Dynamics of continued fractions and distribution of modular inverses (in progress)

Hae-Sang Sun (UNIST)
Joint with Jungwon Lee

$$
2021 \text { Dec. 10, }
$$

PANT-Kyoto 2021 (RIMS, Online)

Contents

(1) Elementary Problem
(2) Tauberian Argument
(3) Dynamical Approach
(4) Dolgopyat's Estimate
(5) Interval Version

A classical problem

Conjecture (folklore)

Let $\varepsilon>0$. For a prime $p \gg 1$ and any integer a, there exist integers x, y such that $|x|,|y|<p^{\frac{1}{2}+\varepsilon}$ and $x y \equiv a(\bmod p)$.

- It is known (Garaev for prime p, Khan-Shparlinski for composite p) that such x, y exist with $|x|,|y| \ll p^{\frac{3}{4}}$.
- The results are based mainly on the Weil bound of Kloosterman sums.
- It is an open problem to improve the exponent $3 / 4$.

A classical problem : Special Case

- Let $(n, m)=1$ and \bar{m} the modular inverse of m modulo n.
- For an integer $n \geq 1$ and a real number $0<x<n$, set

$$
R(n, x):=\#\{1 \leq m \leq n \mid(m, n)=1,1 \leq \bar{m} \leq x\} .
$$

Conjecture (folklore)

For a prime p, the number $R\left(p, p^{1 / 2+\epsilon}\right)>0$ for any $\epsilon>0$.

- It is well-known that

$$
R\left(p, p^{3 / 4+\epsilon}\right) \gg p^{1 / 2+\epsilon} .
$$

- It is an open problem to improve the exponent $3 / 4$.

For $0<\beta<1$, we want to study an average sum of the form

$$
\sum_{Q<n<M} R\left(n, n^{\beta}\right)
$$

Theorem

There is a β such that

$$
\sum_{-M-\epsilon)<n<M} R\left(n, n^{\beta+\epsilon}\right) \gg M^{1+\beta}
$$

- Hence, we can say on average that

$$
" R\left(n, n^{\beta+\epsilon}\right) \gg n^{\beta+\epsilon} "
$$

Research in progress

Question

How much is β close to $\frac{1}{2}$?

- We introduce a dynamical approach to study the problem.
- Investigate spectral properties of generalized Perron-Frobenius transfer operator \mathcal{L}_{s}.
- The exponent β is related to the spectral gap and eigenvalue of \mathcal{L}_{s}.
- Set $\Sigma_{n}:=\left\{\left.\frac{m}{n} \right\rvert\, 1 \leq m<n,(m, n)=1\right\}$.
- For $r=\frac{m}{n} \in \Sigma_{n}$, set

$$
r^{*}=\frac{\bar{m}}{n} \in \Sigma_{n} .
$$

For $n \leq M$,

$$
R\left(n, n^{\beta}\right) \geq R\left(n, \frac{n}{M^{1-\beta}}\right)=\sum_{r \in \Sigma_{n}} \mathbb{I}_{\left(0, \frac{1}{M^{1-\beta}}\right)}\left(r^{*}\right) .
$$

Hence, we have

$$
\sum_{Q<n<M} R\left(n, n^{\beta}\right) \geq \sum_{Q<n<M} \sum_{r \in \Sigma_{n}} \mathbb{I}_{\left(0, \frac{1}{M^{1-\beta}}\right)}\left(r^{*}\right) .
$$

Smooth approximation of interval

Let Ψ_{M} be an inner smooth approximation of $\mathbb{I}_{\left(0, \frac{1}{M^{1-\beta}}\right)}$ with

- $\Psi_{M} \leq \mathbb{I}_{\left(0, \frac{1}{M^{1-\beta}}\right)}$,
- $\left\|\Psi_{M}\right\|_{L^{1}} \asymp \frac{1}{M^{1-\beta}}$, and
- $\left\|\Psi_{M}^{\prime}\right\|_{\infty} \ll M^{1-\beta}$.

Generating functions

Then,

$$
\sum_{Q<n<M} R\left(n, n^{\beta}\right) \geq \sum_{Q<n<M} \sum_{r \in \Sigma_{n}} \Psi_{M}\left(r^{*}\right) .
$$

- For a function Ψ on the interval, consider a Dirichlet series

$$
L_{\Psi}(s):=\sum_{n \geq 1} \frac{\sum_{r \in \Sigma_{n}} \Psi\left(r^{*}\right)}{n^{s}}
$$

- Need to study the behavior of this generating function.
- Apply Tauberian argument.

Contents

(1) Elementary Problem
(2) Tauberian Argument
(3) Dynamical Approach
4. Dolgopyat's Estimate
(5) Interval Version

- Let $F(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$.
- σ_{a} : the abscissa of absolute convergence of $F(s)$.

Theorem

For all $D>\sigma_{a}$, one has

$$
\begin{aligned}
\sum_{n \leq M} a_{n}=\frac{1}{2 \pi i} & \int_{D-i T}^{D+i T} F(s) \frac{M^{s}}{s} d s \\
& +O\left(\frac{M^{D}|F|(D)}{T}+\frac{A(M) M \log M}{T}+A(M)\right)
\end{aligned}
$$

where

$$
|F|(\sigma)=\sum_{n \geq 1} \frac{\left|a_{n}\right|}{n^{\sigma}}
$$

for $\sigma>\sigma_{a}$ and $a_{n}=O(A(n))$ with $A(n)$ being non-decreasing.

Properties of L_{Ψ}

- Set $I=(0,1)$.
- For $t>0$ and $\Psi \in C^{1}(I)$, set

$$
\|\Psi\|_{(t)}:=\|\Psi\|_{\infty}+\frac{\left\|\Psi^{\prime}\right\|_{\infty}}{t}
$$

Proposition

For any $0<\xi<\frac{1}{5}$, we can find $0<\alpha_{0}=\alpha_{0}(\xi) \leq \frac{1}{2}$ with the following properties: for any $\Psi \in C^{1}(I)$,
(1) $L_{\Psi}(2 s)$ has only a simple pole at $s=1$ in the strip $|\Re s-1| \leq \alpha_{0}$.
(2) In the strip $|\Re s-1| \leq \alpha_{0}$,

$$
\left|L_{\Psi}(2 s)\right| \ll \max \left(1,|t|^{\xi}\right)\|\Psi\|_{(t)}
$$

with $t=\Im s$ and $\Psi \in C^{1}(I)$.

- The exponent ξ and constant α_{0} are related to the spectral gap and eigenvalue of a generalized Perron-Frobenius transfer operator.

Applying Tauberian argument, we obtain:

Proposition

There exist constants $0<\delta<2, \kappa>0$ such that for all $\Psi \in C^{1}(I)$, we have

$$
\sum_{n \leq M} \sum_{r \in \Sigma_{n}} \Psi\left(r^{*}\right)=\|\Psi\|_{L^{1}} M^{2}+O\left(M^{\delta}\|\Psi\|_{\left(M^{\kappa}\right)}\right)
$$

The implicit constant, δ, and κ are independent of Ψ.

- Two constants δ and κ are related to the spectral gap and eigenvalue.

We have shown that

$$
\sum_{n<M} \sum_{r \in \Sigma_{n}} \Psi_{M}\left(r^{*}\right)=\left\|\Psi_{M}\right\|_{L^{1}} M^{2}+O\left(M^{\delta}\left\|\Psi_{M}\right\|_{\left(M^{\kappa}\right)}\right)
$$

and

$$
\sum_{n<Q} \sum_{r \in \Sigma_{n}} \Psi_{M}\left(r^{*}\right)=\left\|\Psi_{M}\right\|_{L^{1}} Q^{2}+O\left(Q^{\delta}\left\|\Psi_{M}\right\|_{\left(Q^{\kappa}\right)}\right)
$$

Setting $Q=M\left(1-M^{-\epsilon}\right)$, we have

$$
M^{2}-Q^{2} \asymp M^{2-\epsilon}
$$

Hence

$$
\sum_{Q<n<M} \sum_{r \in \Sigma_{n}} \Psi_{M}\left(r^{*}\right) \gg M^{\beta-1} M^{2-\epsilon}+O\left(M^{\delta} M^{1-\beta-\kappa}\right)
$$

Setting $\beta=\frac{\delta-\kappa}{2}+\epsilon$, we get the statement.

Contents

(1) Elementary Problem
(2) Tauberian Argument
(3) Dynamical Approach

44 Dolgopyat's Estimate
(5) Interval Version

- For $r \in \mathbb{Q} \cap I$, set

$$
r=\left[0 ; m_{1}, m_{2}, \cdots, m_{\ell}\right]
$$

with $\ell=\ell(r)$, the length of the expansion.

- Set

$$
\frac{P_{i}}{Q_{i}}:=\left[0 ; m_{1}, m_{2}, \ldots, m_{i}\right]
$$

- Recall the Gauss map

$$
T(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor
$$

- Then, $T(r)=\left[0 ; m_{2}, \cdots, m_{\ell}\right]$.

Perron-Frobenius Transfer operator

- (T, I) is an ergodic system with the invariant measure $\frac{d x}{\log 2(1+x)}$.
- The Perron-Frobenius transfer operator for T is

$$
\mathcal{L} \Psi(x)=\sum_{n \geq 1} \frac{1}{(n+x)^{2}} \Psi\left(\frac{1}{n+x}\right)
$$

where $\Psi \in L^{\infty}(I)$.

- On $C^{1}(I)$, the operator \mathcal{L} has the simple dominant eigenvalue 1 , of which the eigenfunction is $\Psi_{0}(x)=\frac{1}{1+x}$.
- There is a spectral gap for \mathcal{L}.

Generalized Perron-Frobenius Transfer operator

- Let $s=\sigma+i t$.
- For $x \in I, \Re(s)>\frac{1}{2}$, and $\Psi \in L^{\infty}(I)$, define a transfer operator

$$
\mathcal{L}_{s} \Psi(x)=\sum_{m \geq 1} \frac{1}{(m+x)^{2 s}} \Psi\left(\frac{1}{m+x}\right) .
$$

- And set

$$
\mathcal{F}_{s} \Psi(x)=\sum_{m \geq 2} \frac{1}{(m+x)^{2 s}} \Psi\left(\frac{1}{m+x}\right) .
$$

- When $\sigma \sim 1$, the spectral properties of \mathcal{L}_{σ} is same as $\mathcal{L}=\mathcal{L}_{1}$.
- By Perturbation theory, one can obtain the spectral properties of \mathcal{L}_{s} when σ is near 1 .

Iteration of \mathcal{L}_{s}

It can be proved that

- $\mathcal{L}_{s}^{n} \mathcal{F}_{s} \Psi(0)=\sum_{\substack{\ell(r)=n+1 \\ r \in Q n+1}} \Psi\left(\frac{Q_{\ell-1}}{Q_{\ell}}\right) \frac{1}{Q_{\ell}(r)^{2 s}}$.
- Note: $r^{*}=\left\{\begin{array}{ll}\frac{Q_{\ell-1}}{Q_{\ell}} & \text { if } \ell=\ell(r) \text { is odd } \\ 1-\frac{Q_{\ell-1}}{Q_{\ell}} & \text { if } \ell \text { is even }\end{array}\right.$.
- Define

$$
\mathcal{J} \Psi(x):=\Psi(1-x) .
$$

Key relation for L_{Ψ}
Note that

$$
\begin{aligned}
L_{\Psi}(s) & =\sum_{n \geq 1} \frac{\sum_{r \in \Sigma_{n}} \Psi\left(r^{*}\right)}{n^{s}} \\
& =\sum_{r \in \mathbb{Q} \cap I} \frac{\Psi\left(r^{*}\right)}{Q(r)^{s}}
\end{aligned}
$$

Theorem

For $\Psi \in L^{1}(I)$ and $\Re(s)>\frac{1}{2}$, we obtain

$$
\begin{aligned}
L_{\Psi}(2 s) & =\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{F}_{s} \Psi(0)+\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{L}_{s} \mathcal{F}_{s} \mathcal{J} \Psi(0) \\
& =\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{M}_{s} \Psi(0)
\end{aligned}
$$

where $\mathcal{M}_{s}:=\mathcal{F}_{s}+\mathcal{F}_{s} \mathcal{J}$.

Contents

(1) Elementary Problem
(2) Tauberian Argument
(3) Dynamical Approach
(4) Dolgopyat's Estimate
(5) Interval Version

Spectral Properties of \mathcal{L}_{s}

A (incomplete) list of the spectral properties of \mathcal{L}_{s} is:

- \mathcal{L}_{σ} has a unique dominant eigenvalue $\lambda(\sigma)$ of maximal modulus, which is real and simple.
- There is a spectral gap for \mathcal{L}_{σ}.
- The eigenvalue $\lambda(s)$ of \mathcal{L}_{s} is analytic for s with $\sigma \sim 1$
- $\lambda(1)=1$.

Restrict the operators on the space $C^{1}(I)$.

Theorem (Characteristic of a dominant eigenvalue)

$\left(\mathcal{I}-\mathcal{L}_{s}\right)^{-1}$ has a unique simple pole at $s=1$ in a fixed critical strip.

Behavior of the quasi-inverse

Theorem (Dolgopyat)

For each $0<\xi<\frac{1}{5}$, there exists $\alpha_{0}>0$ such that if $|\sigma-1| \leq \alpha_{0}$, then for all $|t| \gg 1$ and all n, one has

$$
\left\|\mathcal{L}_{s}^{n}\right\|_{(t)} \ll|t|^{\xi} \gamma^{n}
$$

for some $0<\gamma<1$.

- ξ is related to the spectral gap of $\mathcal{L}=\mathcal{L}_{1}$.
- α_{0} is determined by an explicit behavior of $\lambda(s)$ near $s=1$.
(1) Determine explicitly the spectral gap of \mathcal{L}.
(2) Investigate the explicit behavior of $\lambda(s)$ near 1 .

Contents

(1) Elementary Problem
(2) Tauberian Argument

3 Dynamical Approach

4 Dolgopyat's Estimate
(5) Interval Version

Consider a variant of the problem: For an interval $J \subseteq I$, estimate

$$
R_{J}(n, x):=\#\left\{1 \leq m \leq n \left\lvert\, \frac{m}{n} \in J\right., m \in R(n, x)\right\} .
$$

One possible approach is to study:

$$
L_{\Psi, J}:=\sum_{r \in J \cap \mathbb{Q}} \frac{\Psi\left(r^{*}\right)}{Q(r)^{2 s}} .
$$

Basic idea:

- When $r \in J$, the first few digits of continued fraction expansions of r are completely determined and there is no restriction on the remaining digits.

Open fundamental intervals

For integers $m_{1}, \cdots, m_{n} \geq 1$, denote an open fundamental interval of depth n by

$$
K\left(m_{1}, \cdots, m_{n}\right):=\left\{\left[0 ; m_{1}, \cdots, m_{n}+x\right] \mid 0<x<1\right\} .
$$

- The end points of $K=K\left(m_{1}, \cdots, m_{n}\right)$ are $\frac{P_{n}}{Q_{n}}$ and $\frac{P_{n}+P_{n-1}}{Q_{n}+Q_{n-1}}$.
- The length is $|K|=\frac{1}{Q_{n}\left(Q_{n}+Q_{n-1}\right)} \asymp \frac{1}{Q_{n}^{2}}$.
- $r \in K$ if and only if the first n digits of r are m_{1}, \cdots, m_{n} (with no restriction on the remaining digits).

Decomposing an interval J

Let \mathfrak{A}_{n} be the collection of open fundamental intervals defined inductively as follows:

- Let \mathfrak{A}_{1} be the collection of (consecutive) open fundamental intervals of depth 1 that are included in J.
- Let \mathfrak{A}_{j} be defined for $1 \leq j \leq n$. Then, \mathfrak{A}_{n+1} is the collection of open fundamental intervals of depth $n+1$ that are included in

$$
J \backslash \bigcup_{j=1}^{n} \bigcup_{K \in \mathfrak{A}_{j}} K
$$

- Let $a<b$ be the end points of J.
- Let $\left[0 ; u_{1}, u_{2}, \cdots\right]$ and $\left[0 ; v_{1}, v_{2}, \cdots\right]$ be the (possibly finite) continued fraction expansions of a and b, respectively.

Proposition

When n is even and sufficiently large,
$\mathfrak{A}_{n}=\left\{K\left(u_{1}, \cdots, u_{n-1}, k\right) \mid k \geq u_{n}+1\right\} \cup\left\{K\left(v_{1}, \cdots, v_{n-1}, k\right) \mid 1 \leq k \leq v_{n}\right\}$
and when n is odd and sufficiently large,
$\mathfrak{A}_{n}=\left\{K\left(u_{1}, \cdots, u_{n-1}, k\right) \mid 1 \leq k \leq u_{n}\right\} \cup\left\{K\left(v_{1}, \cdots, v_{n-1}, k\right) \mid k \geq v_{n}+1\right\}$.

- Set

$$
\mathfrak{A}^{ \pm}=\bigcup_{(-1)^{n}= \pm 1} \mathfrak{A}_{n} .
$$

An operator for K

Definition

For $K=K\left(m_{1}, \cdots, m_{n}\right)$, define

$$
\mathcal{D}_{s}^{K} \Psi(x):=\frac{1}{Q_{n}\left(m_{1}, \cdots, m_{n}+x\right)^{2 s}} \Psi\left(\frac{P_{n}\left(m_{n}, \cdots, m_{1}+x\right)}{Q_{n}\left(m_{n}, \cdots, m_{1}+x\right)}\right)
$$

Obvious but crucial observations are:

- When $K \in \mathfrak{A}^{+}$,

$$
\mathcal{D}_{s}^{K}\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{M}_{s} \Psi(0)=\sum_{r \in \mathbb{Q} \cap K} \frac{\Psi\left(r^{*}\right)}{Q(r)^{2 s}} .
$$

- When $K \in \mathfrak{A}^{-}$,

$$
\mathcal{D}_{s}^{K}\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{M}_{s} \mathcal{J} \Psi(0)=\sum_{r \in \mathbb{Q} \cap K} \frac{\Psi\left(r^{*}\right)}{Q(r)^{2 s}} .
$$

Definition of interval operators

Definition

Define

$$
\begin{aligned}
\mathcal{D}_{s}^{J, \pm} & =\sum_{K \in \mathfrak{A}^{ \pm}} \mathcal{D}_{s}^{K} \\
\mathcal{D}_{s}^{J} & =\mathcal{D}_{s}^{J,+}+\mathcal{D}_{s}^{J,-}
\end{aligned}
$$

Proposition

Let $\frac{p_{n}}{q_{n}}$ and $\frac{P_{n}}{Q_{n}}$ be the n-th convergents of the end points of J, respectively. Then

$$
\left\|\mathcal{D}_{s}^{J, \pm}\right\|_{\infty} \ll \sum_{K \in \mathfrak{A}^{ \pm}}|K|^{\sigma} \ll \frac{1}{2 \sigma-1} \sum_{n \geq 1} \frac{1}{q_{n}^{2 \sigma}}+\frac{1}{Q_{n}^{2 \sigma}}
$$

- For $\Psi \in L^{\infty}(I)$, the series $\mathcal{D}_{s}^{J, \pm} \Psi(x)$ is absolutely convergent for $\Re s>\frac{1}{2}$.

Expression for Dirichlet series

Theorem

$$
\begin{aligned}
L_{\Psi, J}(2 s)=\mathcal{D}_{s}^{J} \Psi(0) & +\mathcal{D}_{s}^{J,+}\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{M}_{s} \Psi(0) \\
& +\mathcal{D}_{s}^{J,-}\left(\mathcal{I}-\mathcal{L}_{s}^{2}\right)^{-1} \mathcal{M}_{s} \mathcal{J} \Psi(0) .
\end{aligned}
$$

Properties of Dirichlet series

Proposition

With the same data as before,
(1) The series $L_{\Psi, J}(2 s)$ has only a simple pole at $s=1$ in the strip $|\Re s-1| \leq \alpha_{0}$ and its residue $E_{\Psi, J}$ satisfying

$$
E_{\Psi, J}=|J| \cdot\|\Psi\|_{L^{1}}
$$

(2) In the strip $|\Re s-1| \leq \alpha_{0}$, we have

$$
\left|L_{\Psi, J}(2 s)\right| \ll\left(\left\|\mathcal{D}_{s}^{J,+}\right\|_{\infty}+\left\|\mathcal{D}_{s}^{J,-}\right\|_{\infty}\right) \max \left(1,|t|^{\xi}\right)\|\Psi\|_{(t)}
$$

with $t=$ §s.
The implicit constants are independent of J and Ψ.

Thanks for your attention!

