (U] Log) = 129 (¢8/ iz Log) = ]_[ Hog (A A R(gK))
k>0



Conjecture

We have
H T (EA/AR(g)) = Bxt], o, (R(O), O™ (EA/A R(gk))),

and we have EXti/IH . (R(0), H9~'(¢A/A, R(gk))) = R for k > 0.

Conjecture

For any torsion point & € UZ, the specialization

izppol € HZ7 (EA/A, ifLog) = ]_[ H?9 (&N /A, R(gK)) = 1_[ R
k>0 k>0

satisfies
iza POl = (LA K))k=0

This is a generalization of the result of Beilinson-Deligne for the case F = Q.



Conjecture

PO vt > (ck(£A))

mot mot/

HZY ‘(U/Fr, Log) > [Tio H €A/ A R(K))
8 o

HY" ‘<U/Fr, Log) ——> [Tkso H29 1<§A/A, R(K))

9

pol t : (L(EAK))




Conclusion

There exists an isomorphism

H29™ (EA/ A R(gk)) = A HY (£ R(K)).

If we can further prove that:
» The construction of the equivariant polylogarithm is motivic
» There are motivic version of the plectic specialization maps
» Everything is functorial, i.e. the diagrams are commutative

Then for Hecke character y which is totally non-critical,

Conjecture = Beilinson conjecture for Hecke L-function of y
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