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Background



Case for F = Q: Lerch Zeta Functions

The universal generating function for special values of Lerch zeta functions

Lerch Zeta Function
For ξ: root of unity in C

L(ξ, s) B
∞∑

n=1

ξn

ns , Re(s) > 1

I For ξ = 1, coincides with Riemann zeta function ζ(s) =
∑∞

n=1
1
ns

I Analytic continuation to s ∈ C, holomorphic if ξ , 1

Lerch zeta functions related to Dirichlet L-functions



Case for F = Q: Relation to Dirichlet L-functions
Dirichlet L-Function
N > 0: integer, χ : Z/NZ→ C×: primitive Dirichlet character

L(χ, s) B
∞∑

n=1

χ(n)
ns

Fix ξ: primitive N-th root of unity. For cχ(ξ) B N−1 ∑N
m=1 χ(m)ξ

−m, we have the finite
Fourier expansion

χ(n) =
N∑

m=1
cχ(ξm)ξmn

for any n ∈ Z, hence

L(χ, s) =
N∑

m=1
cχ(m)L(ξm, s)



Case for F = Q: Universal Generating Function
Let

G(t) B
t

1 − t

Theorem (Classical)
For any N > 1 and non-trivial N-th root of unity ξ ∈ C×, we have(

t
d
dt

)k
G(t)

���
t=ξ
L(ξ,−k), k ∈ N

In other words, G(t) knows all the Lerch zeta values for ALL non-trivial roots of unity ξ at
ANY non-positive integer

I G(t): rational function on Gm

I
(
t d

dt

)
: algebraic differential

I Roots of unity ξ are the torsion points of Gm



Universal Generating Function for More General Number Fields
I F = Q (Classical)

Lerch Zeta Value Gm G(t) =
t

1 − t

I F : Imaginary Quadratic Field (Robert 1973, Coates-Wiles 1977, B– Kobayashi 2010)

Eisenstein-Kronecker Number E × E
θ(s ⊕ t)
θ(s)θ(t)

I F : Totally Real Field (Today)

Generalized Lerch Zeta Function T Shintani Generating Class

I F : CM Field and its Extension(Kings-Sprang, arXiv:1912.03657)

Generalized Eisenstein-Kronecker Number A × A∨ Eisenstein-Kronecker Class



Totally Real Field

I Eisenstein Series
Siegel-Klingen,
Deligne-Ribet (1980)

I Cone Zeta Function and its Generating Function
Shintani (1976)
Barsky (1978), Cassou-Noguès (1979)

I Eisenstein Cocycle
Sczech (1993), Solomon (1998,1999), Hu–Solomon (2001), Hill (2007), Speiss
(2014), Charollois-Dasgupta (2014), Charollois-Dasgupta-Greenberg (2015),. . .

I Topological Polylogarithm
Blottière (2008),
Beilinson-Kings-Levin (2018)
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Part I: Generalized Algebraic Torus



Algebraic Torus
I F : Totally Real Field, OF : Ring of Integers, g := [F : Q]

I a: Fractional Ideal of F .

Definition (Algebraic Torus)

Ta B HomZ(a,Gm)

I Affine algebraic group over Z, ∀Z-algebra R Ta(R) = HomZ(a,R×)

ξ : a → R× ξ(α + α′) = ξ(α)ξ(α′) ∀α, α′ ∈ a
Parameterizes additive characters

I Used by N. Katz in "Another Look at p-Adic L-Functions for Totally Real Fields"
Mathematische Annalen (1981)



Affine Scheme

Explicit Description
Ta = SpecZ[tα | α ∈ a]

tαtα
′

= tα+α
′ ∀α, α′ ∈ a

α1, . . . , αg: Z-basis of a ⇒ Z[tα | α ∈ a] = Z[t±α1, . . . , t±αg ]

Ta
non-canonical

� Gm × · · · × Gm

Case F = Q and a = Z

TZ B HomZ(Z,Gm) = Gm



Uniformization
I Let a∗ = a−1d−1, where d: different of F

Uniformization

(F ⊗Q C)/a∗
�
−→ Ta(C) = HomZ(a,C

×)

u 7→ ξu(α) = e2π i Tr(uα)

I Tr(uα) :=
∑
τ∈I uτατ I = Hom(F,R) ατ := τ(α) u = (uτ) ∈ F ⊗ C �

∏
τ∈I C

? Similarity to CM Elliptic Curve Case

C/a∗
�
−→ E(C)



Case F = Q

Uniformization

(F ⊗Q C)/a∗
�
−→ Ta(C) = HomZ(a,C

×)

u 7→ ξu(α) = e2π i Tr(uα)

for the case F = Q and a = Z given for TZ = Gm as

C/Z
�
−→ Gm(C) = HomZ(Z,C

×)

u 7→ ξu(α) = e2π iuα



Equivariance

I F+ B {x ∈ F | τ(x) > 0 ∀τ ∈ I}
I ∆ = O×F+ � Z

g−1: group of totally positive units (∆ = {1} if F = Q)

∀ε ∈ ∆
〈ε〉 : Ta → Ta

map induced by tα 7→ tεα gives action on Ta = SpecZ[tα | α ∈ a}

(equivalent to action given by multiplication by ε on a in Ta = HomZ(a,C))

〈ε〉 : Ta(C) → Ta(C)

ξ(α) 7→ ξε(α) := ξ(εα) ∀α ∈ a
Equivariant action of ∆ on Ta



Equivariance: Generalized

I F×+ : group of totally positive elements in F

∀x ∈ F×+
〈x〉 : Txa → Ta

map induced by tα 7→ txα

〈x〉 : Txa(C) → Ta(C)

ξ(α) 7→ ξx(α) := ξ(xα)

Map from Txa to Ta

Idea: Take All Choices



Generalized Algebraic Torus

Definition (Generalized Algebraic Torus)

I: group of all non-zero fractional ideals of F

T B
∐
a∈I

Ta

The map 〈x〉 : Txa → Ta for all x ∈ F×+ gives action

〈x〉 : T→ T

Equivariant action of F×+ on T



Quotient Stack

We will consider the Equivariant Polylogarithm on T, which may be regarded as the
Polylogarithm on the quotient stack T B T/F×+

C: fractional ideals representing narrow class group Cl+F (1)

T B T/F×+ =
(∐
a∈I

Ta
)
/F×+ �

∐
a∈C

(Ta/∆)

Isomorphic to finite sum of quotient stacks of form Ta/∆

I Cl+F (1) := I/P+
I P+ := {(x) | x ∈ F×+ }



Torsion Points
For an integral ideal g ⊂ OF , we define the group of g-torsion points by

Ta[g] := HomZ(a/ga,Gm) ↪→ T
a = HomZ(a,Gm)

We let
T[g] :=

∐
a∈I

Ta[g], T [g] B T[g]/F×+

For any integral ideal b ⊂ OF , the inclusion ab ⊂ a induces Ta → Tab, which induces maps

ρ(b) : T→ T, ρ(b) : T[g] → T[g],

Lemma (B–, Hagihara, Yamada, Yamamoto)

ρ gives a transitive action of Cl+F (g) on T[g]

I Cl+F (g) := I/P+(g), P+(g) := {(β) | β ≡ 1mod× g}

I Note: Class Field Theory Cl+F (g) � Gal(F(g)/F)



Question

? Similarity to CM Elliptic Curve Case (Rough)
I K : imaginary quadratic field
I a ∈ I, Ea: CM elliptic curve defined over K (1), CM in a

E =
(∐
a∈I

Ea
)
/K×, E[g] =

(∐
a∈I

Ea[g]
)
/K×

Construction similar to that of ρ gives the action of Hecke character on E and E[g]

Theory of Complex Multiplication

Action of ρ ⇔ Action of Gal(Kab/K) on torsion points

Question: Is there some way to equip T with a F-structure so that T[g] has a natural
action of Gal(F(g)/F), which is compatible with the action of ρ?



Part II: Equivariant Polylogarithm Class
Work in Progress



Case for F = Q
The cohomology

H B H1(Gm(C),R)
∨ = R(1)

has a Hodge structure of pure weight 2.

Definition (The Logarithm Sheaf)
The Logarithm Sheaf is a certain admissible unipotent pro-variation of mixed R-Hodge
structures Log on Gm(C) such that

GrW
• Log �

∏
k≥0

Symk H �
∏
k≥0
R(k)

For any torsion point ξ ∈ Gm(C), the Logarithm sheaf satisfies the splitting principle

i∗ξLog �
∏
k≥0
R(k)



Case for F = Q: The Polylogarithm Class

Let UZ B Gm \ {1} = P1 \ {0, 1,∞}. The residue at 1 gives a canonical isomorphism

H1
D (U

Z,Log) � R,

where H1
D (U

Z,Log) is the Deligne-Beilinson cohomology of UZ with coefficients in Log,
given as

H1
D (U

Z,Log) = Ext1
VMHSR(UZ)

(R(0),Log)

Definition (Beilinson-Deligne, Huber-Wildeshaus)
The polylogarithm class is the element

pol ∈ H1
D (U

Z,Log)

which maps to 1 through the isomorphism H1
D (U

Z,Log) � R.



Case for F = Q: Construction is Motivic

Let UZ B Gm \ {1} = P1 \ {0, 1,∞}. By the works of Beilinson and Deligne, there exists a
motivic meaning to the sheaf Log, and the residue at 1 gives a canonical isomorphism

H1
mot(U

Z,Log) � Q,

where H1
mot(U

Z,Log) is the motivic cohomology of UZ with coefficients in Log. We may
define the motivic polylogarithm pol ∈ H1

mot(U
Z,Log) similarly. We have a commutative

diagram
pol_

��

∈ H1
mot(U

Z,Log)

rD
��

� // Q

��
pol ∈ H1

D (U
Z,Log)

� // R,

where rD is the regulator map.



Case for F = Q: Specialization to Torsion Points

Theorem (Beilinson-Deligne, Huber-Wildeshaus)
For any torsion point ξ ∈ UZ, the specialization

i∗ξ pol ∈ H1
D (ξ, i

∗
ξLog) �

∏
k≥0

H1
D (ξ,R(k)) �

∏
k>0
R

satisfies
i∗ξ pol = (Lik(ξ))k>0

Here,

Lik(t) =
∞∑

n=1

tn

nk

is the polylogarithm function



Case for F = Q: Implications

pol � // (ck(ξ))

H1
mot(U

Z,Log)

rD
��

i∗ξ //∏
k>0 H1

mot(ξ,R(k))

rD
��

H1
D (U

Z,Log)
i∗ξ //∏

k>0 H1
D (ξ,R(k))

pol � // (Lik(ξ))

Commutativity: The polylogarithm values are the image by rD of motivic objects ck(ξ)

⇒ Beilinson conjecture for Dirichlet L-functions

See for example Neukirch 1988 [4]



Motivation and Results

The construction of the polylogarithm extended from Gm to general algebraic groups
(Huber and Kings, 2018 [2]).

Question
By considering the equivariant polylogarithm for T =

∐
a∈I T

a , can the same method be
used to attack the Beilinson conjecture for Hecke L-functions of totally real fields?

Not yet clear. We give some observations.

Our Results
I Construction of the Polylogarithm in Equivariant Deligne-Beilinson Cohomology
I Relation to Shintani Generating Class



Logarithm Sheaf
Let T =

∐
a∈I T

a with action of F×+ , and let U =
∐
a∈I Ua for Ua = Ta \ {1}. Let

Ha B H1(Ta,R)∨ =

g⊕
j=1
R(1),

and let H be the sheaf on T given by Ha on Ta

Definition (The Logarithm Sheaf)
The Logarithm Sheaf is a certain F×+ -equivariant admissible unipotent pro-variation of
mixed R-Hodge structures Log on T(C) such that

GrW
• Log �

∏
k≥0

Symk H

This Logarithm sheaf also satisfies the splitting principle



Equivariant Variation of mixed R-Hodge structures

I We define a variation of mixed R-Hodge structures V on T, to be a family of variation
of mixed R-Hodge structures V = (Va)a∈I on Ta(C)

I It is F×+ -equivariant, if we fix isomorphisms ιx,a for x ∈ F×+ and a ∈ I

ιx,a : 〈x〉∗Va
�
−→ Vxa

satisfying standard compatibility with respect to composition
I Equivariant cohomology Hm(T/F×+ ,V) is equipped with mixed R-Hodge structure
I There exists spectral sequence

Ep,q
2 = Hp(F×+ ,H

q(T,V)) ⇒ Hp+q(T/F×+ ,V)



Cohomology of Loga on Ta

Let g = [F : Q]

Theorem (cf. Huber-Kings)
We have

Hm(Ta,Loga) =

{
R(−g) m = g
{0} m , g

Let Ua := T \ {1}. We may calculate the cohomology on U via the localizing sequence

· · · → Hm(Ta,Loga) → Hm(U,Loga) → Hm+1
{1} (T

a,Loga) → · · ·

noting that

Hm
{1}(T

a,Loga) =

{(∏∞
k=0 Sym

k Ha

)
(−g) m = 2g

0 m , 2g



Cohomology of Loga on Ua

Let Ua := Ta \ {1}

Theorem (cf. Huber-Kings)
If g > 1, we have

Hm(Ua,Loga) =


R(−g) m = g(∏∞

k=0 Sym
k Ha

)
(−g) m = 2g − 1

{0} otherwise

If g = 1, we have

Hm(Ua,Loga) =

{
R(−1) ⊕

∏∞
k=0 R(k − 1) m = 1

{0} m , 1



Equivariant Cohomology of Log on U

Calculate equivariant cohomology of Loga on Ua

Ep,q
2 = Hp(∆,Hq(Ua,Loga)) ⇒ Hp+q(Ua/∆,Loga),

noting that Hg−1(∆,R(−g)) = R(−g) and H0(∆, Symk Ha) =

{
R(k) g |k
{0} otherwise

Theorem (B–, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)
For any g ≥ 1, we have an exact sequence

0→ R(−g) → H2g−1(Ua/∆,Loga) →
∞∏

n=0
R((n − 1)g) → 0

Cohomology Hm(Ua/∆,Loga) for m < 2g − 1 vanish or have weight 2g



The Polylogarithm Class
For U =

∐
a∈I Ua

H2g−1(U/F×+ ,Log) �
⊕
a∈C

H2g−1(Ua/∆,Loga)

Equivariant Deligne-Beilinson cohomology is defined to fit into the spectral sequence

Ep,q
2 = Extp

MHSR
(R(0),Hq(U/F×+ ,Log)) ⇒ Hp+q

D
(U/F×+ ,Log)

Previous theorem gives canonical isomorphism

H2g−1
D
(U/F×+ ,Log) �

⊕
Cl+F (1)

Ext0
MHSR

(R(0),H2g−1(U/F×+ ,Log)) �
⊕
Cl+F (1)

R,

noting that we have

Ext0
MHSR

(R(0),R(n)) �

{
R n = 0
{0} n , 0

Ext1
MHSR

(R(0),R(n)) �

{
(2πi)n−1R n > 0
{0} n ≤ 0



The Polylogarithm Class

Our argument shows that we have a canonical isomorphism

H2g−1
D
(U/F×+ ,Log) �

⊕
Cl+F (1)

R

Definition (B–, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)
We define the equivariant polylogarithm class for the generalized torus to be the element

pol ∈ H2g−1
D
(U/F×+ ,Log)

which maps to (1, . . . , 1) through the isomorphism H2g−1
D
(U/F×+ ,Log) �

⊕
Cl+F (1)

R



Part III: Relation to Shintani Generating Class



Case for F = Q: Lerch Zeta Functions
The universal generating function for special values of Lerch zeta functions

Lerch Zeta Function
For ξ: root of unity in C

L(ξ, s) B
∞∑

n=1

ξn

ns , Re(s) > 1

I For ξ = 1, coincides with Riemann zeta function ζ(s) =
∑∞

n=1
1
ns

I Analytic continuation to s ∈ C, holomorphic if ξ , 1
I Since Gm(C) = HomZ(Z,C

×), ξ may be viewed as a character ξ(n) = ξn for n ∈ Z

Lerch zeta functions related to Dirichlet L-functions, and also to the polylogarithm function

L(ξ, k) = Lik(ξ)



Case for F = Q: Relation to Dirichlet L-functions
Dirichlet L-Function
N > 0: integer, χ : Z/NZ→ C×: primitive Dirichlet character

L(χ, s) B
∞∑

n=1

χ(n)
ns

Fix ξ: primitive N-th root of unity. For cχ(ξ) B N−1 ∑N
m=1 χ(m)ξ

−m, we have the finite
Fourier expansion

χ(n) =
N∑

m=1
cχ(ξm)ξmn

for any n ∈ Z, hence

L(χ, s) =
N∑

m=1
cχ(m)L(ξm, s)



Case for F = Q: Shintani Generating Function

Let
G(t) B

t
1 − t

∈ H0(UZ,OUZ)

Theorem (Classical)
For any N > 1 and non-trivial N-th root of unity ξ ∈ C×, we have(

t
d
dt

)k

G(t)
���
t=ξ
= L(ξ,−k), k ∈ N

G(t) is the universal generating function of non-positive Lerch zeta value

Shintani Generating Class is the generalization to the case of totally real fields of G(t)



Finite Hecke Character

For a finite Hecke character
χ : Cl+F (g) → C

×

of conductor g, we may extend χ by zero to a function on the group of fractional ideals I.

Hecke L-function
Hecke L-function of χ defined as

L(χ, s) B
∑
a⊂OF

χ(a)

Nas

This function converges for Re(s) > 1, has analytic continuation to s ∈ C



Case F = Q: finite Hecke character

For F = Q and g = (N) for N > 0, let

χ : Cl+Q(g) → C
×

be a finite Hecke character. Let

χZ(n) B χ((n)), n: integer > 0,

then this defines a Dirichlet character χZ : (Z/NZ)× → C×. The Hecke L-function for χ
coincides with the Dirichlet L-function for χZ in this case.

L(χ, s) = L(χZ, s) =
N∑

m=1
cχZ(ξ

m)L(ξm, s)

What is the generalization of Lerch zeta function for totally real fields?



Lerch Zeta Function: General F

Definition (Our Definition of Lerch Zeta Function)
For any a ∈ Cl+F (1) and finite additive character ξ ∈ Ta(C) B HomZ(a,C

×), let

L(ξ∆, s) B
∑

α∈∆\a+

ξ∆(α)

N(a−1α)s

where ξ∆ :=
∑
ε∈∆/∆ξ

ξε , ∆ξ = {ε ∈ ∆ | ξ
ε = ξ}

Then for any finite Hecke character χ : Cl+F (g) → C
×, we have

L(χ, s) =
∑

a∈Cl+F (1)

∑
ξ ∈Ta[g]/∆

cχ(ξ)L(ξ∆, s)

for suitable constants cχ(ξ). Hecke L-function expressed by Lerch zeta function!



Shintani Generating Class
The Shintani Generating Class is a canonical equivariant coherent cohomology class

G(t) ∈ Hg−1(U/F×+ ,OU).

Differential given by ∂(tα) = N(α)tα induces a differential on Hg−1(U/F×+ ,OT).

Theorem (B., Hagihara, Yamada, Yamamoto)
For any integer k ≥ 0 and any torsion point ξ in U(Q), we have

Hg−1(U/F×+ ,OT)

i∗ξ
��

∂kG(t)

Hg−1(ξ∆/∆,Oξ∆) = Q(ξ) ∂kG(t)
��
t=ξ∆ = L(ξ∆,−k),

where iξ : ξ∆→ U is equivariant with respect to the action of ∆.



de Rham Shintani Generating Class
There exists a natural homomorphism

Hg−1(U/F×+ ,OT) → H2g−1
dR
(U/F×+ ,Log)

obtained via wedge product with

dtα1

tα1
∧ · · · ∧

dtαg

tαg

on each open set Ua
α1,...,αg

:= Ta \ ({tα1 , 1} ∪ · · · ∪ {tαg , 1}) for α1, . . . , αg ∈ a

Definition
We define the de Rham Shintani generating class S to be the image of G(t) with respect to
the above homorphism

Case g = 1

G(t) =
t

1 − t
7→ S =

dt
1 − t



Main Theorem

There exists a natural injection

i : H2g−1
D
(U/F×+ ,Log)

�
−→ HomMHSR(R(0),H

2g−1(U/F×+ ,Log))

↪→ H2g−1
dR
(U/F×+ ,Log)

Theorem (B–, Bekki, Hagihara, Ohshita, Yamada, Yamamoto)
In H2g−1

dR
(U/F×+ ,Log), we have

i(pol) = S

In other words, the polylogarithm coincides wth the de Rham Shintani class

Proof: The residue of Shintani generating class is 1 at 1 on each component
※ Shintani generating class is the de Rham realization of the polylogarithm class



Remark

I Beilinson-Kings-Levin ([1] 2018) gives relation between Topological Polylogarithm
and Special Values of Hecke L-functions

I Classical Polylogarithm Function

Lik+1(s) =
∫ s

0
Lik(t)

dt
t
, Li0(t)

dt
t
=

dt
1 − t

= S

de Rham Shintani generating class gives the algebraic differential which is the “start"
of the iterated integral of polylogarithm function

I We may hope that the “specialization" of the polylogarithm in this case may be related
to special values of Hecke L-functions – even in the noncritical case



Appendix: Conjectures



Specialization

For torsion ξ ∈ T, there exists an equivariant inclusion iξ∆ : ξ∆→ T, which induces the
specialization

H2g−1
D
(U/F×+ ,Log)

i∗
ξ∆

−−→ H2g−1
D
(ξ∆/∆, i∗ξ∆Log) �

∞∏
k>0

H2g−1
D
(ξ∆/∆,R(gk))

PROBLEM: We have

H2g−1
D
(ξ∆/∆,R(gk)) = Extg

MHSR
(R(0),Hg−1(ξ∆/∆,R(gk)))

which is zero for g > 1 since Extg in the category of mixed R-Hodge structures



Specialization

IDEA: Use the category of mixed plectic R-Hodge structuresMHSI
R proposed by Nekovar

and Scholl 2016 [3]. Assuming the existence of such theory, plectic Deligne-Beilinson
cohomology should fit into the spectral sequence

Ep,q
2 = Extp

MHSI
R

(R(0),Hq(U/F×+ ,Log)) ⇒ Hp+q
D I (U/F

×
+ ,Log),

where MHSI
R is the category of mixed plectic R-Hodge structures. Assuming such theory,

we may prove
Hp+q

D
(U/F×+ ,Log) � Hp+q

D I (U/F
×
+ ,Log)

We have the specialization

H2g−1
D I (U/F

×
+ ,Log)

i∗
ξ∆

−−→ H2g−1
D I (ξ∆/∆, i

∗
ξ∆Log) �

∞∏
k>0

H2g−1
D I (ξ∆/∆,R(gk))



Conjecture

We have
H2g−1

D I (ξ∆/∆,R(gk)) = Extg
MHSI

R

(R(0),Hg−1(ξ∆/∆,R(gk))),

and we have Extg
MHSI

R

(R(0),Hg−1(ξ∆/∆,R(gk))) � R for k > 0.

Conjecture
For any torsion point ξ ∈ UZ, the specialization

i∗ξ∆ pol ∈ H2g−1
D
(ξ∆/∆, i∗ξLog) �

∏
k≥0

H2g−1
D I (ξ∆/∆,R(gk)) �

∏
k>0
R

satisfies
i∗ξ∆ pol = (L(ξ∆, k))k>0

This is a generalization of the result of Beilinson-Deligne for the case F = Q.



Conjecture

pol � // (ck(ξ∆))

H2g−1
mot (U/F

×
+ ,Log)

rD
��

i∗
ξ∆ //∏

k>0 H2g−1
motI (ξ∆/∆,R(k))

rD
��

H2g−1
D
(U/F×+ ,Log)

i∗
ξ∆ //∏

k>0 H2g−1
D I (ξ∆/∆,R(k))

pol � ? // (L(ξ∆, k))



Conclusion

There exists an isomorphism

H2g−1
D I (ξ∆/∆,R(gk)) �

g∧
H1

D (ξ,R(k)).

If we can further prove that:
I The construction of the equivariant polylogarithm is motivic
I There are motivic version of the plectic specialization maps
I Everything is functorial, i.e. the diagrams are commutative

Then for Hecke character χ which is totally non-critical,

Conjecture⇒ Beilinson conjecture for Hecke L-function of χ
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