Kloosterman sum and its generalizations	Bessel connection and hypergeometric connection	Frobenius structure on connections

Bessel *F*-isocrystals for reductive groups

Daxin Xu

Morningside center of Mathematics, Chinese Acad. Sci.

PANT-Kyoto 2021

Based on joint works with Xinwen Zhu/ with Masoud Kamgarpour, Lingfei Yi

December 12, 2021

- Part I: Kloosterman sum and its generalizations
- Part II: Bessel connection and hypergeometric connection
- Part III: Frobenius structure on connection

Kloosterman sum and its generalizations •0000000000	Bessel connection and hypergeometric connection 00000	Frobenius structure on connections

Exponential sums

Exponential sums are any type of finite sums of complex numbers

$$S = \sum_{n=1}^{N} \exp(2\pi i \theta_n), \qquad heta_n \in \mathbb{R}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

They play an important role in number theory.

Question

What is the value of S / magnitude of |S|?

Trivial one: $|S| \leq N$.

Kloosterman sum and its generalizations	Bessel connection and hypergeometric connection	Frobenius structure on connections
000000000	00000	00000000

Kloosterman sum

The Kloosterman sum is defined for an integer $n \ge 2$, a prime p and $a \in \mathbb{F}_p^{\times}$ by

$$\mathsf{Kl}(n,a) = \sum_{x_i \in \mathbb{F}_p^{\times}} \exp\left(\frac{2\pi i}{p} (x_1 + x_2 + \dots + x_{n-1} + \frac{a}{x_1 \cdots x_{n-1}})\right).$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Kloosterman sum and its generalizations	Bessel connection and hypergeometric connection	Frobenius structure on connections
000000000	00000	00000000

Kloosterman sum

The Kloosterman sum is defined for an integer $n \ge 2$, a prime p and $a \in \mathbb{F}_p^{\times}$ by

$$\mathsf{Kl}(n,a) = \sum_{x_i \in \mathbb{F}_p^\times} \exp\left(\frac{2\pi i}{p}(x_1 + x_2 + \dots + x_{n-1} + \frac{a}{x_1 \cdots x_{n-1}})\right).$$

- KI(2, a) first appeared in Fourier expansion of Poincaré series (Poincaré, 1912).
- Kloosterman (1924) obtained a (rough) estimate

 $|Kl(2, a)| \le 2p^{3/4}.$

Further estimation are studied by Carlitz, Salié, Weil and etc.

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Weil bound and equidistribution law

The best estimate (called Weil bound) was obtained by Weil (n=2, 1948) and Deligne (1977):

 $|K|(n, a)| \le np^{(n-1)/2}.$

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Weil bound and equidistribution law

The best estimate (called Weil bound) was obtained by Weil (n=2, 1948) and Deligne (1977):

$$|\operatorname{KI}(n,a)| \leq np^{(n-1)/2}$$

 Equidistribution law (Deligne and Katz). For example (n = 2), one can define an angle $\theta(a) \in [0, \pi]$:

$$2p^{1/2}\cos(\theta(a)) = -\operatorname{Kl}(2,a) \quad \in \mathbb{R} \cap \overline{\mathbb{Q}}.$$

Then:

$$\lim_{p \to +\infty} \frac{\sharp \{ a \in \mathbb{F}_p^{\times}, \alpha \leq \theta(a) \leq \beta \}}{p-1} = \frac{2}{\pi} \int_{\alpha}^{\beta} \sin^2 \theta d\theta.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem (Deligne, SGA 4.5 (1977))

There exists an ℓ -adic local system KI_n of rank n on $\mathbb{G}_{m,\mathbb{F}_n}$, called Kloosterman sheaf, such that

(1) For any closed point $a \in \mathbb{G}_m(\mathbb{F}_p) = \mathbb{F}_p^{\times}$,

$$\operatorname{Tr}(\operatorname{Frob}_a, \operatorname{Kl}_{n,\overline{a}}) = \operatorname{Kl}(n, a).$$

(2) KI_n is pure of weight n-1 (i.e. each Frobenius eigenvalue at each closed point of $\mathbb{G}_m(\mathbb{F}_p)$ has absolute value $p^{\frac{n-1}{2}}$).

The Weil bound $|K|(n, a)| \le np^{\frac{n-1}{2}}$ follows from (1-2).

Theorem (Deligne, SGA 4.5 (1977))

There exists an ℓ -adic local system KI_n of rank n on $\mathbb{G}_{m,\mathbb{F}_n}$, called Kloosterman sheaf, such that

(1) For any closed point $a \in \mathbb{G}_m(\mathbb{F}_p) = \mathbb{F}_p^{\times}$,

$$\operatorname{Tr}(\operatorname{Frob}_{a},\operatorname{Kl}_{n,\overline{a}})=\operatorname{Kl}(n,a).$$

(2) KI_n is pure of weight n-1 (i.e. each Frobenius eigenvalue at each closed point of $\mathbb{G}_m(\mathbb{F}_p)$ has absolute value $p^{\frac{n-1}{2}}$).

The Weil bound $|Kl(n, a)| \le np^{\frac{n-1}{2}}$ follows from (1-2). Katz (1990) calculated its monodromy group (which implies the equidistribution law)

$$G_{\text{geo}}(\mathsf{KI}_n) = \begin{cases} \mathsf{Sp}_n & n \text{ even}, \\ \mathsf{SL}_n & p, n \text{ odd}, \\ \mathsf{SO}_n & p = 2, n \text{ odd}, n \neq 7, \\ G_2 & p = 2, n = 7. \end{cases}$$

00000000000

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Hypergeometric sums/sheaves, after Katz

•
$$\psi = \exp(\frac{2\pi i}{p}) : \mathbb{F}_p \to \mathbb{C}^{\times}$$
 additive characters;

• $n \ge m$ two integers, $\chi = (\chi_1, \ldots, \chi_n)$, $\rho = (\rho_1, \ldots, \rho_m)$ two paris of multiplicative characters $\mathbb{F}_{p}^{\times} \to \mathbb{C}^{\times}$.

00000000000

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Hypergeometric sums/sheaves, after Katz

• $\psi = \exp(\frac{2\pi i}{p}) : \mathbb{F}_p \to \mathbb{C}^{\times}$ additive characters;

• $n \geq m$ two integers, $\chi = (\chi_1, \ldots, \chi_n), \rho = (\rho_1, \ldots, \rho_m)$ two paris of multiplicative characters $\mathbb{F}_{p}^{\times} \to \mathbb{C}^{\times}$.

For $a \in \mathbb{F}_{p}^{\times}$, hypergeometric sum Hyp $^{(n,m)}(\psi;\chi;\rho)(a) =$

$$\sum_{x_1\cdots x_n=ay_1\cdots y_m}\psi\left(\sum_{i=1}^n x_i-\sum_{i=1}^m y_i\right)\prod_{i=1}^n\chi_i\left(x_i\right)\prod_{i=1}^m\rho_i\left(y_i^{-1}\right).$$

When $\chi_i = 1$ are trivial, m = 0, it recovers Kloosterman sum.

00000000000

Frobenius structure on connections

(日) (日) (日) (日) (日) (日) (日)

Hypergeometric sums/sheaves, after Katz

• $\psi = \exp(\frac{2\pi i}{p}) : \mathbb{F}_p \to \mathbb{C}^{\times}$ additive characters;

- $n \ge m$ two integers, $\chi = (\chi_1, \ldots, \chi_n)$, $\rho = (\rho_1, \ldots, \rho_m)$ two paris of multiplicative characters $\mathbb{F}_{p}^{\times} \to \mathbb{C}^{\times}$.
- For $a \in \mathbb{F}_p^{\times}$, hypergeometric sum $\operatorname{Hyp}^{(n,m)}(\psi;\chi;\rho)(a) =$

$$\sum_{x_1\cdots x_n=ay_1\cdots y_m}\psi\left(\sum_{i=1}^n x_i-\sum_{i=1}^m y_i\right)\prod_{i=1}^n\chi_i\left(x_i\right)\prod_{i=1}^m\rho_i\left(y_i^{-1}\right).$$

When $\chi_i = 1$ are trivial, m = 0, it recovers Kloosterman sum.

Katz defined its sheaf-theoretic incarnation, obtained the Weil bound: if χ_i, ρ_i are non-isomorphic $\forall i, j$, then

$$|\operatorname{Hyp}^{(n,m)}(\psi;\underline{\chi};\underline{
ho})(a)|\leq np^{(n+m-1)/2},$$

and also the equidistribution law in many cases.

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection

Frobenius structure on connections

Heinloth-Ngô-Yun's Kloosterman sheaves for reductive groups

Heinloth-Ngô-Yun reinterpreted the construction of Kl_n in the context of (geometric) Langlands program over the function field $\mathbb{F}_{p}(t)$ (for GL_{n}) and generalised it for reductive groups.

Heinloth-Ngô-Yun's Kloosterman sheaves for reductive groups

- Heinloth-Ngô-Yun reinterpreted the construction of Kl_n in the context of (geometric) Langlands program over the function field 𝔽_p(t) (for GL_n) and generalised it for reductive groups.
- Let F be a global function field $\mathbb{F}_p(X)$ of a smooth curve X. The Langlands program relates
 - Automorphic forms: e.g. $f : \operatorname{GL}_n(F) \setminus \operatorname{GL}_n(\mathbb{A}_F) \to \overline{\mathbb{Q}}_{\ell}$.
 - Galois representations: e.g. *ρ* : Gal(*F*/*F*) → GL_n(*Q*_ℓ).
 (Regard it as: ℓ-adic local system on an open subset *U* of *X*).
- The Langlands program involves reductive groups.
 Let G be a reductive group over 𝔽_p and Č the Langlands dual group of G. e.g.

$$G = GL_n, SO_{2n+1}, SO_{2n}, \qquad \check{G} = GL_n, Sp_{2n}, SO_{2n}.$$

- Heinloth-Ngô-Yun explicitly constructed an automorphic form
 - f (Hecke eigenform) on G over $\mathbb{F}_p(t)$, which is
 - unramified on \mathbb{G}_m ;
 - Steinberg representation at 0;
 - simple supercuspidal at ∞ (Gross-Reeder).

- Heinloth-Ngô-Yun explicitly constructed an automorphic form
 - f (Hecke eigenform) on G over $\mathbb{F}_{p}(t)$, which is
 - unramified on \mathbb{G}_m ;
 - Steinberg representation at 0;
 - simple supercuspidal at ∞ (Gross–Reeder).
- They geometrize f as an automorphic sheaf Aut_f on the moduli stack of G-bundles on \mathbb{P}^1 with certain level structures and define the Kloosterman sheaf $KI_{\check{C}}$ of \check{G} as the Langlands parameter associated to Aut_{f} .

It is an ℓ -adic G-local system on \mathbb{G}_m :

$$\begin{array}{rcl} \mathsf{Kl}_{\check{G}}: \mathbf{Rep}(\check{G}) & \to & \mathsf{LocSysm}(\mathbb{G}_{m,\mathbb{F}_p}), \\ V & \mapsto & \mathsf{Kl}_{\check{G},V} \,. \end{array}$$

When $\check{G} = GL_n$, SL_n , $KI_{GL_n,Std} = KI_{SL_n,Std} = KI_n$.

ション ふぼう メリン メリン しょうくしゃ

- Heinloth-Ngô-Yun explicitly constructed an automorphic form
 - f (Hecke eigenform) on G over $\mathbb{F}_{p}(t)$, which is
 - unramified on \mathbb{G}_m ;
 - Steinberg representation at 0;
 - simple supercuspidal at ∞ (Gross–Reeder).
- They geometrize f as an automorphic sheaf Aut_f on the moduli stack of G-bundles on \mathbb{P}^1 with certain level structures and define the Kloosterman sheaf $KI_{\check{C}}$ of \check{G} as the Langlands parameter associated to Aut_{f} .

It is an ℓ -adic G-local system on \mathbb{G}_m :

$$\begin{array}{rcl} \mathsf{Kl}_{\check{G}}: \mathbf{Rep}(\check{G}) & \to & \mathsf{LocSysm}(\mathbb{G}_{m,\mathbb{F}_p}), \\ V & \mapsto & \mathsf{Kl}_{\check{G},V} \,. \end{array}$$

When $\check{G} = GL_n$, SL_n , $KI_{GL_n,Std} = KI_{SL_n,Std} = KI_n$.

Taking Frobenius traces, one obtain exponential sums

$$\mathsf{Kl}_{\check{G},V}(-):\mathbb{F}_p^{\times}\to\mathbb{C}$$

satisfying certain Weil bound and equidistribution law.

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection Frobenius structure on connections

Explicit exponential sums

For $a \in \mathbb{F}_{p}^{\times}$

(i) (Kloosterman sum) $Kl_{GL_n,Std}(a) = Kl_{SL_n,Std}(a) = Kl(n,a)$

$$=\sum_{x_i\in\mathbb{F}_p^\times}\exp\Big(\frac{1}{p}(x_1+x_2+\cdots+x_{n-1}+\frac{1}{x_1\cdots x_{n-1}})\Big),$$

(ii)
$$KI_{Sp_{2n},Std} = KI_{GL_{2n},Std}$$
,

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection

Frobenius structure on connections

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Explicit exponential sums

For $a \in \mathbb{F}_p^{\times}$

(Kloosterman sum) $Kl_{GL_n,Std}(a) = Kl_{SL_n,Std}(a) = Kl(n,a)$ (i)

$$=\sum_{x_i\in\mathbb{F}_p^\times}\exp\bigg(\frac{2\pi i}{p}(x_1+x_2+\cdots+x_{n-1}+\frac{a}{x_1\cdots x_{n-1}})\bigg),$$

(ii)
$$Kl_{Sp_{2n},Std} = Kl_{GL_{2n},Std}$$

(iii)
$$\operatorname{Kl}_{\operatorname{SO}_3,\operatorname{Std}}(a) = \operatorname{Kl}(2,a)^2 - p = \operatorname{Kl}_{\operatorname{SL}_2,\operatorname{Sym}^2}(a),$$

(iv)
$$\mathsf{Kl}_{\mathsf{SO}_{2n+1},\mathsf{Std}}(a) = \sum_{x,y \in \mathbb{F}_p^{\times}, xy = a} \mathsf{Kl}_{\mathsf{SO}_3,\mathsf{Std}}(x) \,\mathsf{Kl}(2n-2,y),$$

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection

Frobenius structure on connections

Explicit exponential sums

For $a \in \mathbb{F}_{p}^{\times}$

(Kloosterman sum) $Kl_{GL_n,Std}(a) = Kl_{SL_n,Std}(a) = Kl(n, a)$ (i) $= \sum_{i=1}^{n} \exp\left(\frac{2\pi i}{p} (x_1 + x_2 + \dots + x_{n-1} + \frac{a}{x_1 \cdots x_{n-1}})\right),$ $x_i \in \mathbb{F}_p^{\times}$

(ii)
$$KI_{Sp_{2n},Std} = KI_{GL_{2n},Std}$$
,

(iii)
$$KI_{SO_3,Std}(a) = KI(2, a)^2 - p = KI_{SL_2,Sym^2}(a),$$

(iv) $\operatorname{Kl}_{\operatorname{SO}_{2n+1},\operatorname{Std}}(a) = \sum \operatorname{Kl}_{\operatorname{SO}_3,\operatorname{Std}}(x) \operatorname{Kl}(2n-2,y),$ $x, v \in \mathbb{F}_{n}^{\times}, xv = a$

(v)
$$\mathsf{Kl}_{\mathsf{SO}_{2n+2},\mathsf{Std}}(a) =$$

$$\sum_{x_i \in \mathbb{F}_p^{\times}} \exp\left(\frac{2\pi i}{p}(x_1 + x_2 + \dots + x_{2n} + a\frac{x_1 + x_2}{x_1 x_2 \dots x_{2n}})\right) + p^n - p^{n-1}$$

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection

Frobenius structure on connections

Explicit exponential sums

For $a \in \mathbb{F}_{p}^{\times}$

(Kloosterman sum) $Kl_{GL_n,Std}(a) = Kl_{SL_n,Std}(a) = Kl(n, a)$ (i) $= \sum_{n=1}^{\infty} \exp\left(\frac{2\pi i}{p}(x_1 + x_2 + \dots + x_{n-1} + \frac{a}{x_1 \cdots x_{n-1}})\right),$ $x_i \in \mathbb{F}_n^{\times}$

(ii)
$$KI_{Sp_{2n},Std} = KI_{GL_{2n},Std}$$
,

(iii)
$$\operatorname{Kl}_{\operatorname{SO}_3,\operatorname{Std}}(a) = \operatorname{Kl}(2,a)^2 - p = \operatorname{Kl}_{\operatorname{SL}_2,\operatorname{Sym}^2}(a),$$

(iv)
$$\operatorname{Kl}_{\operatorname{SO}_{2n+1},\operatorname{Std}}(a) = \sum_{x,y \in \mathbb{F}_p^{\times}, xy = a} \operatorname{Kl}_{\operatorname{SO}_3,\operatorname{Std}}(x) \operatorname{Kl}(2n-2,y),$$

(v)
$$\mathsf{Kl}_{\mathsf{SO}_{2n+2},\mathsf{Std}}(a) =$$

$$\sum_{x_i \in \mathbb{F}_p^{\times}} \exp\left(\frac{2\pi i}{p}(x_1 + x_2 + \dots + x_{2n} + a\frac{x_1 + x_2}{x_1 x_2 \dots x_{2n}})\right) + p^n - p^{n-1}$$

Weil bounds:

 $|\operatorname{\mathsf{Kl}}_{\operatorname{\mathsf{SO}}_{2n+1},\operatorname{\mathsf{Std}}}| \leq (2n+1)p^n, |\operatorname{\mathsf{Kl}}_{\operatorname{\mathsf{SO}}_{2n+2},\operatorname{\mathsf{Std}}}| \leq (2n+2)p^n$

0	Bessel connection and hypergeometric connection	Frobenius structure on connections
^		

Questions

- (i) What is the (geometric) monodromy group G_{geo}(Kl_Ğ) of Kl_Ğ? (What is its equidistribution law?)
 - $G_{\text{geo}}(\mathsf{Kl}_{\check{G}}) := \mathsf{Zariski} \text{ closure of } \mathsf{Kl}_{\check{G}} : \pi_1^{\acute{e}t}(\mathbb{G}_{m,\overline{\mathbb{F}}_p}) \to \check{G}(\overline{\mathbb{Q}}_\ell).$
- (ii) (Conjecture of Heinloth-Ngô-Yun).
 Functorial properties of Kl_Ğ.
 (Roughly speaking, we can identify certain exponential sums for different groups.)

Above two questions are solved in my joint work with Xinwen Zhu from the p-adic/de Rham aspect of this story.

ション ふゆ アメリア メリア しょうくしゃ

Kloosterman sum and its generalizations	Bessel connection and hypergeometric connection	Frobenius structure on connections

Questions

- (i) What is the (geometric) monodromy group G_{geo}(Kl_Ğ) of Kl_Ğ? (What is its equidistribution law?)
 - $G_{\text{geo}}(\mathsf{Kl}_{\check{G}}) := \mathsf{Zariski} \text{ closure of } \mathsf{Kl}_{\check{G}} : \pi_1^{\acute{e}t}(\mathbb{G}_{m,\overline{\mathbb{F}}_p}) \to \check{G}(\overline{\mathbb{Q}}_\ell).$
- (ii) (Conjecture of Heinloth-Ngô-Yun).
 Functorial properties of Kl_Ğ.
 (Roughly speaking, we can identify certain exponential sums for different groups.)

Above two questions are solved in my joint work with Xinwen Zhu from the p-adic/de Rham aspect of this story.

(iii) Is it possible to generalize hypergeometric sheaves for reductive groups?

With Masoud Kamgarpour, Lingfei Yi, we obtain results for classical groups using geometric Langlands correspondence.

Theorem

If \check{G} is almost simple, then the monodromy groups of $Kl_{\check{G}}$ are connected and of following type:

Ğ	$G_{ ext{geo}}(Kl_{\check{G}}) \hookrightarrow \check{G}$
$A_{2n}(p > 2)$	A _{2n}
A_{2n-1}, C_n	Cn
$A_{2n}(p = 2, n \neq 3), B_n, D_{n+1}(n \ge 4)$	B _n
E ₇	E ₇
E ₈	E ₈
E_6, F_4	F_4
$A_6(p=2), B_3, D_4, G_2$	G ₂

Type A: Katz; HNY obtain this result except some small characteristic cases; With Xinwen Zhu, we provide a new proof from the *p*-adic aspect.

Theorem (Functoriality conjecture, X.–Zhu)

If $\check{H} \subset \check{G}$ in the same line of the above table, one can identify $KI_{\check{G}}, KI_{\check{H}}$ by pushout, i.e.

$$\mathsf{Kl}_{\check{G}} = \mathsf{Kl}_{\check{H}} \circ \iota : \mathbf{Rep}(\check{G}) \to \mathbf{Rep}(\check{H}) \to \mathsf{LocSysm}(\mathbb{G}_{m,\mathbb{F}_p}).$$

This allows us to identify different exponential sums:

Theorem (Functoriality conjecture, X.–Zhu)

If $\check{H} \subset \check{G}$ in the same line of the above table, one can identify $KI_{\check{G}}, KI_{\check{H}}$ by pushout, i.e.

$$\mathsf{Kl}_{\check{G}} = \mathsf{Kl}_{\check{H}} \circ \iota : \mathbf{Rep}(\check{G}) \to \mathbf{Rep}(\check{H}) \to \mathsf{LocSysm}(\mathbb{G}_{m,\mathbb{F}_p}).$$

This allows us to identify different exponential sums:

$$\begin{aligned} & \mathsf{KI}_{\mathsf{SO}_{2n+2},\mathsf{Std}}(a) - p^n = \mathsf{KI}_{\mathsf{SO}_{2n+1},\mathsf{Std}}(a), \\ & \text{if } p = 2, \ \mathsf{KI}_{\mathsf{SO}_{2n+1},\mathsf{Std}}(a) = \mathsf{KI}(2n+1,a), \\ & \text{if } p > 2, \ \mathsf{KI}_{\mathsf{SO}_{2n+1},\mathsf{Std}}(a) \text{ is equal to } \mathsf{Hyp}^{(2n+1,1)}(\psi;\underline{1};\rho) = \\ & \frac{\sum_{x_i \in \mathbb{F}_p^{\times}} \exp\left(\frac{2\pi i}{p}(x_1 + x_2 + \dots + x_{2n+1} - \frac{x_1 \dots x_{2n+1}}{4a})\right) \rho(\frac{x_1 \dots x_{2n+1}}{4a})}{G(\rho)} \end{aligned}$$

Here ρ is the quadratic character, $G(\rho)$ Gauss sum.

Our proof studies *Frobenius structure* on differential equaitions.

Frobenius structure on connections

Bessel differential equation

• The classical Bessel differential equation with a parameter λ

$$\mathsf{Be}_2: \left(x\frac{d}{dx}\right)^2(f) - \lambda^2 x \cdot f = 0$$

admits a unique holomorphic solution on \mathbb{C} :

$$\frac{1}{2\pi i}\int_{S^1} \exp\lambda\left(z+\frac{x}{z}\right)\frac{dz}{z} = \sum_{r\geq 0}\frac{\lambda^{2r}}{(r!)^2}x^r.$$

Frobenius structure on connections

Bessel differential equation

• The classical Bessel differential equation with a parameter λ

$$\mathsf{Be}_2: \left(x\frac{d}{dx}\right)^2(f) - \lambda^2 x \cdot f = 0$$

admits a unique holomorphic solution on $\mathbb C$:

$$\frac{1}{2\pi i}\int_{S^1} \exp\lambda\left(z+\frac{x}{z}\right)\frac{dz}{z} = \sum_{r\geq 0}\frac{\lambda^{2r}}{(r!)^2}x^r.$$

This integration can be viewed as a continuous analogue of the discrete Kloosterman sums

$$\mathsf{KI}(2, a) = \sum_{z \in \mathbb{F}_p^{\times}} \exp\left(\frac{2\pi i}{p}(z + \frac{a}{z})\right).$$

Frobenius structure on connections

Bessel connection for reductive groups

K a field of characteristic 0. \check{G} a split reductive group of rank $r, \check{T} \subset \check{B} \subset \check{G}$, $\check{\mathfrak{g}}$ its Lie algebra, *h* its Coxeter number.

Frobenius structure on connections

Bessel connection for reductive groups

- K a field of characteristic 0. \check{G} a split reductive group of rank $r, \check{T} \subset \check{B} \subset \check{G}$. $\check{\mathfrak{g}}$ its Lie algebra, *h* its Coxeter number.
- Frenkel and Gross define a ğ-valued connection on the trivial \check{G} -bundle on $\mathbb{G}_{m,K} = \operatorname{Spec}(K[x, x^{-1}])$ by

$$\mathsf{Be}_{\check{G}} = d + (p_{-1} + \lambda^h x p_r) \frac{dx}{x}.$$

 $p_{-1} = \sum_{\text{simple root } \alpha_i} X_{-\alpha_i}, X_{-\alpha_i}$ a basis vector in $\check{\mathfrak{g}}_{-\alpha_i}$. p_r a basis vector in $\check{\mathfrak{g}}_{\theta}$, θ maximal root.

Frobenius structure on connections

Bessel connection for reductive groups

- K a field of characteristic 0. \check{G} a split reductive group of rank $r, \check{T} \subset \check{B} \subset \check{G}$, $\check{\mathfrak{g}}$ its Lie algebra, *h* its Coxeter number.
- Frenkel and Gross define a ğ-valued connection on the trivial \check{G} -bundle on $\mathbb{G}_{m,K} = \operatorname{Spec}(K[x, x^{-1}])$ by

$$\mathsf{Be}_{\check{G}} = d + (p_{-1} + \lambda^h x p_r) \frac{dx}{x}.$$

 $p_{-1} = \sum_{\text{simple root } \alpha_i} X_{-\alpha_i}, X_{-\alpha_i}$ a basis vector in $\check{\mathfrak{g}}_{-\alpha_i}$. p_r a basis vector in $\check{\mathfrak{g}}_{\theta}$, θ maximal root.

It has regular singularity at 0, irregular singularity at ∞ .

$$Be_{\check{G}} : \mathbf{Rep}(\check{G}) \to Conn(\mathbb{G}_m),$$

$$\rho : \check{G} \to GL(V) \mapsto Be_{G,V} : d + d\rho(p_{-1} + \lambda^h x p_r) \frac{dx}{x}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

•
$$\check{G} = \operatorname{GL}_n, V = \operatorname{Std}, \operatorname{Be}_{\operatorname{GL}_n,\operatorname{Std}} = d + \begin{pmatrix} 0 & \dots & 0 & \lambda^n x \\ 1 & \ddots & 0 \\ \vdots & \ddots & 0 & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix} \frac{dx}{x}.$$

$$\rightsquigarrow \left(x \frac{d}{dx} \right)^n (f) - \lambda^n x \cdot f = 0.$$

•
$$\check{G} = \operatorname{GL}_n, V = \operatorname{Std}, \operatorname{Be}_{\operatorname{GL}_n,\operatorname{Std}} = d + \begin{pmatrix} 0 & \dots & 0 & \lambda^n x \\ 1 & \ddots & 0 & \\ \vdots & \ddots & 0 & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix} \frac{dx}{x}.$$

$$\rightsquigarrow \left(x \frac{d}{dx} \right)^n (f) - \lambda^n x \cdot f = 0.$$

•
$$\check{G} = SO_{2n+1}, V = Std,$$

 $Be_{SO_{2m+1},Std} = d + \begin{pmatrix} 0 & 0 & \dots & 2\lambda^{2n}x & 0\\ 1 & 0 & & & 2\lambda^{2n}x\\ 0 & 1 & \ddots & & \vdots\\ \vdots & \ddots & \ddots & \ddots & 0\\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \frac{dx}{x}.$
 $\rightsquigarrow \left(x\frac{d}{dx}\right)^{2n+1}(f) - \lambda^{2n}x(4x\frac{d}{dx}+2) \cdot f = 0.$

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Hypergeometric connection for classical groups

- \check{G} a classical group of rank r: SL_{r+1}, SO_{2r+1}, Sp_{2r}, SO_{2r+2}, $\check{\mathfrak{g}} = \mathfrak{n}^- \oplus \mathfrak{t} \oplus \mathfrak{n}$, such that $p_{-1} \in \mathfrak{n}^-$.
- $\{p_{-1}, 2\check{\rho}, p_1\}$ the principal $\mathfrak{sl}_2 \subset \check{\mathfrak{g}}, p_1 \in \mathfrak{n}^{p_1} \subset \mathfrak{n}$.

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Hypergeometric connection for classical groups

- \check{G} a classical group of rank r: SL_{r+1}, SO_{2r+1}, Sp_{2r}, SO_{2r+2}, $\check{\mathfrak{g}} = \mathfrak{n}^- \oplus \mathfrak{t} \oplus \mathfrak{n}$, such that $p_{-1} \in \mathfrak{n}^-$.
- $\{p_{-1}, 2\check{\rho}, p_1\}$ the principal $\mathfrak{sl}_2 \subset \check{\mathfrak{g}}, p_1 \in \mathfrak{n}^{p_1} \subset \mathfrak{n}$.
- $\{d_1, \ldots, d_r\}$ degrees of fundamental invariant of $\check{\mathfrak{g}}$.
- $\{p_1, \ldots, p_r\}$ a homogeneous basis \mathfrak{n}^{p_1} with deg $(p_i) = d_i 1$.
- Fix a fundamental degree $d > \frac{h}{2}$, we consider \check{G} -connection:

$$\mathsf{Hyp}_{\check{G}}(\underline{\lambda}) = d + (p_{-1} + \sum_{d_i \geq d} \lambda_i p_i x) \frac{dx}{x}, \quad \lambda_i \in K.$$

Frobenius structure on connections

ション ふゆ アメリア メリア しょうくしゃ

Hypergeometric connection for classical groups

For $\check{G} = SL_{r+1}$, fundamental degrees $\{2, 3, \dots, r+1\}$. We take p_{-1}, p_1 as follows and $p_k = p_1^k, k = 1, \dots, r$.

$$p_{-1} = \begin{pmatrix} 0 & \dots & 0 & 0 \\ 1 & \ddots & & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & 0 & \vdots \\ 0 & & \dots & 1 & 0 \end{pmatrix}, \quad p_{1} = \begin{pmatrix} 0 & r & \dots & 0 & 0 \\ \vdots & 0 & 2(r-1) & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & r \\ 0 & 0 & \dots & \dots & 0 \end{pmatrix}$$

Hypergeometric connection $\text{Hyp}_{\check{G}}(\underline{\lambda})_{\text{Std}} \rightsquigarrow \text{hypergeometric}$ differential equation (Katz):

$$\left(x\frac{d}{dx}\right)^n(f)-x\left(\sum_{i=0}^m\mu_i(x\frac{d}{dx})^i\right)(f)=0,\quad \mu_i\in K.$$

Kloosterman sum and its generalizations

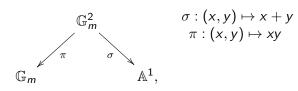
Bessel connection and hypergeometric connection $_{\rm OOOOO}$

Frobenius structure on connections

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Be₂ vs Kl₂

• Kl₂: \mathscr{L}_{ψ} : Artin-Scheier sheaf $\pi_1(\mathbb{A}^1_{\mathbb{F}_p}) \to \mathbb{F}_p \xrightarrow{\psi} \overline{\mathbb{Q}}_{\ell}^{\times}$.



$\mathsf{KI}_2 := \mathsf{R}^1 \, \pi_!(\sigma^*(\mathscr{L}_{\psi})) \xrightarrow{\sim} \mathsf{R}^1 \, \pi_*(\sigma^*(\mathscr{L}_{\psi}))$

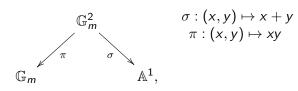
Kloosterman sum and its generalizations

Bessel connection and hypergeometric connection $_{\rm OOOOO}$

Frobenius structure on connections

Be₂ vs Kl₂

• Kl₂: \mathscr{L}_{ψ} : Artin-Scheier sheaf $\pi_1(\mathbb{A}^1_{\mathbb{F}_p}) \to \mathbb{F}_p \xrightarrow{\psi} \overline{\mathbb{Q}}_{\ell}^{\times}$.



$$\mathsf{Kl}_2 := \mathsf{R}^1 \, \pi_!(\sigma^*(\mathscr{L}_\psi)) \xrightarrow{\sim} \mathsf{R}^1 \, \pi_*(\sigma^*(\mathscr{L}_\psi))$$

- Let K be a field of characteristic zero. Exponential \mathscr{D} -module $e^{\lambda x} = (\mathscr{O}_{\mathbb{A}^1}, \nabla = d \lambda dx)$ on \mathbb{A}^1_K , where λ is a parameter in K, is an analogue of Artin-Scheier sheaf.
- The Bessel equation: connection on $\mathbb{G}_{m,K}$:

$$\mathsf{Be}_2 = d + \left(egin{array}{cc} 0 & \lambda^2 x \ 1 & 0 \end{array}
ight) rac{dx}{x}.$$

Then we have $\mathsf{R}^1 \pi_!(\sigma^*(e^{\lambda x})) \simeq \mathsf{Be}_2$ as algebraic \mathscr{D} -modules.

Kloosterman sum and its generalizations Bessel connection and hypergeometric connection Frobenius structure on connections

00000000

Frobenius structure on Be₂

• (Dwork) $K = \mathbb{Q}_p(\lambda)$. Frobenius pullback by $x \mapsto x^p$ on \mathbb{A}^1_{κ} ,

$$e^{\lambda x} = d - \lambda dx \mapsto d - p\lambda x^{p-1} dx.$$

Bessel connection and hypergeometric connectior

Frobenius structure on connections

Frobenius structure on Be₂

• (Dwork)
$$K = \mathbb{Q}_p(\lambda)$$
. Frobenius pullback by $x \mapsto x^p$ on \mathbb{A}^1_K ,
 $e^{\lambda x} = d - \lambda dx \mapsto d - p\lambda x^{p-1} dx$.

■ ∃ "Frobenius structure" on $e^{\lambda x}$: $F_{\lambda}(x) = e^{\lambda(x^{p}-x)} \in A^{\dagger}$ s.t. $\frac{dF_{\lambda}}{dx}F_{\lambda}(x)^{-1} + \lambda = p\lambda x^{p-1}$, i.e. $F_{\lambda} : F^{*}(e^{\lambda x}) \xrightarrow{\sim} e^{\lambda x}$.

> A^{\dagger} = ring of *p*-adic analytic functions on a closed disc of radius > 1 (*p*-adic topology),

$$= \bigcup_{r>1} \left(K \langle \frac{t}{r} \rangle = \{ \sum_{i \ge 0} a_i (\frac{t}{r})^i || a_i |_p \to 0 \} \right).$$

• A choice of $\lambda, \lambda^{p-1} = -p \leftrightarrow \psi_{\lambda} : \mathbb{F}_p \to K^{\times}$ s.t. for $a \in \mathbb{F}_p$, a Teichmuller lifting $[a] \in \mathbb{Z}_p$

$$F_{\lambda}([a]) = \psi_{\lambda}(a).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$K = \mathbb{Q}_p(\lambda)$$
 with $\lambda^{p-1} = -p$ s.t. $\psi_{\lambda} = \exp(\frac{2\pi i}{p} -)$ via $K \to \mathbb{C}$.

Theorem (Dwork)

(i) There exists a unique $\varphi(x) \in \mathsf{GL}_2(A^{\dagger})$ satisfying

$$x\frac{\partial\varphi}{\partial x}\varphi^{-1} + \varphi \left(\begin{array}{cc} 0 & \lambda^2 x \\ 1 & 0 \end{array}\right)\varphi^{-1} = p \left(\begin{array}{cc} 0 & \lambda^2 x^p \\ 1 & 0 \end{array}\right)$$

That is, a horizontal isomorphism $\varphi : F^*(Be_2) \xrightarrow{\sim} Be_2$. (ii) For every $a \in \mathbb{F}_p^{\times}$, we have

$$\operatorname{Tr}\varphi([a]) = \operatorname{Kl}(2, a).$$

(iii) For every $a \in \mathbb{F}_p^{\times}$, the p-adic absolute values of two eigenvalues of $\varphi([a])$ are $|\alpha|_p = 1$ and $|\beta|_p = p^{-1}$. (Behaves like an ordinary elliptic curve $/\mathbb{F}_p$.)

Bessel connection and hypergeometric connection

Frobenius structure on connections

Frobenius structure on Bessel connection

Theorem (X.–Zhu)

$$K = \mathbb{Q}_{p}(\lambda)$$
 with $\lambda^{p-1} = -p$.
(i) There exists a unique $\varphi(x) \in \check{G}(A^{\dagger})$ satisfying

$$x\frac{\partial\varphi}{\partial x}\varphi^{-1} + \operatorname{Ad}_{\varphi}(p_{-1} + \lambda^{h}xp_{r}) = p(p_{-1} + \lambda^{h}x^{p}p_{r}),$$

i.e. φ defines a "Frobenius structure" on Frenkel-Gross' $\text{Be}_{\check{G}}$. (ii) For every $a \in \mathbb{F}_p^{\times}$ and $V \in \text{Rep}(\check{G})$

$$\operatorname{Tr}(\varphi([a]), \operatorname{Be}_{\check{G}, V}) = \operatorname{Tr}(\operatorname{Frob}_{a}, (\operatorname{Kl}_{\check{G}, V})_{\overline{a}}).$$

(iii) When \check{G} is classical or G_2 , the p-adic absolute values of eigenvalues of $\varphi([a]) \in \check{G}(K)$ are same as those of $\rho(p)$, where $\rho : \check{T} \to \check{G}$ is the half sum of positive roots.

Frobenius structure on connections 000000000

 $(\mathsf{Be}_{\check{G}}, \varphi)$ forms a *p*-adic \check{G} -local system $\mathsf{Be}_{\check{G}}^{\mathsf{T}}$ on $\mathbb{G}_{m,\mathbb{F}_p}$. Based on the calculation of $G_{diff}(Be_{\check{c}})$ (Frenkel-Gross).

Theorem

If G is almost simple, then the geometric monodromy group of $Be^{\dagger}_{\check{C}}$ is connected and of following type:

Ğ	$G_{ ext{geo}}(\operatorname{Be}^\dagger_{\check{G}}) \hookrightarrow \check{G}$
$A_{2n}(p > 2)$	A _{2n}
A_{2n-1}, C_n	Cn
$A_{2n}(p = 2, n \neq 3), B_n, D_{n+1}(n \ge 4)$	B _n
<i>E</i> ₇	E ₇
E_8	E ₈
E_6, F_4	F ₄
$A_6(p=2), B_3, D_4, G_2$	G ₂

Recover the calculation of $G_{\text{geo}}(\text{Kl}_{\check{G}})$ due to Katz and HNY.

Theorem (Functoriality)

If $\check{H} \subset \check{G}$ in the same line of the above table, one can identify $\operatorname{Be}_{\check{G}}^{\dagger}, \operatorname{Be}_{\check{H}}^{\dagger}$ (and hence $\operatorname{Kl}_{\check{G}}, \operatorname{Kl}_{\check{H}}$) by pushout, i.e.

$$\mathsf{Kl}_{\check{G}} = \mathsf{Kl}_{\check{H}} \circ \iota : \mathbf{Rep}(\check{G}) \to \mathbf{Rep}(\check{H}) \to \mathsf{LocSysm}(\mathbb{G}_{m,\mathbb{F}_p}).$$

Such a relationship for connections ${\sf Be}_{\check{G}}, {\sf Be}_{\check{H}}$ follows from their definition.

ション ふゆ アメビア メロア しょうくり

Then the assertion follows from the uniqueness of Frobenius structure on $\text{Be}_{\check{G}}$.

Kloosterman sum and its generalizations

Bessel connection and hypergeometric connection

Frobenius structure on connections

Proof of main theorem

- If we apply HNY's construction in the de Rham/ p-adic setting, we obtain a Ğ-local system KI^{dR}/KI^{rig}.
- Geometric Satake equivalence for arithmetic *D*-modules.

Frobenius structure on connections 000000000

ション ふゆ アメビア メロア しょうくり

Proof of main theorem

- If we apply HNY's construction in the de Rham / p-adic setting, we obtain a \check{G} -local system $KI_{\check{G}}^{dR}/KI_{\check{G}}^{rig}$.
- Geometric Satake equivalence for arithmetic *D*-modules.
- After Beilinson–Drinfeld approach for geometric Langlands correspondence and a variant due to Zhu

$$\mathsf{Be}_{\check{\mathcal{G}}} \simeq \mathsf{Kl}_{\check{\mathcal{G}}}^{\mathsf{dR}}$$
 .

Frobenius structure on connections 000000000

Proof of main theorem

- If we apply HNY's construction in the de Rham / p-adic setting, we obtain a \check{G} -local system $KI_{\check{G}}^{dR}/KI_{\check{G}}^{rig}$.
- Geometric Satake equivalence for arithmetic D-modules.
- After Beilinson–Drinfeld approach for geometric Langlands correspondence and a variant due to Zhu

$$\mathsf{Be}_{\check{G}} \simeq \mathsf{KI}_{\check{G}}^{\mathsf{dR}}$$
 .

For certain algebraic connection, show its (relative) rigid cohomology is isomorphic to its (relative) algebraic de Rham cohomology. \exists an isomorphism of arithmetic \mathscr{D} -modules.

$$\left(\mathsf{Be}_{\check{G}}\right)^{\mathsf{an}} \xrightarrow{\sim} \mathsf{Kl}_{\check{G}}^{\mathsf{rig}}.$$

The Frobenius structure on KI^{rig} gives rise to a Frobenius structure on $Be_{\check{c}}$. くしん 山 ふかく 山 く 山 く し く

Frobenius structure on connections 000000000

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Hypergeometric sheaves for classical groups

Theorem (Kamgarpour–X.–L. Yi)

(i) There exists an automorphic function (resp. automorphic sheaf on Bun_G), whose Hecke eigenvalue is isomorphic to Hyp_č($\underline{\lambda}$). (ii) There exists a Frobenius structure on Hyp_{\check{C}}($\underline{\lambda}$), whose Frobenius trace are certain hypergeometric sums.

Frobenius structure on connections 0000000000

Hypergeometric sheaves for classical groups

Theorem (Kamgarpour–X.–L. Yi)

(i) There exists an automorphic function (resp. automorphic sheaf on Bun_G), whose Hecke eigenvalue is isomorphic to Hyp_č($\underline{\lambda}$). (ii) There exists a Frobenius structure on Hyp_{\check{c}}($\underline{\lambda}$), whose Frobenius trace are certain hypergeometric sums.

- Type A case is due to Kamgarpour-L. Yi.
- Beilinson–Drinfeld's approach for geometric Langlands.
- Hyp_{\check{c}}($\underline{\lambda}$) satisfy certain functorial relationship for $SO_{2r+1} \rightarrow SL_{2r+1}$, $Sp_{2r} \rightarrow SL_{2r}$, $SO_{2r+1} \rightarrow SO_{2r+2}$, generalizing that of Kloosterman sheaves for reductive groups.

Kloosterman sum and its generalizations	Bessel connection and hypergeometric connection	Frobenius structure on connections
		00000000

Thank You!

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで