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Arithmetic functions

Let a : N→ C (n 7→ a(n)) be an arithmetic function.

We care about

Magnitude of arithmetic functions (e.g. the size of |a(n)| as n→∞)

Averages of arithmetic functions (e.g. estimate of
∑

n≤x a(n) as x →∞)

Generating series:

F (z) =
∑

n≥1 a(n)e(nz) where e(z) = e2πiz

L(s) =
∑

n≥1 a(n)n−s

Dirichlet convolution a = b ∗ c i.e. a(n) =
∑
`m=n b(`)c(m). We have

∑
n≥1

a(n)

ns
=
∑
`≥1

b(`)

`s
·
∑
m≥1

c(m)

ms
.
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Example I: Prime Number Theorem

Let P = {2, 3, 5, 7, 11, · · · } be the set of all prime numbers. Define

1P(n) =

{
1, if n is prime,
0, otherwise.

PNT (Hadamard and de la Vallée Poussin 1896):∑
p≤x

1 =
∑
n≤x

1P(n) =
x

log x
+ o

(
x

log x

)
.

Riemann Hypothesis⇐⇒
∑
n≤x

1P(n) =

∫ x

2

dt

log t
+ O(x1/2+ε).
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Example II: Dirichlet’s divisor problem

The divisor function: τ(n) =
∑
d|n

1 = (u ∗ u)(n)� nε.

Dirichlet’s hyperbola method (1849):∑
n≤x

τ(n) = x log x + (2γ − 1)x + O(x1/2).

Define ∆(x) :=
∑
n≤x

τ(n)− (x log x + (2γ − 1)x).

Harmonic analysis (Voronoi 1904): ∆(x) = O(x1/3 log x).

Exponential pairs (van der Corput 1922): ∆(x) = O(x1/3−δ).

Conjecture: ∆(x) = O(x1/4+ε).

Hardy (1916): ∆(x) = Ω(x1/4(log x)1/4 log log x).
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The upper half plane

H = {z = x + iy : y > 0} the upper half plane.

SL2(Z) =

{
γ =

(
a b
c d

)
: ad − bc = 1, a, b, c , d ∈ Z

}
the modular group.

SL2(Z) y H by linear fractional transformations γz = az+b
cz+d .

SL2(Z)\H
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Cusp forms

Let k ≥ 2 be an even integer. A holomorphic function f : H̄→ C is a modular
form of weight k if f satisfies

f (γz) = (cz + d)k f (z), ∀γ ∈ SL2(Z), z ∈ H.

Since f (z + 1) = f (z), we have the Fourier expansion

f (z) = af (0) +
∑
n≥1

af (n)n
k−1

2 e(nz).

If af (0) = 0, then f is called a cusp form.

Mk = the space of modular forms of weight k .
Sk = the subspace of cusp forms.
Sk is a Hilbert space with inner product 〈f , g〉 =

∫
SL2(Z)\H f (z)g(z)yk dxdy

y2 .

dimSk = k/12 + O(1).
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Hecke operators

Let n ∈ N. The n-th Hecke operator T (n) is defined by (f ∈ Sk)

T (n)f (z) = n
k−1

2

∑
ad=n

d−k
∑

0≤b<d

f

(
az + b

d

)

=
∑
m≥1

( ∑
d|(m,n)

af
(mn

d2

))
m

k−1
2 e(mz).

Then we have:

T (n) : Sk → Sk .

T (m)T (n) =
∑

d|(m,n) T
(
mn
d2

)
.

〈T (n)f , g〉 = 〈f ,T (n)g〉.
∃ an orthonormal basis Hk of Sk which consists of Hecke eigenforms.

if f ∈ Hk and T (n)f = λf (n)f , then af (n) = af (1)λf (n).

if f ∈ Hk then λf (m)λf (n) =
∑

d|(m,n) λf
(
mn
d2

)
(in particular, λf (n) is multiplicative).
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Second moment

In the early 20th century, people wanted to know the size of |λf (n)|, since it
is related to number of representations of an integer by a quadratic form.
Since λf (n) ∈ R, we consider

∑
n≤x λf (n)2 instead.

Theorem (Rankin 1939 and Selberg 1940)

Let f ∈ Hk . We have ∑
n≤x

λf (n)2 = cf x + O(x3/5).

Conjecture:
∑

n≤x λf (n)2 = cf x + O(x3/8+ε).

Y.-K. Lau, G. Lü, and J. Wu (2011):∑
n≤x

λf (n)2 − cf x = Ω(x3/8), for f ∈ Hk .

Generalized Riemann Hypothesis (GRH) gives∑
n≤x

λf (n)2 = cf x + O(x1/2+ε).
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The Rankin–Selberg L-functions

Assume f ∈ Hk .

The Rankin–Selberg L-function: L(s, f × f ) =
∑
m≥1

λf×f (m)
ms = ζ(2s)

∑
n≥1

λf (n)2

ns .

The Euler product: L(s, f × f ) =
∏

p

(
1− αf (p)2

ps

)−1 (
1− 1

ps

)−2 (
1− βf (p)2

ps

)−1

.

The Rankin–Selberg method (unfolding method):

Λ(s, f × f ) = γ(s, f × f )L(s, f × f ) = Λ(1− s, f × f ),

where

γ(s, f × f ) = π−2sΓ

(
s + k

2

)
Γ

(
s + k − 1

2

)
Γ

(
s + 1

2

)
Γ
( s

2

)
.

Λ(s, f × f ) admits a meromorphic continuation to s ∈ C of order 1 with at most
poles at s = 0 and s = 1.
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Proof of Rankin–Selberg Theorem

By the Rankin–Selberg method we get (e.g. Landau, Friedlander–Iwaniec)∑
m≤x

λf×f (m) = Cf x + O(x3/5+ε).

Note that λf (n)2 =
∑∑

`2m=n µ(`)λf×f (m). Hence we have∑
n≤x

λf (n)2 =
∑∑
`2m≤x

µ(`)λf×f (m)

=
∑
`≤x1/2

µ(`)
(
Cf

x

`2
+ O(x3/5+ε`−6/5)

)
=

Cf

ζ(2)
x + O(x3/5+ε). �
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L-functions of degree d

More generally, consider an arithmetic function λF (n) such that its Dirichlet series
L(s,F ) is an L-function of degree d :

L(s,F ) =
∑
n≥1

λF (n)

ns
=
∏
p

d∏
j=1

(
1− αj(p)

ps

)−1

, Re(s) > 1.

Gamma factor: γ(s,F ) = π−ds/2
∏d

j=1 Γ
(

s−κj

2

)
.

The complete L-function

Λ(s,F ) = q(F )s/2γ(s,F )L(s,F )

admits an analytic continuation to a meromorphic function for s ∈ C of order 1
with at most poles at s = 0 and s = 1.
Functional equation:

Λ(s,F ) = ε(F )Λ(1− s, F̄ ),

where F̄ is the dual of F for which λF̄ (n) = λF (n), γ(s, F̄ ) = γ(s̄,F ),
q(F̄ ) = q(F ), and ε(F ) is the root number of L(s,F ) satisfying that |ε(F )| = 1.
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Friedlander–Iwaniec

Theorem (Friedlander–Iwaniec 2005)

Assume λF (n)� nε. Then we have∑
n≤x

λF (n) = Ress=1
L(s,F )x s

s
+ OF (x

d−1
d+1 +ε).

Example: Let f ∈ Hk . Thanks to Deligne 1972, we have |λf (n)| ≤ τ(n). We at
least have ∑

n≤x

λf (n) = O(x1/3+ε).

(Hecke, Walfisz, ..., Deligne, Hafner and Ivić, Rankin, J. Wu, H. Tang, Z. Xu, L.
Yang, ...)

Compare to Dirichlet divisor problem.
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Friedlander–Iwaniec: proof

Proof sketch:

Perron’s formula:
∑

n≤x λF (n) = 1
2πi

∫ 1+ε+iT

1+ε−iT L(s,F ) x s

s ds + O( x1+2ε

T ).

Shifting the contour:
∑

n≤x λF (n) = Ress=1
L(s,F )x s

s + I (x) + O( x1+2ε

T ) where

I (x) = 1
2πi

∫ −ε+iT

−ε−iT L(s,F ) x s

s ds.

Changing variable s  1− s and applying functional equation:

I (x) = 1
2πi

∫ 1+ε+iT

1+ε−iT L(1− s,F ) x1−s

1−s ds = ε(F )
2πi

∫ 1+ε+iT

1+ε−iT G (s)L(s, F̄ ) x1−s

1−s ds.

Stationary phase method:

I (x) CF x
d−1

2d
∑

n�N λF (n)n−
d+1
2d e(±T (n/N)1/d), with N � T d/x .

Bounding dual sum trivially:∑
n≤x λF (n) = Ress=1

L(s,F )x s

s + O(T
d−1

2 + x1+2ε

T ). Take T = x
2

d+1 . �

Conjecture: ∑
n≤x

λF (n) = Ress=1
L(s,F )x s

s
+ OF (x

d−1
2d +ε).

GRH implies: ∑
n≤x

λF (n) = Ress=1
L(s,F )x s

s
+ OF (x

1
2 +ε).
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The Rankin–Selberg problem

The Rankin–Selberg problem

Let f ∈ Hk . Can we unconditionally prove∑
n≤x

λf (n)2 = cf x + O(x3/5−δ),

for some δ > 0?
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Main result

Theorem 1 [H. 2021]

If f ∈ Hk , then we have ∑
n≤x

λf (n)2 = cf x + O(x3/5−δ),

for any δ < 1/560.

The same result holds for a Hecke–Maass cusp form f for SL(2,Z).

The mean square of the divisor function: (Ramanujan, Wilson, ...,
Ramachandra–Sankaranarayanan, Jia–Sankaranarayanan)∑

n≤x

τ(n)2 = xP3(log x) + O(x1/2(log x)5).
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The symmetric square L-functions

Let f ∈ Hk . The symmetric square lift L-function:

L(s, sym2 f ) = ζ(2s)
∑
n≥1

λf (n2)

ns

=
∏
p

(
1− αf (p)2

ps

)−1(
1− 1

ps

)−1(
1− βf (p)2

ps

)−1

.

Shimura (1975): The complete L-function Λ(s, sym2 f ) = γ(s, sym2 f )L(s, sym2 f )
admits an analytic continuation to an entire function for s ∈ C of order 1.

Functional equation:

Λ(s, sym2 f ) = Λ(1− s, sym2 f ).

Gelbart and Jacquet (1978): sym2 f is an automorphic cuspidal representation for
GL(3).

We have f × f = 1� sym2 f , that is

L(s, f × f ) = ζ(s)L(s, sym2 f ).
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The GL(1)� GL(3) case

By L(s, f × f ) = ζ(s)L(s, sym2 f ) we have

λf×f (n) = λ1�sym2 f (n) = (u ∗ λsym2 )(n) =
∑
`m=n

λsym2 f (m).

Let Φ be a Hecke–Maass cusp form for SL(3,Z).
Let AΦ(1, n) be the normalized Fourier coefficients of Φ.
The generalized Ramanujan conjecture (GRC) for Φ asserts that AΦ(1, n)� no(1).

Theorem 2 [H. 2021]

Assuming GRC for Φ, then we have∑
n≤X

λ1�Φ(n) = L(1,Φ)X + OΦ(X 3/5−δ),

for any δ < 1/560.

Furthermore, if Φ = sym2 f , then we don’t need to assume GRC for Φ.
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Dual sum

The dual sum (e.g. Friedlander–Iwaniec):

S =
∑
n�N

λ1�Φ(n)e(T (n/N)1/4),

with T = x2/5+δ and N � T 4/x = x3/5+4δ.

So for some L,M such that LM � N,

S  
∑
`�L

∑
m�M

A(1,m)e(T (`/L)1/4(m/M)1/4),

If L� T η then we use exponential pairs to get nontrivial bounds (Weyl, van
der Corput, ..., Bourgain).

If L� T η then M � x3/5+4δ−η � T 3/2−ρ.
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Analytic twisted sum of GL(3) Fourier coefficients

Let A(1,m) be the Fourier coefficients of a GL(3) automorphic form, e.g.
A(1,m) = λsym2 f (m). Consider the following sum∑

m≥1

A(1,m)e
(
Tϕ

(m
M

))
V
(m
M

)
,

where T ≥ 1 is a large parameter, ϕ is some fixed real-valued smooth function,
and V ∈ C∞c (R>0) and satisfying that V (j) �j 1 for all j ≥ 0.

Munshi [JAMS 2015] proved the first nontrivial bound for ϕ(u) = log u with
M ≤ T 3/2+ε, and then proved the subconvexity bounds of GL(3) L-functions
in the T -aspect.

This was strengthened to the above bound for ϕ(u) = log u and M ≤ T 3/2+ε

by Aggarwal.

For ϕ(u) = uβ and T = αMβ , Kumar–Mallesham–Singh proved nontrivial
upper bounds (with bounds depending on α).
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Analytic twisted sums: Main result

To bound ∑
`�L

∣∣∣∣ ∑
m�M

A(1,m)e(T (`/L)1/4(m/M)1/4)

∣∣∣∣,
we prove the following theorem.

Theorem 3 [H. 2021]

Assume ϕ(u) = uβ with β ∈ (0, 1). Then we have

S :=
∑
m≥1

A(1,m)e
(
Tϕ

(m
M

))
V
(m
M

)
� T 3/10M3/4+ε,

if T 6/5 ≤ M ≤ T 8/5−ε.

Trivial bound for S is O(M). For our application we need β = 1/4.
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Sketch of proof of Theorem 3

The Duke–Friedlander–Iwaniec delta method:

δ(n, 0) =
1

Q

∑
1≤q≤Q

1

q

∑?

a mod q

e

(
na

q

)∫
R
g(q, x)e

(
nx

qQ

)
dx ,

for some large Q and certain g(q, x). So (generic case)

S  
∑
m�M

∑
n�M

A(1, n)e
(
Tϕ

(m
M

))
· 1

Q

∑
q�Q

1

q

∑?

a mod q

e

(
(m − n)a

q

)∫
x�1

e

(
(m − n)x

qQ

)
dx .

Rearranging the sums and integral we get

S  
1

Q

∑
q�Q

1

q

∑?

a mod q

∫
x�1

∑
m�M

e

(
ma

q

)
e

(
Tϕ

(m
M

)
+

mx

qQ

)

·
∑
n�M

A(1, n)e

(
−na
q

)
e

(
−nx
qQ

)
dx .

We need to save M plus a little more.
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Sketch of proof of Theorem 3, cont

By Poisson summation formula and Voronoi summation formula, we get

S  
1

Q

∑
q�Q

1

q

∫
x�1

M
∑

|m|�QT/M

V(m, q, x)

·q
∑

n2�M2/Q3

A(n2, 1)

n2
S (−m̄, n2; q) Ψ±x

(
n2

q3

)
dx ,

where S(a, b; c) :=
∑∗

d(c) e
(

ad+bd̄
c

)
is the classical Kloosterman sum,

V(m, q, x)� T−1/2, and Ψ±x

(
n2

q3

)
�
(

n2

q3 M
)1/2

.

We save MQ
M QT

M
1

T1/2

= M
T 1/2 from the m-sum and a-sum;

M
q3/2(

n2
q3 M)1/2 � Q3/2

M1/2 from the n-sum.

We will save
√

M
Q2 = M1/2

Q from the x-integral.

In total we save MQ1/2

T 1/2 (for some Q such that M1/3 ≤ Q ≤ M1/2).
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Sketch of proof of Theorem 3, cont

By Cauchy:

S � M

Q1/2

M

Q3/2
T 1/2,

where

T  
∑

n�M2/Q3

1

n
·
∣∣∣∑
q�Q

1

q

∑
m�QT/M

S (−m̄, n; q)W(m, n, q)
∣∣∣2.

Opening the square and applying the Poisson modulo qq′:

T  
∑
q�Q

1

q

∑
m�QT/M

∑
q′�Q

1

q′

∑
m′�QT/M

1

qq′

∑
n∈Z

C(n)I(n),

where the character sum is given by

C(n) :=
∑

b mod qq′

S (−m̄, b; q)S (m̄′,−b; q′) e

(
nb

qq′

)
.
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Sketch of proof of Theorem 3, cont

Diagonal term (n = 0):
The generic terms will be q = q′ and m = m′. So we save (for S )(

Q · QT
M

)1/2

=
QT 1/2

M1/2
. Hence in total:

MQ1/2

T 1/2
· QT

1/2

M1/2
= M1/2Q3/2.

Off-Diagonal terms (n 6= 0):

The length of the dual sum is
Q2 M

Q2

M2

Q3

= Q3

M . We can save Q from the character

sums (square root cancellation) and
√

M
Q2 from the integral transforms. So we

save (for S )(
Q ·
√

M

Q2
· 1

Q3

M

)1/2

=
M3/4

Q3/2
. Hence in total:

MQ1/2

T 1/2
· M

3/4

Q3/2
=

M7/4

QT 1/2
.

The best choice is Q = M1/2

T 1/5 , which proves Theorem 3. �
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The GL(1)� GL(2) case

Let f ∈ Hk . Consider the arithmetic function λ1�f (n) =
∑
`m=n λf (m), that is, its

Dirichlet series is

L(s, 1� f ) =
∑
n≥1

λ1�f (n)

ns
= ζ(s)L(s, f ).

This is a degree three case, and we have (even a trivial application of GRH)∑
n≤x

λ1�f (n) = cf x + O(x1/2+ε).

Theorem (H., Yongxiao Lin, and Zhiwei Wang 2021)

We have ∑
n≤x

λ1�f (n) = cf x + O(x1/2−δ3 ),

for any δ3 < 4/739.

Here we have used the classical result on analytic twisted sums of GL(2) Fourier
coefficients due to Jutila.
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The GL(1)� (GL(2)⊗ GL(2)) case

Let f ∈ Hk and g ∈ H`. Consider the arithmetic function
λ1�(f⊗g)(n) =

∑
ab2c=n λf (c)λg (c), that is, its Dirichlet series is

L(s, 1� (f ⊗ g)) =
∑
n≥1

λ1�(f⊗g)(n)

ns
= ζ(s)L(s, f ⊗ g).

Theorem (H., Qingfeng Sun, and Huimin Zhang 2021)

Assume f 6= g. Then we have∑
n≤x

λ1�(f⊗g)(n) = cf ,gx + O(x2/3−δ5 ),

for any δ5 < 1/356.

Yongxiao Lin and Qingfeng Sun improved the exponent 5/7 for the
GL(3)⊗ GL(2) case under GRC.

Huimin Zhang improves (in progress) 3/4 for the GL(1)� (GL(3)⊗ GL(2))
case under GRC.
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Analytic twisted sums of GL(2)×GL(2) Fourier coefficients

The key to our improvement is the following estimate:

Theorem (H., Qingfeng Sun, and Huimin Zhang 2021)

Let ϕ(x) = α log x or αxβ (β ∈ (0, 1)\{1/2, 3/4}, α ∈ R\{0}). Let
V (x) ∈ C∞c (1, 2) with total variation Var(V)� 1 and satisfying the condition

V (j)(x)�j 4j

for any integer j ≥ 0 with 4� t1/2−ε for any ε > 0. Then we have

∞∑
n=1

λf (n)λg (n)e
(
tϕ
( n

X

))
V
( n

X

)
�f ,g ,ϕ,ε t

2/5X 3/4+ε

for t8/5 < X < t12/5.

Previously, Acharya, Sharma and Singh proved the upper bound O(t7/16X 3/4+ε)
for the case ϕ(x) = α log x and X < t1+ε.
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Short intervals and arithmetic progressions

Friedlander–Iwaniec:∑
x<n≤x+y

λF (n)− Res
s=1

L(s,F )((x + y)s − x s)

s
= o(y),

if y ≥ x
d−1
d+1 +ε.

Arithmetically we have∑
n≤x

n≡a mod q

λF (n)− 1

ϕ(q)

∑
n≤x

(n,q)=1

λF (n)�A
x

q
(log x)−A

for q ≤ x
2

d+1−ε.

For degree three case, breaking 1/2 was done for GL(1)� GL(1)� GL(1) case by
Friedlander–Iwaniec, Heath-Brown, Fouvry–Kowalski–Michel, Ping Xi; for
GL(1)� GL(2) case by Kowalski–Michel–Sawin.
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Thank you for your attention!
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