Period Relations for Standard L-functions of Symplectic Type

Fangyang Tian

Zhejiang University tianfangyangmath@zju.edu.cn

December, 2021

Overview

- Examples and Motivations
- 2 Automorphic L-Function for GL_n
- Preliminaries and Dictionary
- 4 Main Theorem
- Proof of the Theorem
- 6 What's Next?

Results of Leibniz and Euler

• Leibniz (1674):

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^{(n \mod 2)}}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \cdots$$

• Euler (1734, published in 1740):

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots;$$

$$\frac{\pi^4}{90} = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots;$$

Results of Leibniz and Euler

• Euler (1734, published in 1740):

$$\frac{\pi^2}{8} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^3}{32} = \sum_{n=0}^{\infty} \frac{(-1)^{(n \mod 2)}}{(2n+1)^3} = \frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \cdots$$

$$\frac{\pi^4}{96} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$$

$$\frac{5\pi^5}{1536} = \sum_{n=0}^{\infty} \frac{(-1)^{(n \mod 2)}}{(2n+1)^5} = \frac{1}{1^5} - \frac{1}{3^5} + \frac{1}{5^5} - \cdots$$

Classical Way from Calculus

Find a suitable 'generating function' and do Fourier expansion.

Example

One can study the Fourier expansion of $\frac{\pi-x}{2}$ and get the Leibniz series.

Riemann Zeta Function and Dirichlet L-Function

B. Riemann (1859):

$$\zeta(s) := \sum_{n=1}^{+\infty} \frac{1}{n^s} = \prod_{\text{prime } p} (1 - p^{-s})^{-1}.$$

P. Dirichlet (1837):

$$L(s,\chi) = \sum_{n=1}^{+\infty} \frac{\chi(n)}{n^s} = \prod_{\text{prime } p} (1 - \chi(p)p^{-s})^{-1},$$

where χ is a Dirichlet character modulo N.

Analytic Property

Absolute convergence for $\mathrm{Re}(s)>1$; meromorphic continuation to $s\in\mathbb{C}$; functional equation relating s and 1-s.

- 4日ト4個ト4階ト4階ト 階 90

Reformulation of Leibniz's and Euler's Results

Theorem

- $\zeta(2k)$ $(k=1,2,3\cdots)$ are rational multiples of π^{2k} .
- For the even primitive Dirichlet character χ modulo 4, $L(2k,\chi)$ $(k=1,2,3,\cdots)$ are rational multiples of π^{2k} .
- For the odd primitive Dirichlet character χ modulo 4, $L(2k-1,\chi)$ $(k=1,2,3,\cdots)$ are rational multiples of π^{2k-1} .

Special Values of Dirichlet *L*-function

• $L(1-k,\chi)=-rac{B_{k,\chi}}{k}.$ Here $B_{k,\chi}$ are generalized Bernoulli numbers defined by

$$\sum_{j=1}^{N} \chi(j) \cdot \frac{te^{jt}}{e^{Nt} - 1} = \sum_{k=0}^{\infty} B_{k,\chi} \cdot \frac{t^k}{k!}.$$

• Then one has the special values $L(k,\chi)$ via functional equation of $L(s,\chi)$. Guass sum will show up then.

4□ > 4₫ > 4½ > ½ > ½
 9

Modular Forms

- k: positive integer
- χ : Dirichlet character modulo N, $\chi(-1) = (-1)^k$.
- Modular form of weight k and level N:

$$f(\gamma.z) = \chi(d)(cz+d)^k f(z)$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ runs over the group

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}.$$

Cusp Form and Fourier Expansion

- $f(z) = \sum_{n=-m}^{+\infty} a_n e^{2\pi i n z}$
- holomorphic modular form: $f(z) = \sum_{n=0}^{+\infty} a_n e^{2\pi i n z}$
- cusp form: $f(z) = \sum_{n=1}^{+\infty} a_n e^{2\pi i n z}$.

Examples

• Given a complex number τ with ${\rm Im} \tau > 0$, the holomorphic Eisenstein series

$$E_{2k}(z) := \sum_{(m,n)\in\mathbb{Z}^2 - \{(0,0)\}} \frac{1}{(m+n\tau)^{2k}}$$

is a holomorphic modular form of weight 2k $(k \ge 2)$.

• Set $q=e^{2\pi iz}$. The modular discriminant (Ramanujan)

$$\Delta(z) := q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

is a cusp form of weight 12.

4□ > 4□ > 4 = > 4 = > = 90

G. Shimura's Work on GL_2

Dictionary

- $S_k(N,\chi)$: space of cusp forms of weight k and level N.
- $f(z) \in S_k(N,\chi)$, Fourier expansion $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$.
- $\sigma \in \operatorname{Aut}(\mathbb{C})$, $f^{\sigma}(z) := \sum_{n=1}^{\infty} a_n^{\sigma} e^{2\pi i n z}$
- ullet ψ : another primitive Dirichlet character.
- $\mathcal{G}(\psi)$: Gauss sum.
- Set 'the L-function' $L(s, f \otimes \psi) := \sum_{n=1}^{\infty} \psi(n) a_n n^{-s}$. This is the $D(s, f, \psi)$ in Shimura's paper (1976).

G. Shimura's Work on GL_2

We formulate a 'version' of Shimura's theorems on the scenario of GL_2 .

Theorem (Shimura (1976, 1978))

There exists $\Omega_{f^{\sigma}} \in \mathbb{C}^{\times}$ such that

$$\sigma(\frac{L(j, f \otimes \psi)}{(2\pi i)^j \cdot \mathcal{G}(\psi) \cdot \Omega_f}) = \frac{L(j, f^{\sigma} \otimes \psi^{\sigma})}{(2\pi i)^j \cdot \mathcal{G}(\psi^{\sigma}) \cdot \Omega_{f^{\sigma}}}$$

for all positive integers j < k and all ψ such that $\psi_{\infty}(-1) = (-1)^{j}$.

A Corollary

Corollary

Set $\mathbb{Q}(f)$ to be the field generated by all Fourier coefficients a_n and \mathbb{Q} ; $\mathbb{Q}(\psi)$ to be field generated by all $\psi(n)$ and \mathbb{Q} . Define $\mathbb{Q}(f,\psi):=\mathbb{Q}(f)\mathbb{Q}(\psi)$. Then exists $\Omega_f\in\mathbb{C}^\times$ such that

$$\frac{L(j, f \otimes \psi)}{(2\pi i)^j \cdot \mathcal{G}(\psi) \cdot \Omega_f} \in \mathbb{Q}(f, \psi)$$

for all positive integers j < k and all ψ such that $\psi_{\infty}(-1) = (-1)^{j}$.

What's next?

- Cusp form $f \leftrightarrow$ cuspidal representation Π .
- L-function: Shimura's $L(s,f\otimes\psi)\leftrightarrow$ usual automorphic L-function $L(s-\frac{1}{2},\Pi\otimes\psi).$
- \bullet Π_{∞} is a discrete series, hence cohomological.

Study the higher degree L-function via cohomology method.

Automorphic L-Function for GL_m

- k: number field
- A: ring of adeles
- $\Pi = \hat{\otimes}'_{\nu} \Pi_{\nu}$: irreducible smooth automorphic representation of $\operatorname{GL}_m(\mathbb{A})$.
- r: a finite dimensional representation of $\mathrm{GL}_m(\mathbb{C})$, the dual group of GL_m .
- Complete automorphic L-function

$$L(s,\Pi,r) := \prod_{\nu} L_{\nu}(s,\Pi_{\nu},r).$$

Analytic Properties of Standard L-Function

Theorem (Tate (1950) for m=1; Godement-Jacquet (1972) for m>1)

Let χ be an automorphic character of $k^{\times} \backslash \mathbb{A}^{\times}$. Then $L(s, \Pi \otimes \chi)$ satisfies the following properties:

- $L(s,\Pi\otimes\chi)$ has a meromorphic continuation to $s\in\mathbb{C}$ (holomorphic when m>1)
- It satisfies the functional equation

$$L(s,\Pi\otimes\chi)=\epsilon(s,\Pi\otimes\chi)L(1-s,\Pi^\vee\otimes\chi^{-1}).$$

4□ > 4□ > 4 = > 4 = > = 90

Langlands Reciprocity Conjecture for GL_n

Langlands Reciprocity Conjecture

There exists a one-to-one correspondence between irreducible motives over k of rank m with coefficients in $\overline{\mathbb{Q}}$ and irreducible algebraic cuspidal automorphic representations of $\mathrm{GL}_m(\mathbb{A})$, which respects L-functions.

Deligne Conjecture

Deligne Conjecture (1979)

Let M be a critical motive over a number field k, with coefficients in a number field E. Let $c^+ \in E \otimes \mathbb{C}$ be the determinant of the period map, which is defined up to multiplication by E^\times . Then we have $\frac{L(0,M)}{c^+} \in E$.

In this talk, we aim to attack the analogue of Deligne's Conjecture for automorphic L-function (due to D. Blasius, 1997).

Essentially Self-Dual Representations

It is expected that most motives are essentially self-dual, hence we consider irreducible algebraic cuspidal automorphic representation Π which is essentially self-dual in the sense that

$$\Pi^{\vee} \simeq \Pi \otimes \eta^{-1}$$

for some automorphic character $\eta: F^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$.

Essentially Self-Dual Representations

$$\Pi^{\vee} \simeq \Pi \otimes \eta^{-1} \to \begin{cases} L(s, \Pi, \operatorname{Sym}^2 \otimes \eta^{-1}) \text{ has a simple pole at } s = 1\\ L(s, \Pi, \bigwedge^2 \otimes \eta^{-1}) \text{ has a simple pole at } s = 1 \end{cases}$$

Only focus on the second case.

Twisted Exterior Square L-function

Theorem (Jacquet-Shalika (1988), Asgari-Shahidi (2006,2011), Hundley-Sayag (2009))

$$L(s,\Pi,\bigwedge^2\otimes\eta^{-1})$$
 has a simple pole at $s=1$
 $\Leftrightarrow \Pi$ has a nonzero (η,ψ) -Shalika period
 $\Leftrightarrow m=2n$ and Π is a functorial transfer from GSpin_{2n+1} .

If so, the transfer respects local L-parameter at each archimedean local places.

Shalika Subgroup

- \bullet $G := \operatorname{GL}_{2n}$
- S: Shalika subgroup of G,

$$S := \left\{ \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \begin{pmatrix} 1_n & x \\ 0 & 1_n \end{pmatrix} \mid h \in \mathrm{GL}_n, x \in \mathrm{Mat}_n \right\}.$$

- Z_{2n} : center of G
- ψ : non-trivial unitary character of $k \setminus A$.
- $\eta \otimes \psi$: character of $S(\mathbb{A})$,

$$(\eta \otimes \psi)(\begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \begin{pmatrix} 1_n & x \\ 0 & 1_n \end{pmatrix}) = \eta(\det h)\psi(\operatorname{Tr}(x)).$$

Global Shalika Period

Definition

We say that an irreducible cuspidal automorphic representation Π of $G(\mathbb{A})$ has a nonzero (η,ψ) -Shalika period if its central character equals η^n , and there exists $\varphi\in\Pi$ such that

$$\int_{Z_{2n}(\mathbb{A})S(\mathbf{k})\backslash S(\mathbb{A})} \varphi(g)(\eta\otimes\psi)^{-1}(g)dg\neq 0.$$

Archimedean Local Langlands Correspondence for GL_m

- K: an archimedean local field.
- $\mathcal{E}_{\mathbb{K}}$: the set of continuous field embeddings of \mathbb{K} into \mathbb{C} .
- ullet $W_{\mathbb K}$: the Weil group of $\mathbb K$

$$W_{\mathbb{K}} := \left\{ \begin{array}{ll} \overline{\mathbb{K}}^{\times} \sqcup \mathbf{j} \cdot \overline{\mathbb{K}}^{\times}, & \text{if } \mathbb{K} \simeq \mathbb{R}; \\ \mathbb{K}^{\times}, & \text{if } \mathbb{K} \simeq \mathbb{C}, \end{array} \right.$$

Theorem (Special Case of Langlands 1989)

One-to-one correspondence:

 $\{irreducible\ Casselman-Wallach\ representations\ of\ \mathrm{GL}_m(\mathbb{K})\}/\sim$

 $\leftrightarrow \{\textit{completely reducible }m\textit{-dimensional representations of }W_{\mathbb{K}}\}/\sim$

Critical Places

Definition

- Let $\Pi_{\mathbb{K}}$ be an algebraic irreducible Casselman-Wallach representation of $\mathrm{GL}_m(\mathbb{K})$. A number in $\frac{m-1}{2} + \mathbb{Z}$ is called a **critical place** for $\Pi_{\mathbb{K}}$ if it is not a pole of the local L-function $L(s,\Pi_{\mathbb{K}})$ or $L(1-s,\Pi_{\mathbb{K}}^{\vee})$.
- Given an algebraic irreducible cuspidal automorphic representation $\Pi = \widehat{\otimes}'_{\nu} \Pi_{\nu}$ of $\mathrm{GL}_m(\mathbb{A})$, a number in $\frac{m-1}{2} + \mathbb{Z}$ is called a critical place for Π if it is a critical place for Π_{ν} for all $\nu \mid \infty$.

Regular Algebraic Representations of $W_{\mathbb{K}}$

- $\mathcal{E}_{\overline{\mathbb{K}}} = \{\iota, \overline{\iota}\}.$
- Every completely reducible finite dimensional representation ρ of $\overline{\mathbb{K}}^{\times}$ has the form

$$\iota^{a_1}\bar{\iota}^{b_1} \oplus \iota^{a_2}\bar{\iota}^{b_2} \oplus \cdots \oplus \iota^{a_m}\bar{\iota}^{b_m}, \quad (m \ge 0, \ a_i, b_i \in \mathbb{C}, \ a_i - b_i \in \mathbb{Z}),$$

where $\iota^a \bar{\iota}^b$ is the character

$$z \mapsto (\iota(z))^{a-b} (\iota(z)\overline{\iota}(z))^b,$$

of $\overline{\mathbb{K}}^{\times}$, for all $a, b \in \mathbb{C}$ with $a - b \in \mathbb{Z}$.

Regular Algebraic Representations of $W_{\mathbb{K}}$

Definition

- Representation ρ of $\overline{\mathbb{K}}^{\times}$ is **algebraic**: if all a_i 's and b_i 's are integers.
- Representation ρ of $\overline{\mathbb{K}}^{\times}$ is **regular**: if a_i 's are pairwise distinct, and b_i 's are also pairwise distinct.
- A completely reducible finite dimensional representation ρ of the Weil group $W_{\mathbb{K}}$ is algebraic (or regular): if so is $\rho|_{\overline{\mathbb{K}}^{\times}}$.

Regular Algebraic Representations of GL_m

Definition

- An irreducible Casselman-Wallach representation $\Pi_{\mathbb{K}}$ of $\mathrm{GL}_m(\mathbb{K})$ is said to be **algebraic** (or **regular**) if so is the Langlands parameter of $\Pi_{\mathbb{K}} \otimes |\det|_{\mathbb{K}}^{\frac{1-m}{2}}$.
- An irreducible cuspidal automorphic representation $\Pi = \widehat{\otimes}'_{\nu} \Pi_{\nu}$ of $\mathrm{GL}_m(\mathbb{A})$ is said to be **algebraic** (or **regular**) if so is Π_{ν} for all $\nu \mid \infty$.

Theorem of L. Clozel

Theorem (Clozel (1990))

Let $\Pi=\Pi_f\otimes\Pi_\infty$ be an irreducible regular algebraic cuspidal representation of GL_m . Then Π_∞ is essentially tempered, and cohomological in the following sense: there is a unique irreducible finite dimensional algebraic representation F of $\mathrm{GL}_m(\Bbbk\otimes_\mathbb{Q}\mathbb{C})$, called the **coefficient system** of Π , such that the total continuous cohomology

$$\mathrm{H}_{\mathrm{ct}}^*(\mathrm{GL}_m(\mathbb{A}_\infty)^0;\Pi_\infty\otimes F^\vee)\neq 0.$$

Cohomological Repn of Symplectic Type

Dictionary:

- K: archimedean local field.
- $\Pi_{\mathbb{K}}$: essentially tempered cohomological representation of $G_{\mathbb{K}}:=\mathrm{GL}_{2n}(\mathbb{K})$ of symplectic type.
- $F_{\mathbb{K}} = \otimes_{\iota \in \mathcal{E}_{\mathbb{K}}} F_{\iota}$: coefficient system.
- Highest weight of F_{ι} :

$$\nu_{\iota} = (\nu_1^{\iota} \ge \nu_2^{\iota} \ge \dots \ge \nu_{2n}^{\iota}) \in \mathbb{Z}^{2n}$$

Proposition

There exist integers $\{w_{\iota}\}_{{\iota}\in\mathcal{E}_{\mathbb{K}}}$ such that

$$\nu_1^{\iota} + \nu_{2n}^{\iota} = \nu_2^{\iota} + \nu_{2n-1}^{\iota} = \dots = \nu_{2n}^{\iota} + \nu_1^{\iota} = w_{\iota} \quad \text{for all } \iota \in \mathcal{E}_{\mathbb{K}}.$$

31 / 56

Balanced Coefficient System

Definition

For an integer j, we say that the coefficient system $F_{\mathbb{K}}=\otimes_{\iota\in\mathcal{E}_{\mathbb{K}}}F_{\iota}$ is j-balanced if

$$\operatorname{Hom}_{\operatorname{GL}_n(\mathbb{C})\times\operatorname{GL}_n(\mathbb{C})}(F_{\iota}^{\vee},\det^{j}\otimes\det^{-j-w_{\iota}})\neq 0$$
 for all $\iota\in\mathcal{E}_{\mathbb{K}}$.

We say the coefficient system $F_{\mathbb{K}}$ is **balanced** if it is j-balanced for some integer j.

- Balanced coefficient system ⇒ existence of critical place.
- \bullet In many cases, for example when k has at least one real place, critical place \Rightarrow balanced coefficient system.
- ullet For the coefficient system of the global representation Π , we can define balanceness in the same way.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

Notations and Assumptions

- Π : irreducible regular algebraic cuspidal representation of $\mathrm{GL}_{2n}(\mathbb{A})$ (hence cohomological).
- ullet Assume that the coefficient system of Π is balanced.
- $\frac{1}{2} + j \in \frac{1}{2} + \mathbb{Z}$: an arbitrary critical place of Π (existence is guaranteed).
- $\mathbb{Q}(\Pi) = \mathbb{Q}(\Pi_f)$ rationality field of Π in the sense of L.Clozel. Number field.
- η : automorphic character of $\mathbf{k}^{\times} \backslash \mathbb{A}^{\times}$ such that $L(s, \Pi, \bigwedge^2 \otimes \eta^{-1})$ has a simple pole at s=1.
- ullet $\mathbb{Q}(\eta)$: rationality field of η . This is a number field, since η is algebraic.

Notations and Assumptions

- sgn: the unique nontrivial quadratic character for a Lie group with two connected components.
- χ : an arbitrary automorphic character $k^{\times} \backslash \mathbb{A}^{\times}$ of finite order such that $\chi_{\nu} = \operatorname{sgn}^{j}$ for every real place ν of k.
- $\mathbb{Q}(\chi)$: rationality field of χ . This is a number field.
- $\mathbb{Q}(\Pi, \chi, \eta) := \mathbb{Q}(\Pi)\mathbb{Q}(\eta)\mathbb{Q}(\chi)$. This is a number field.
- ullet $\mathcal{G}(\chi)$: Guass sum.

Statement of the Main Theorem

Theorem (Jiang-Sun-Tian, Preprint (2021))

There exists a nonzero complex number Ω_Π such that

$$\frac{L(\frac{1}{2}+j,\Pi\otimes\chi)}{\mathrm{i}^{jn\cdot[\mathbf{k}:\mathbb{Q}]}\cdot\mathcal{G}(\chi)^n\cdot\Omega_\Pi}\in\mathbb{Q}(\Pi,\eta,\chi),$$

for every critical place $\frac{1}{2} + j$ and every such χ .

Reference: arXiv:1909.03476.

Comparison to other people's related work

- For fixed critical place + totally real field, the theorem is proved by Ash-Ginzburg (1994) and Grobner-Raghuram (2014)
- Assuming a key ingredient 'uniform cohomological test vector' + toally real field: F. Januszewski (preprint, 2018).

Ingredients of the Proof

- Friedberg-Jacquet Integral.
- Archimedean period relation.
- Non-archimedean period relation.
- Non-vanishing hypothesis.

Key and breakthrough: Existence of uniform cohomological test vector.

Global Friedberg-Jacquet Integral (1993)

- \bullet Π has an (η, ψ) -Shalika model.
- $H := \left\{ \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \mid h_1, h_2 \in GL_n \right\} \simeq GL_n \times GL_n.$
- Global Friedberg Jacquet Integral $Z(\varphi_{\Pi}, s, \chi, \eta)$:

$$\int_{Z_{2n}(\mathbb{A})H(\mathbf{k})\backslash H(\mathbb{A})} \varphi_{\Pi}(\begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}) |\frac{\det g_1}{\det g_2}|^{s-\frac{1}{2}} \chi(\frac{\det g_1}{\det g_2}) \eta^{-1}(\det g_2) dg_1 dg_2.$$

Factorization of Friedberg-Jacquet Integral

• Euler Product:

$$\begin{split} &Z(\varphi_{\Pi}, s, \chi, \eta) \\ &= \prod_{\nu} Z_{\nu}(\mathcal{S}_{\varphi_{\nu}}, s, \chi_{\nu}) \\ &:= \prod_{\nu} \int_{\mathrm{GL}_{n}(\mathbf{k}_{\nu})} \mathcal{S}_{\varphi_{\nu}} \begin{pmatrix} g & 0 \\ 0 & 1_{n} \end{pmatrix} \chi_{\nu}(\det g) |\det g|_{\nu}^{s-\frac{1}{2}} dg \end{split}$$

Local Friedberg-Jacquet Integral

• Define local Friedberg-Jacquet integral for a local representation Π_{ν} of $G(\mathbf{k}_{\nu})$:

$$Z_{\nu}(v, s, \chi_{\nu}) := \int_{\mathrm{GL}_{n}(\mathbf{k}_{\nu})} \langle \lambda_{\nu}, \Pi_{\nu}(\begin{pmatrix} g & 0 \\ 0 & 1_{n} \end{pmatrix}) v \rangle \chi_{\nu}(\det g) |\det g|_{\nu}^{s - \frac{1}{2}} dg$$

• $\lambda_{\nu} \in \operatorname{Hom}_{S(k_{\nu})}(\Pi_{\nu}, \eta_{\nu} \otimes \psi_{\nu})$ is a non-zero Shalika functional. (Uniqueness Theorem by F. Chen and B. Sun (2019))

Analytic Properties of Local Friedberg-Jacquet Integral

Theorem (Friedberg-Jacquet (1993); Aizenbud-Gourevitch-Jacquet (2009))

- $Z_{\nu}(v,s,\chi_{\nu})$ converges absolutely for $\mathrm{Re}(s)$ sufficiently large.
- Meromorphic continuation to a function $s \in \mathbb{C}$ which is a holomorphic multiple of $L(s, \Pi_{\nu} \otimes \chi_{\nu})$.

Define normalized local Friedberg-Jacquet integral

$$Z_{\nu}^{\circ}(v,s,\chi_{\nu}) := \frac{1}{L(s,\Pi_{\nu} \otimes \chi_{\nu})} Z_{\nu}(v,s,\chi_{\nu}).$$

Existence of Uniform Cohomological Test Vector

Dictionary:

- \bullet ν : archimedean local place.
- Π_{ν} : essentially tempered cohomological representation of $G_{\nu}:=\mathrm{GL}_{2n}(\mathbf{k}_{\nu})$ of symplectic type.
- F_{ν} : coefficient system.
- K_{ν} : standard maximal compact subgroup of G_{ν} .
- τ_{ν} : the unique minimal K_{ν} -type of Π_{ν} (by a theorem of D. Vogan (1984)).
- $\xi_{\chi_{\nu}} := (\chi_{\nu} \circ \det) \otimes ((\chi_{\nu}^{-1} \cdot \eta_{\nu}^{-1}) \circ \det)$, character of H_{ν} .
- $C_{\nu} := H_{\nu} \cap K_{\nu}$, the maximal compact subgroup of H_{ν} .

Existence of Uniform Cohomological Test Vector

Theorem (Jiang-Sun-Tian, Preprint)

There exists a vector $v \in \tau_{\nu}$ such that $Z_{\nu}^{\circ}(v, s, \chi_{\nu}) = 1$ for all $s \in \mathbb{C}$.

Remark

A weaker version was proved by B. Sun (2019) when ν is real.

Proof

- Construct another integral $\Lambda_{\nu}(v,s,\chi_{\nu})$ at local archimedean places (via orbit method) and find uniform cohomological test vector for this integral (Chen-Jiang-Lin-Tian 2020 real case; Lin-Tian 2020 complex case)
- Identify $\Lambda_{\nu}(v,s,\chi_{\nu})$ with local Friedberg-Jacquet integral (Jiang-Sun-Tian Preprint).

December, 2021

Non-vanishing Hypothesis of Archimedean Modular Symbol

Dictionary:

- $\mathbb{K} = \mathbf{k}_{\nu}$.
- $\frac{1}{2} + j \in \frac{1}{2} + \mathbb{Z}$: critical place.
- $\xi_{\nu,j} := \bigotimes_{\iota \in \mathcal{E}_{\mathbb{K}}} (\det^{j} \otimes \det^{-j-w_{\iota}}).$
- $\lambda_{F_{\nu},j} \in \operatorname{Hom}_{H_{\nu}}(F_{\nu}^{\vee} \otimes \xi_{\nu,j}^{\vee}, \mathbb{C}) \{0\}.$
- sgn_{ν} : non-trivial quadratic character of \mathbb{K}^{\times} in the real case; trivial character in the complex case.
- $Z_{\nu}^{\circ}(\cdot, \frac{1}{2} + j, \operatorname{sgn}_{\nu}^{j}) \in \operatorname{Hom}_{H_{\nu}}(\Pi_{\nu} \otimes \xi_{\nu,j}, \mathbb{C})$, normalized local Friedberg-Jacquet integral.
- d_{ν} : dimension of the modular symbol.

$$d_{\nu} := \begin{cases} n^2 + n - 1, & \text{if } \mathbb{K} \simeq \mathbb{R}; \\ 2n^2 - 1, & \text{if } \mathbb{K} \simeq \mathbb{C}. \end{cases}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Non-vanishing Hypothesis of Archimedean Modular Symbol

Define archimedean modular symbol:

$$\mathcal{P}_{\nu,j} : H^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G_{\nu}^{0}; \Pi_{\nu} \otimes F_{\nu}^{\vee})
\to H^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash H_{\nu}^{0}; \Pi_{\nu} \otimes F_{\nu}^{\vee})
= H^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash H_{\nu}^{0}; (\Pi_{\nu} \otimes \xi_{\nu,j}) \otimes (F_{\nu}^{\vee} \otimes \xi_{\nu,j}^{\vee}))
\to H^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash H_{\nu}^{0}; \mathbb{C}),$$

- first arrow: restriction of cohomology.
- last arrow: induced by $Z_{\nu}^{\circ}(\,\cdot\,,\frac{1}{2}+j,\mathrm{sgn}_{\nu}^{j})\otimes\lambda_{F_{\nu},j}.$

Non-vanishing Hypothesis of Archimedean Modular Symbol

Theorem (Sun (2019); Jiang-Sun-Tian, Preprint (2019))

The archimedean modular symbol

$$\mathcal{P}_{\nu,j}: \mathrm{H}^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G_{\nu}^{0}; \Pi_{\nu}\otimes F_{\nu}^{\vee}) \to \mathrm{H}^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash H_{\nu}^{0}; \mathbb{C})$$

is nonzero.

Proof

Existence of uniform cohomological test vector + Sun's technique for non-vanishing hypothesis in the real case.

Remark

As complex places are involved, this is the first case that does not have a 'degree match' condition.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (

Archimedean Period Relations

Theorem (Jiang-Sun-Tian, Preprint)

Under suitable normalization of $\lambda_{F_{\nu},j}$, there exists $\epsilon_{\nu} \in \{\pm 1\}$ such that the linear map

$$\epsilon_{\nu}^{j} \cdot \mathrm{i}^{-jn \cdot [\mathbb{K}:\mathbb{R}]} \cdot \mathcal{P}_{\nu,j} : \mathrm{H}^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times} \backslash G_{\nu}^{0}; \Pi_{\nu} \otimes F_{\nu}^{\vee}) \to \mathrm{H}^{d_{\nu}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times} \backslash H_{\nu}^{0}; \mathbb{C})$$

is independent of the critical place $\frac{1}{2} + j$.

Key: existence of uniform cohomological test vectors.

Non-archimedean Period Relations

Now ν is non-archimedean.

Theorem (Jiang-Sun-Tian, Preprint)

There exists a unique $\mathbb{Q}(\Pi_{\nu}, \eta_{\nu})$ -rational structure on the G_{ν} -module Π_{ν} with the following property: for all $s \in \frac{1}{2} + \mathbb{Z}$, the linear functional

$$\mathcal{G}(\chi_{\nu})^n \cdot Z_{\nu}^{\circ}(\cdot, s, \chi_{\nu}) : \Pi_{\nu} \otimes \xi_{\chi_{\nu}, s - \frac{1}{2}} \to \mathbb{C}$$

is non-zero and defined over $\mathbb{Q}(\Pi_{\nu}, \eta_{\nu}, \chi_{\nu})$.

Non-archimedean Period Relations

By combining all non-archimedean local places, we have a $\mathbb{Q}(\Pi_f, \eta_f)$ -rational structure on Π_f . The linear functional

$$\mathcal{G}(\chi_f)^n \cdot Z_f^{\circ}(\cdot, \frac{1}{2} + j, \chi_f) : \Pi_f \otimes \xi_{\chi_f, j} \to \mathbb{C}$$

is nonzero and defined over $\mathbb{Q}(\Pi_f, \eta_f, \chi_f)$.

Rational Structure of Cohomology Groups

Proposition

There exists a unique $\mathbb{Q}(\Pi, \eta)$ -rational structure on

$$\mathcal{H}^{d_{\infty}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G^{0}_{\infty};\Pi_{\infty}\otimes F^{\vee})$$

such that the natural isomorphism

$$\mathrm{H}^{d_{\infty}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G_{\infty}^{0};\Pi_{\infty}\otimes F^{\vee})\otimes\Pi_{f}\xrightarrow{\sim}\mathrm{H}^{d_{\infty}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G_{\infty}^{0};\Pi\otimes F^{\vee})$$

is defined over $\mathbb{Q}(\Pi, \eta)$.

Modular Symbol

Define

$$\mathcal{X}_G := (G(\mathbf{k})\mathbb{R}_+^{\times}) \backslash G(\mathbb{A}) / K_{\infty}^0.$$

Then define the modular symbol

$$\mathcal{P}_{j} : \mathrm{H}_{\mathrm{ct}}^{d_{\infty}}(\mathbb{R}_{+}^{\times} \backslash G_{\infty}^{0}; \Pi \otimes F^{\vee}) \otimes \mathrm{H}_{\mathrm{ct}}^{0}(\mathbb{R}_{+}^{\times} \backslash H_{\infty}^{0}; \xi_{\chi,j} \otimes \xi_{\infty,j}^{\vee})$$

$$\xrightarrow{\iota_{\Pi} \otimes \iota_{j}} \mathrm{H}_{\mathrm{c}}^{d_{\infty}}(\mathcal{X}_{G}, F^{\vee}) \otimes \mathrm{H}^{0}(\mathcal{X}_{H}, \xi_{\infty,j}^{\vee})$$

$$\xrightarrow{\iota^{*} \otimes 1} \mathrm{H}_{\mathrm{c}}^{d_{\infty}}(\mathcal{X}_{H}, F^{\vee}) \otimes \mathrm{H}^{0}(\mathcal{X}_{H}, \xi_{\infty,j}^{\vee})$$

$$\xrightarrow{\lambda_{F} \otimes 1} \mathrm{H}_{\mathrm{c}}^{d_{\infty}}(\mathcal{X}_{H}, \mathbb{C})$$

$$\xrightarrow{\int_{\mathcal{X}_{H}}} \mathbb{C}.$$

Commutative Diagram

$$\begin{split} & \mathrm{H}^{d_{\infty}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G_{\infty}^{0}; \Pi_{\infty}\otimes F^{\vee})\otimes (\Pi_{f}\otimes \xi_{\chi_{f},j}) & \xrightarrow{\mathcal{P}_{\infty,j}\otimes Z_{f}^{\circ}(\,\cdot\,,\frac{1}{2}+j,\chi_{f})} & \mathbb{C} \\ & = \Big\downarrow & L(\frac{1}{2}+j,\Pi\otimes\chi) \Big\downarrow \\ & \mathrm{H}^{d_{\infty}}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash G_{\infty}^{0}; \Pi\otimes F^{\vee})\otimes \mathrm{H}^{0}_{\mathrm{ct}}(\mathbb{R}_{+}^{\times}\backslash H_{\infty}^{0}, \xi_{\chi,j}\otimes \xi_{\infty,j}^{\vee}) & \xrightarrow{\mathcal{P}_{j}} & \mathbb{C} \end{split}$$

Proof of the Main Theorem

$$\frac{L(\frac{1}{2}+j,\Pi\otimes\chi)}{\mathrm{i}^{jn\cdot[\mathbf{k}\,:\,\mathbb{Q}]}\cdot\mathcal{G}(\chi)^n\cdot\Omega_\Pi}\in\mathbb{Q}(\Pi,\eta,\chi),$$

Proof: Compare Rational Structures.

 Archimedean period relation + Non-vanishing hypothesis produces a nonzero

$$\Omega_{\Pi} := \left(\epsilon^{j} \cdot i^{-jn \cdot [k:\mathbb{Q}]} \cdot \mathcal{P}_{\infty,j}([\omega]) \right)^{-1},$$

where $[\omega]$ is a rational cohomological class.

• Non-archimedean period relation produces $\mathcal{G}(\chi)^n$.

Recap of Shimura's Result

Recall Shimura's result

$$\sigma(\frac{L(j,f\otimes\psi)}{(2\pi\mathrm{i})^j\cdot\mathcal{G}(\psi)\cdot\Omega_f}) = \frac{L(j,f^\sigma\otimes\psi^\sigma)}{(2\pi\mathrm{i})^j\cdot\mathcal{G}(\psi^\sigma)\cdot\Omega_{f^\sigma}}.$$

Analogously, we aim to prove

$$\sigma(\frac{L(\frac{1}{2}+j,\Pi\otimes\chi)}{\mathrm{i}^{jn\cdot[\mathbf{k}\colon\mathbb{Q}]}\cdot\mathcal{G}(\chi)^n\cdot\Omega_\Pi})=\frac{L(\frac{1}{2}+j,\Pi^\sigma\otimes\chi^\sigma)}{\mathrm{i}^{jn\cdot[\mathbf{k}\colon\mathbb{Q}]}\cdot\mathcal{G}(\chi^\sigma)^n\cdot\Omega_{\Pi^\sigma}}.$$

Strategy

- Algebraicity of special values of L-functions come from rational structure of cohomological groups.
- Need a *suitable* way to identify the cohomology of archimedean component of Π^{σ} when σ varies.

Recent preprint of Li-Liu-Sun shows this kind of result for the Rankin-Selberg integrals for $GL_n \times GL_{n-1}$.

The End. Thank you!