On the Rankin－Selberg problem

Bingrong Huang
Shandong University

Dec．09， 2021
PANT－Kyoto 2021
© RIMS，Kyoto University

Contents

(1) Arithmetic functions
(2) The Rankin-Selberg theorem
(3) The Friedlander-Iwaniec theorem
(4) The Rankin-Selberg problem and main result
(5) Analytic twisted sum of $\mathrm{GL}(3)$ Fourier coefficients
(6) Other results

Arithmetic functions

Let $a: \mathbb{N} \rightarrow \mathbb{C}(n \mapsto a(n))$ be an arithmetic function.
We care about

- Magnitude of arithmetic functions (e.g. the size of $|a(n)|$ as $n \rightarrow \infty$)
- Averages of arithmetic functions (e.g. estimate of $\sum_{n \leq x} a(n)$ as $x \rightarrow \infty$)

Generating series:

- $F(z)=\sum_{n \geq 1} a(n) e(n z)$ where $e(z)=e^{2 \pi i z}$
- $L(s)=\sum_{n \geq 1} a(n) n^{-s}$

Dirichlet convolution $a=b * c$ i.e. $a(n)=\sum_{\ell m=n} b(\ell) c(m)$. We have

$$
\sum_{n \geq 1} \frac{a(n)}{n^{s}}=\sum_{\ell \geq 1} \frac{b(\ell)}{\ell^{s}} \cdot \sum_{m \geq 1} \frac{c(m)}{m^{s}}
$$

Example I: Prime Number Theorem

Let $\mathbb{P}=\{2,3,5,7,11, \cdots\}$ be the set of all prime numbers. Define

$$
\mathbf{1}_{\mathbb{P}}(n)= \begin{cases}1, & \text { if } n \text { is prime } \\ 0, & \text { otherwise }\end{cases}
$$

PNT (Hadamard and de la Vallée Poussin 1896):

$$
\sum_{p \leq x} 1=\sum_{n \leq x} \mathbf{1}_{\mathbb{P}}(n)=\frac{x}{\log x}+o\left(\frac{x}{\log x}\right) .
$$

Riemann Hypothesis $\Longleftrightarrow \sum_{n \leq x} \mathbf{1}_{\mathbb{P}}(n)=\int_{2}^{x} \frac{\mathrm{~d} t}{\log t}+O\left(x^{1 / 2+\varepsilon}\right)$.

Example II: Dirichlet's divisor problem

The divisor function: $\tau(n)=\sum_{d \mid n} 1=(u * u)(n) \ll n^{\varepsilon}$.
Dirichlet's hyperbola method (1849):

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O\left(x^{1 / 2}\right)
$$

Define $\Delta(x):=\sum_{n \leq x} \tau(n)-(x \log x+(2 \gamma-1) x)$.
Harmonic analysis (Voronoi 1904): $\Delta(x)=O\left(x^{1 / 3} \log x\right)$.
Exponential pairs (van der Corput 1922): $\Delta(x)=O\left(x^{1 / 3-\delta}\right)$.
Conjecture: $\Delta(x)=O\left(x^{1 / 4+\varepsilon}\right)$.
Hardy (1916): $\Delta(x)=\Omega\left(x^{1 / 4}(\log x)^{1 / 4} \log \log x\right)$.

The upper half plane

$\mathbb{H}=\{z=x+i y: y>0\}$ the upper half plane.
$\mathrm{SL}_{2}(\mathbb{Z})=\left\{\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1, a, b, c, d \in \mathbb{Z}\right\}$ the modular group. $\mathrm{SL}_{2}(\mathbb{Z}) \curvearrowright \mathbb{H}$ by linear fractional transformations $\gamma z=\frac{a z+b}{c z+d}$.

Cusp forms

Let $k \geq 2$ be an even integer. A holomorphic function $f: \overline{\mathbb{H}} \rightarrow \mathbb{C}$ is a modular form of weight k if f satisfies

$$
f(\gamma z)=(c z+d)^{k} f(z), \quad \forall \gamma \in \mathrm{SL}_{2}(\mathbb{Z}), \quad z \in \mathbb{H} .
$$

Since $f(z+1)=f(z)$, we have the Fourier expansion

$$
f(z)=a_{f}(0)+\sum_{n \geq 1} a_{f}(n) n^{\frac{k-1}{2}} e(n z)
$$

If $a_{f}(0)=0$, then f is called a cusp form.
$M_{k}=$ the space of modular forms of weight k. $S_{k}=$ the subspace of cusp forms.
S_{k} is a Hilbert space with inner product $\langle f, g\rangle=\int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{H}} f(z) \overline{g(z)} y^{k} \frac{\mathrm{~d} x \mathrm{~d} y}{y^{2}}$. $\operatorname{dim} S_{k}=k / 12+O(1)$.

Hecke operators

Let $n \in \mathbb{N}$. The n-th Hecke operator $T(n)$ is defined by $\left(f \in S_{k}\right)$

$$
\begin{aligned}
T(n) f(z) & =n^{\frac{k-1}{2}} \sum_{a d=n} d^{-k} \sum_{0 \leq b<d} f\left(\frac{a z+b}{d}\right) \\
& =\sum_{m \geq 1}\left(\sum_{d \mid(m, n)} a_{f}\left(\frac{m n}{d^{2}}\right)\right) m^{\frac{k-1}{2}} e(m z)
\end{aligned}
$$

Then we have:

- $T(n): S_{k} \rightarrow S_{k}$.
- $T(m) T(n)=\sum_{d \mid(m, n)} T\left(\frac{m n}{d^{2}}\right)$.
- $\langle T(n) f, g\rangle=\langle f, T(n) g\rangle$.
- \exists an orthonormal basis H_{k} of S_{k} which consists of Hecke eigenforms.
- if $f \in H_{k}$ and $T(n) f=\lambda_{f}(n) f$, then $a_{f}(n)=a_{f}(1) \lambda_{f}(n)$.
- if $f \in H_{k}$ then $\lambda_{f}(m) \lambda_{f}(n)=\sum_{d \mid(m, n)} \lambda_{f}\left(\frac{m n}{d^{2}}\right)$
(in particular, $\lambda_{f}(n)$ is multiplicative).

Second moment

- In the early 20th century, people wanted to know the size of $\left|\lambda_{f}(n)\right|$, since it is related to number of representations of an integer by a quadratic form. Since $\lambda_{f}(n) \in \mathbb{R}$, we consider $\sum_{n \leq x} \lambda_{f}(n)^{2}$ instead.

Theorem (Rankin 1939 and Selberg 1940)

Let $f \in H_{k}$. We have

$$
\sum_{n \leq x} \lambda_{f}(n)^{2}=c_{f} x+O\left(x^{3 / 5}\right)
$$

- Conjecture: $\sum_{n \leq x} \lambda_{f}(n)^{2}=c_{f} x+O\left(x^{3 / 8+\varepsilon}\right)$.
- Y.-K. Lau, G. Lü, and J. Wu (2011):

$$
\sum_{n \leq x} \lambda_{f}(n)^{2}-c_{f} x=\Omega\left(x^{3 / 8}\right), \quad \text { for } f \in H_{k}
$$

- Generalized Riemann Hypothesis (GRH) gives

$$
\sum_{n \leq x} \lambda_{f}(n)^{2}=c_{f} x+O\left(x^{1 / 2+\varepsilon}\right)
$$

The Rankin-Selberg L-functions

Assume $f \in H_{k}$.
The Rankin-Selberg L-function: $L(s, f \times f)=\sum_{m \geq 1} \frac{\lambda_{f \times f}(m)}{m^{s}}=\zeta(2 s) \sum_{n \geq 1} \frac{\lambda_{f}(n)^{2}}{n^{5}}$.
The Euler product: $L(s, f \times f)=\prod_{p}\left(1-\frac{\alpha_{f}(p)^{2}}{p^{s}}\right)^{-1}\left(1-\frac{1}{p^{s}}\right)^{-2}\left(1-\frac{\beta_{f}(p)^{2}}{p^{s}}\right)^{-1}$.
The Rankin-Selberg method (unfolding method):

$$
\Lambda(s, f \times f)=\gamma(s, f \times f) L(s, f \times f)=\Lambda(1-s, f \times f),
$$

where

$$
\gamma(s, f \times f)=\pi^{-2 s} \Gamma\left(\frac{s+k}{2}\right) \Gamma\left(\frac{s+k-1}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \Gamma\left(\frac{s}{2}\right) .
$$

$\Lambda(s, f \times f)$ admits a meromorphic continuation to $s \in \mathbb{C}$ of order 1 with at most poles at $s=0$ and $s=1$.

Proof of Rankin-Selberg Theorem

By the Rankin-Selberg method we get (e.g. Landau, Friedlander-Iwaniec)

$$
\sum_{m \leq x} \lambda_{f \times f}(m)=C_{f x}+O\left(x^{3 / 5+\varepsilon}\right) .
$$

Note that $\lambda_{f}(n)^{2}=\sum \sum_{\ell^{2} m=n} \mu(\ell) \lambda_{f \times f}(m)$. Hence we have

$$
\begin{aligned}
\sum_{n \leq x} \lambda_{f}(n)^{2} & =\sum_{\ell^{2} m \leq x} \sum_{m(\ell) \lambda_{f \times f}(m)} \\
& =\sum_{\ell \leq x^{1 / 2}} \mu(\ell)\left(C_{f} \frac{x}{\ell^{2}}+O\left(x^{3 / 5+\varepsilon} \ell^{-6 / 5}\right)\right) \\
& =\frac{C_{f}}{\zeta(2)} x+O\left(x^{3 / 5+\varepsilon}\right)
\end{aligned}
$$

L-functions of degree d

More generally, consider an arithmetic function $\lambda_{F}(n)$ such that its Dirichlet series $L(s, F)$ is an L-function of degree d :

$$
L(s, F)=\sum_{n \geq 1} \frac{\lambda_{F}(n)}{n^{s}}=\prod_{p} \prod_{j=1}^{d}\left(1-\frac{\alpha_{j}(p)}{p^{s}}\right)^{-1}, \quad \operatorname{Re}(s)>1 .
$$

Gamma factor: $\gamma(s, F)=\pi^{-d s / 2} \prod_{j=1}^{d} \Gamma\left(\frac{s-\kappa_{j}}{2}\right)$.
The complete L-function

$$
\Lambda(s, F)=q(F)^{s / 2} \gamma(s, F) L(s, F)
$$

admits an analytic continuation to a meromorphic function for $s \in \mathbb{C}$ of order 1 with at most poles at $s=0$ and $s=1$.

Functional equation:

$$
\Lambda(s, F)=\varepsilon(F) \wedge(1-s, \bar{F})
$$

where \bar{F} is the dual of F for which $\lambda_{\bar{F}}(n)=\overline{\lambda_{F}(n)}, \gamma(s, \bar{F})=\overline{\gamma(\bar{s}, F)}$, $q(\bar{F})=q(F)$, and $\varepsilon(F)$ is the root number of $L(s, F)$ satisfying that $|\varepsilon(F)|=1$.

Friedlander-Iwaniec

Theorem (Friedlander-Iwaniec 2005)

Assume $\lambda_{F}(n) \ll n^{\varepsilon}$. Then we have

$$
\sum_{n \leq x} \lambda_{F}(n)=\operatorname{Res}_{s=1} \frac{L(s, F) x^{s}}{s}+O_{F}\left(x^{\frac{d-1}{d+1}+\varepsilon}\right)
$$

Example: Let $f \in H_{k}$. Thanks to Deligne 1972, we have $\left|\lambda_{f}(n)\right| \leq \tau(n)$. We at least have

$$
\sum_{n \leq x} \lambda_{f}(n)=O\left(x^{1 / 3+\varepsilon}\right)
$$

(Hecke, Walfisz, ..., Deligne, Hafner and Ivić, Rankin, J. Wu, H. Tang, Z. Xu, L. Yang, ...)

- Compare to Dirichlet divisor problem.

Friedlander-Iwaniec: proof

Proof sketch:

- Perron's formula: $\sum_{n \leq x} \lambda_{F}(n)=\frac{1}{2 \pi i} \int_{1+\varepsilon-i T}^{1+\varepsilon+i T} L(s, F) \frac{x^{s}}{s} \mathrm{~d} s+O\left(\frac{x^{1+2 \varepsilon}}{T}\right)$.
- Shifting the contour: $\sum_{n \leq x} \lambda_{F}(n)=\operatorname{Res}_{s=1} \frac{L(s, F) x^{s}}{s}+I(x)+O\left(\frac{x^{1+\varepsilon \varepsilon}}{T}\right)$ where $I(x)=\frac{1}{2 \pi i} \int_{-\varepsilon-i T}^{-\varepsilon+i T} L(s, F) \frac{x^{s}}{s} \mathrm{~d} s$.
- Changing variable $s \rightsquigarrow 1-s$ and applying functional equation: $I(x)=\frac{1}{2 \pi i} \int_{1+\varepsilon-i T}^{1+\varepsilon+i T} L(1-s, F) \frac{x^{1-s}}{1-s} \mathrm{~d} s=\frac{\varepsilon(F)}{2 \pi i} \int_{1+\varepsilon-i T}^{1+\varepsilon+i T} G(s) L(s, \bar{F}) \frac{x^{1-s}}{1-s} \mathrm{~d} s$.
- Stationary phase method:

$$
I(x) \rightsquigarrow C_{F} x^{\frac{d-1}{2 d}} \sum_{n \asymp N} \overline{\lambda_{F}(n)} n^{-\frac{d+1}{2 d}} e\left(\pm T(n / N)^{1 / d}\right) \text {, with } N \asymp T^{d} / x .
$$

- Bounding dual sum trivially:
$\sum_{n \leq x} \lambda_{F}(n)=\operatorname{Res}_{s=1} \frac{L(s, F) x^{s}}{s}+O\left(T^{\frac{d-1}{2}}+\frac{x^{1+2 \varepsilon}}{T}\right)$. Take $T=x^{\frac{2}{d+1}}$.
Conjecture:

$$
\sum_{n \leq x} \lambda_{F}(n)=\operatorname{Res}_{s=1} \frac{L(s, F) x^{s}}{s}+O_{F}\left(x^{\frac{d-1}{2 d}+\varepsilon}\right)
$$

GRH implies:

$$
\sum_{n \leq x} \lambda_{F}(n)=\operatorname{Res}_{s=1} \frac{L(s, F) x^{s}}{s}+O_{F}\left(x^{\frac{1}{2}+\varepsilon}\right)
$$

The Rankin-Selberg problem

The Rankin-Selberg problem

Let $f \in H_{k}$. Can we unconditionally prove

$$
\sum_{n \leq x} \lambda_{f}(n)^{2}=c_{f} x+O\left(x^{3 / 5-\delta}\right),
$$

for some $\delta>0$?

Main result

Theorem 1 [H. 2021]

If $f \in H_{k}$, then we have

$$
\sum_{n \leq x} \lambda_{f}(n)^{2}=c_{f} x+O\left(x^{3 / 5-\delta}\right)
$$

for any $\delta<1 / 560$.

- The same result holds for a Hecke-Maass cusp form f for $\operatorname{SL}(2, \mathbb{Z})$.
- The mean square of the divisor function: (Ramanujan, Wilson, ..., Ramachandra-Sankaranarayanan, Jia-Sankaranarayanan)

$$
\sum_{n \leq x} \tau(n)^{2}=x P_{3}(\log x)+O\left(x^{1 / 2}(\log x)^{5}\right)
$$

The symmetric square L-functions

Let $f \in H_{k}$. The symmetric square lift L-function:

$$
\begin{aligned}
L\left(s, \operatorname{sym}^{2} f\right) & =\zeta(2 s) \sum_{n \geq 1} \frac{\lambda_{f}\left(n^{2}\right)}{n^{s}} \\
& =\prod_{p}\left(1-\frac{\alpha_{f}(p)^{2}}{p^{s}}\right)^{-1}\left(1-\frac{1}{p^{s}}\right)^{-1}\left(1-\frac{\beta_{f}(p)^{2}}{p^{s}}\right)^{-1} .
\end{aligned}
$$

Shimura (1975): The complete L-function $\Lambda\left(s, \operatorname{sym}^{2} f\right)=\gamma\left(s, \operatorname{sym}^{2} f\right) L\left(s, \operatorname{sym}^{2} f\right)$ admits an analytic continuation to an entire function for $s \in \mathbb{C}$ of order 1 .

Functional equation:

$$
\Lambda\left(s, \operatorname{sym}^{2} f\right)=\Lambda\left(1-s, \operatorname{sym}^{2} f\right)
$$

Gelbart and Jacquet (1978): $\operatorname{sym}^{2} f$ is an automorphic cuspidal representation for GL(3).
We have $f \times f=1 \boxplus \operatorname{sym}^{2} f$, that is

$$
L(s, f \times f)=\zeta(s) L\left(s, \operatorname{sym}^{2} f\right)
$$

The $\mathrm{GL}(1) \boxplus \mathrm{GL}(3)$ case

By $L(s, f \times f)=\zeta(s) L\left(s, s y m^{2} f\right)$ we have

$$
\lambda_{f \times f}(n)=\lambda_{1 \boxplus \text { sym }^{2} f}(n)=\left(u * \lambda_{\text {sym }^{2}}\right)(n)=\sum_{\ell m=n} \lambda_{\text {sym }^{2} f}(m) .
$$

Let Φ be a Hecke-Maass cusp form for $\operatorname{SL}(3, \mathbb{Z})$.
Let $A_{\Phi}(1, n)$ be the normalized Fourier coefficients of Φ.
The generalized Ramanujan conjecture (GRC) for Φ asserts that $A_{\Phi}(1, n) \ll n^{o(1)}$.

Theorem 2 [H. 2021]

Assuming GRC for Φ, then we have

$$
\sum_{n \leq X} \lambda_{1 \boxplus \Phi}(n)=L(1, \Phi) X+O_{\Phi}\left(X^{3 / 5-\delta}\right),
$$

for any $\delta<1 / 560$.
Furthermore, if $\Phi=\operatorname{sym}^{2} f$, then we don't need to assume GRC for Φ.

Dual sum

The dual sum (e.g. Friedlander-Iwaniec):

$$
S=\sum_{n \asymp N} \lambda_{1 \boxplus \Phi}(n) e\left(T(n / N)^{1 / 4}\right),
$$

with $T=x^{2 / 5+\delta}$ and $N \asymp T^{4} / x=x^{3 / 5+4 \delta}$.
So for some L, M such that $L M \asymp N$,

$$
S \rightsquigarrow \sum_{\ell \asymp L} \sum_{m \asymp M} A(1, m) e\left(T(\ell / L)^{1 / 4}(m / M)^{1 / 4}\right),
$$

- If $L \gg T^{\eta}$ then we use exponential pairs to get nontrivial bounds (Weyl, van der Corput, ..., Bourgain).
- If $L \ll T^{\eta}$ then $M \gg x^{3 / 5+4 \delta-\eta} \gg T^{3 / 2-\rho}$.

Analytic twisted sum of GL(3) Fourier coefficients

Let $A(1, m)$ be the Fourier coefficients of a $\mathrm{GL}(3)$ automorphic form, e.g. $A(1, m)=\lambda_{\text {sym }^{2} f} f(m)$. Consider the following sum

$$
\sum_{m \geq 1} A(1, m) e\left(T \varphi\left(\frac{m}{M}\right)\right) V\left(\frac{m}{M}\right),
$$

where $T \geq 1$ is a large parameter, φ is some fixed real-valued smooth function, and $V \in C_{c}^{\infty}\left(\mathbb{R}_{>0}\right)$ and satisfying that $V^{(j)}<_{j} 1$ for all $j \geq 0$.

- Munshi [JAMS 2015] proved the first nontrivial bound for $\varphi(u)=\log u$ with $M \leq T^{3 / 2+\varepsilon}$, and then proved the subconvexity bounds of $\mathrm{GL}(3) \mathrm{L}$-functions in the T-aspect.
- This was strengthened to the above bound for $\varphi(u)=\log u$ and $M \leq T^{3 / 2+\varepsilon}$ by Aggarwal.
- For $\varphi(u)=u^{\beta}$ and $T=\alpha M^{\beta}$, Kumar-Mallesham-Singh proved nontrivial upper bounds (with bounds depending on α).

Analytic twisted sums: Main result

To bound

$$
\sum_{\ell \asymp L}\left|\sum_{m \asymp M} A(1, m) e\left(T(\ell / L)^{1 / 4}(m / M)^{1 / 4}\right)\right|
$$

we prove the following theorem.

Theorem 3 [H. 2021]

Assume $\varphi(u)=u^{\beta}$ with $\beta \in(0,1)$. Then we have

$$
\mathscr{S}:=\sum_{m \geq 1} A(1, m) e\left(T \varphi\left(\frac{m}{M}\right)\right) V\left(\frac{m}{M}\right) \ll T^{3 / 10} M^{3 / 4+\varepsilon},
$$

if $T^{6 / 5} \leq M \leq T^{8 / 5-\varepsilon}$.

Trivial bound for \mathscr{S} is $O(M)$. For our application we need $\beta=1 / 4$.

Sketch of proof of Theorem 3

The Duke-Friedlander-Iwaniec delta method:

$$
\delta(n, 0)=\frac{1}{Q} \sum_{1 \leq q \leq Q} \frac{1}{q} \sum_{a \bmod q}^{\star} e\left(\frac{n a}{q}\right) \int_{\mathbb{R}} g(q, x) e\left(\frac{n x}{q Q}\right) \mathrm{d} x,
$$

for some large Q and certain $g(q, x)$. So (generic case)

$$
\begin{aligned}
\mathscr{S} & \rightsquigarrow \sum_{m \asymp M} \sum_{n \asymp M} A(1, n) e\left(T \varphi\left(\frac{m}{M}\right)\right) \\
& \cdot \frac{1}{Q} \sum_{q \asymp Q} \frac{1}{q} \sum_{a \bmod q}^{\star} e\left(\frac{(m-n) a}{q}\right) \int_{x \asymp 1} e\left(\frac{(m-n) x}{q Q}\right) \mathrm{d} x .
\end{aligned}
$$

Rearranging the sums and integral we get

$$
\begin{array}{r}
\mathscr{S} \rightsquigarrow \frac{1}{Q} \sum_{q \asymp Q} \frac{1}{q} \sum_{a \bmod q}^{\star} \int_{x \asymp 1} \sum_{m \asymp M} e\left(\frac{m a}{q}\right) e\left(T \varphi\left(\frac{m}{M}\right)+\frac{m x}{q Q}\right) \\
\cdot \\
\cdot \sum_{n \asymp M} A(1, n) e\left(\frac{-n a}{q}\right) e\left(\frac{-n x}{q Q}\right) \mathrm{d} x .
\end{array}
$$

We need to save M plus a little more.

Sketch of proof of Theorem 3, cont

By Poisson summation formula and Voronoi summation formula, we get

$$
\begin{aligned}
& \mathscr{S} \rightsquigarrow \frac{1}{Q} \sum_{q \asymp Q} \frac{1}{q} \int_{x \asymp 1} M \sum_{|m| \asymp Q T / M} \mathcal{V}(m, q, x) \\
& \cdot q \sum_{n_{2} \asymp M^{2} / Q^{3}} \frac{A\left(n_{2}, 1\right)}{n_{2}} S\left(-\bar{m}, n_{2} ; q\right) \Psi_{x}^{ \pm}\left(\frac{n_{2}}{q^{3}}\right) \mathrm{d} x,
\end{aligned}
$$

where $S(a, b ; c):=\sum_{d(c)}^{*} e\left(\frac{a d+b \bar{d}}{c}\right)$ is the classical Kloosterman sum,
$\mathcal{V}(m, q, x) \ll T^{-1 / 2}$, and $\Psi_{x}^{ \pm}\left(\frac{n_{2}}{a^{3}}\right) \ll\left(\frac{n_{2}}{q^{3}} M\right)^{1 / 2}$.
We save $\frac{M Q}{M \frac{Q T}{M} \frac{1}{T^{1 / 2}}}=\frac{M}{T^{1 / 2}}$ from the m-sum and a-sum;

$$
\frac{T M}{q^{3 / 2}\left(\frac{M}{q^{3}} T^{3}\right)^{1 / 2}} \asymp \frac{Q^{3 / 2}}{M^{1 / 2}} \text { from the } n \text {-sum. }
$$

We will save $\sqrt{\frac{M}{Q^{2}}}=\frac{M^{1 / 2}}{Q}$ from the x-integral.
In total we save $\frac{M Q^{1 / 2}}{T^{1 / 2}}$ (for some Q such that $M^{1 / 3} \leq Q \leq M^{1 / 2}$).

Sketch of proof of Theorem 3, cont

By Cauchy:

$$
\mathscr{S} \ll \frac{M}{Q^{1 / 2}} \frac{M}{Q^{3 / 2}} \mathcal{T}^{1 / 2}
$$

where

$$
\mathcal{T} \rightsquigarrow \sum_{n \asymp M^{2} / Q^{3}} \frac{1}{n} \cdot\left|\sum_{q \asymp Q} \frac{1}{q} \sum_{m \asymp Q T / M} S(-\bar{m}, n ; q) \mathcal{W}(m, n, q)\right|^{2} .
$$

Opening the square and applying the Poisson modulo $q q^{\prime}$:

$$
\mathcal{T} \rightsquigarrow \sum_{q \asymp Q} \frac{1}{q} \sum_{m \asymp Q T / M} \sum_{q^{\prime} \asymp Q} \frac{1}{q^{\prime}} \sum_{m^{\prime} \asymp Q T / M} \frac{1}{q q^{\prime}} \sum_{n \in \mathbb{Z}} \mathfrak{C}(n) \Im(n),
$$

where the character sum is given by

$$
\mathfrak{C}(n):=\sum_{b \bmod q q^{\prime}} S(-\bar{m}, b ; q) S\left(\bar{m}^{\prime},-b ; q^{\prime}\right) e\left(\frac{n b}{q q^{\prime}}\right) .
$$

Sketch of proof of Theorem 3, cont

Diagonal term ($n=0$):
The generic terms will be $q=q^{\prime}$ and $m=m^{\prime}$. So we save (for \mathscr{S})

$$
\left(Q \cdot \frac{Q T}{M}\right)^{1 / 2}=\frac{Q T^{1 / 2}}{M^{1 / 2}} . \quad \text { Hence in total: } \frac{M Q^{1 / 2}}{T^{1 / 2}} \cdot \frac{Q T^{1 / 2}}{M^{1 / 2}}=M^{1 / 2} Q^{3 / 2}
$$

Off-Diagonal terms ($n \neq 0$):
The length of the dual sum is $\frac{Q^{2} \frac{M}{Q^{2}}}{\frac{M^{2}}{Q^{3}}}=\frac{Q^{3}}{M}$. We can save Q from the character sums (square root cancellation) and $\sqrt{\frac{M}{Q^{2}}}$ from the integral transforms. So we save (for \mathscr{S})

$$
\left(Q \cdot \sqrt{\frac{M}{Q^{2}}} \cdot \frac{1}{\frac{Q^{3}}{M}}\right)^{1 / 2}=\frac{M^{3 / 4}}{Q^{3 / 2}} . \quad \text { Hence in total: } \frac{M Q^{1 / 2}}{T^{1 / 2}} \cdot \frac{M^{3 / 4}}{Q^{3 / 2}}=\frac{M^{7 / 4}}{Q T^{1 / 2}} .
$$

The best choice is $Q=\frac{M^{1 / 2}}{T^{1 / 5}}$, which proves Theorem 3 .

The $\mathrm{GL}(1) \boxplus \mathrm{GL}(2)$ case

Let $f \in H_{k}$. Consider the arithmetic function $\lambda_{1 \boxplus f}(n)=\sum_{\ell m=n} \lambda_{f}(m)$, that is, its Dirichlet series is

$$
L(s, 1 \boxplus f)=\sum_{n \geq 1} \frac{\lambda_{1 \boxplus f}(n)}{n^{s}}=\zeta(s) L(s, f)
$$

This is a degree three case, and we have (even a trivial application of GRH)

$$
\sum_{n \leq x} \lambda_{1 \boxplus f}(n)=c_{f} x+O\left(x^{1 / 2+\varepsilon}\right)
$$

Theorem (H., Yongxiao Lin, and Zhiwei Wang 2021)

We have

$$
\sum_{n \leq x} \lambda_{1 \boxplus f}(n)=c_{f} x+O\left(x^{1 / 2-\delta_{3}}\right)
$$

for any $\delta_{3}<4 / 739$.
Here we have used the classical result on analytic twisted sums of GL(2) Fourier coefficients due to Jutila.

The $\mathrm{GL}(1) \boxplus(\mathrm{GL}(2) \otimes \mathrm{GL}(2))$ case

Let $f \in H_{k}$ and $g \in H_{\ell}$. Consider the arithmetic function $\lambda_{1 \boxplus(f \otimes g)}(n)=\sum_{a b^{2} c=n} \lambda_{f}(c) \lambda_{g}(c)$, that is, its Dirichlet series is

$$
L(s, 1 \boxplus(f \otimes g))=\sum_{n \geq 1} \frac{\lambda_{1 \boxplus(f \otimes g)}(n)}{n^{s}}=\zeta(s) L(s, f \otimes g) .
$$

Theorem (H., Qingfeng Sun, and Huimin Zhang 2021)

Assume $f \neq g$. Then we have

$$
\sum_{n \leq x} \lambda_{1 \boxplus(f \otimes g)}(n)=c_{f, g} x+O\left(x^{2 / 3-\delta_{5}}\right)
$$

for any $\delta_{5}<1 / 356$.

- Yongxiao Lin and Qingfeng Sun improved the exponent 5/7 for the $G L(3) \otimes G L(2)$ case under GRC.
- Huimin Zhang improves (in progress) $3 / 4$ for the $\mathrm{GL}(1) \boxplus(\mathrm{GL}(3) \otimes \mathrm{GL}(2))$ case under GRC.

Analytic twisted sums of $\mathrm{GL}(2) \times \mathrm{GL}(2)$ Fourier coefficients

The key to our improvement is the following estimate:

Theorem (H., Qingfeng Sun, and Huimin Zhang 2021)

Let $\varphi(x)=\alpha \log x$ or $\alpha x^{\beta}(\beta \in(0,1) \backslash\{1 / 2,3 / 4\}, \alpha \in \mathbb{R} \backslash\{0\})$. Let $V(x) \in \mathcal{C}_{c}^{\infty}(1,2)$ with total variation $\operatorname{Var}(\mathrm{V}) \ll 1$ and satisfying the condition

$$
V^{(j)}(x) \ll_{j} \triangle^{j}
$$

for any integer $j \geq 0$ with $\triangle \ll t^{1 / 2-\varepsilon}$ for any $\varepsilon>0$. Then we have

$$
\sum_{n=1}^{\infty} \lambda_{f}(n) \lambda_{g}(n) e\left(t \varphi\left(\frac{n}{X}\right)\right) V\left(\frac{n}{X}\right)<_{f, g, \varphi, \varepsilon} t^{2 / 5} X^{3 / 4+\varepsilon}
$$

for $t^{8 / 5}<X<t^{12 / 5}$.
Previously, Acharya, Sharma and Singh proved the upper bound $O\left(t^{7 / 16} X^{3 / 4+\varepsilon}\right)$ for the case $\varphi(x)=\alpha \log x$ and $X<t^{1+\varepsilon}$.

Short intervals and arithmetic progressions

Friedlander-Iwaniec:

$$
\sum_{x<n \leq x+y} \lambda_{F}(n)-\operatorname{Res}_{s=1} \frac{L(s, F)\left((x+y)^{s}-x^{s}\right)}{s}=o(y)
$$

if $y \geq x^{\frac{d-1}{d+1}+\varepsilon}$.
Arithmetically we have

$$
\sum_{\substack{n \leq x \\ n \equiv a \bmod q}} \lambda_{F}(n)-\frac{1}{\varphi(q)} \sum_{\substack{n \leq x \\(n, q)=1}} \lambda_{F}(n) \lll A \frac{x}{q}(\log x)^{-A}
$$

for $q \leq x^{\frac{2}{d+1}-\varepsilon}$.
For degree three case, breaking $1 / 2$ was done for $\mathrm{GL}(1) \boxplus \mathrm{GL}(1) \boxplus \mathrm{GL}(1)$ case by Friedlander-Iwaniec, Heath-Brown, Fouvry-Kowalski-Michel, Ping Xi; for $\mathrm{GL}(1) \boxplus \mathrm{GL}(2)$ case by Kowalski-Michel-Sawin.

Thank you for your attention!

