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Arithmetic functions

Let a: N — C (n+— a(n)) be an arithmetic function.

We care about
o Magnitude of arithmetic functions (e.g. the size of |a(n)| as n — o0)

o Averages of arithmetic functions (e.g. estimate of >~ _ a(n) as x — 00)

Generating series:
o F(z) =3_,>; a(n)e(nz) where e(z) = e2miz

o L(s) =2 sy a(n)n

Dirichlet convolution a = b* c i.e. a(n) =", _, b(¢£)c(m). We have

a(n b(¢ c(m
Z f,s)zz és)z ,(-ns)

n>1 >1 m>1




Example I: Prime Number Theorem

Let P ={2,3,5,7,11,-- -} be the set of all prime numbers. Define

| 1, if nis prime,
1p(n) = { 0, otherwise.

PNT (Hadamard and de la Vallée Poussin 1896):

S 1= Y k()= s+ (X> |

p<x n<x |0gX
Ri Hypothesis <= ) _ 1p( —— + O(x1/?*9).
iemann Hypothesis ;X p(n) = / log £ + O(x )



Example Il: Dirichlet's divisor problem

The divisor function: 7(n) = > 1= (u=* u)(n) < n°.
d|n
Dirichlet’s hyperbola method (1849):

ZT(n) = xlog x 4 (27 — 1)x 4+ O(x'/?).

n<x

Define A(x) := 3 7(n) — (xlog x + (2y — 1)x).

n<x

Harmonic analysis (Voronoi 1904): A(x) = O(x*/3log x).
Exponential pairs (van der Corput 1922): A(x) = O(x/379).
Conjecture: A(x) = O(x1/4+9).

Hardy (1916): A(x) = Q(x*/*(log x)*/* log log x).



The upper half plane

H = {z=x+iy:y > 0} the upper half plane.

SLy(Z) = {7 = <i Z cad —bc=1, a,b,c,dc Z} the modular group.

SL2(Z) ~ H by linear fractional transformations vz = ZIZ

ST-'S

+1

SLo(Z)\H




Let k > 2 be an even integer. A holomorphic function f : H — C is a modular
form of weight k if f satisfies

f(yz) = (cz + d)*f(z), Vv € SLy(Z), z € H.

Since f(z + 1) = f(z), we have the Fourier expansion

f(z) = ar(0) + Y ar(n)n'7 e(nz).

n>1

If ar(0) = 0, then f is called a cusp form.

My = the space of modular forms of weight k.

Sk = the subspace of cusp forms. L

Sk is a Hilbert space with inner product (f,g) = fSL2(Z)\H f(z)g(z)yk%.
dim S = k/12 + O(1).



Hecke operators

Let n € N. The n-th Hecke operator T(n) is defined by (f € S)

T(n)f(z) = n'T ddk Ny f (az;— b>

ad=n 0<b<d
mn ko1
= Z ar (?) m 7z e(mz).
m=>1 *d|(m,n)

Then we have:
e T(n):Sk— Sk
o T(m)T(n) =Y gmn T ()
o (T(n)f.g) = (F, T(n)g).
@ J an orthonormal basis Hy of Sk which consists of Hecke eigenforms.
o if f € He and T(n)f = A¢(n)f, then ar(n) = ar(1)Ar(n).
o if f € Hi then Ar(m)Ar(n) =D g (m.n) Af (22)
(in particular, A¢(n) is multiplicative).



Second moment

@ In the early 20th century, people wanted to know the size of |A¢(n)|, since it
is related to number of representations of an integer by a quadratic form.
Since A\r(n) € R, we consider >° _ Ar(n)? instead.

n<x

Theorem (Rankin 1939 and Selberg 1940)

Let f € H,. We have
Z)\f(n)2 = crx + O(x*5).

n<x

o Conjecture: >, _ Ar(n )2 = crx + O(x3/8+¢).
e Y.-K. Lau, G. Lii, and J. Wu (2011):

Z Ar(n)? — cpx = Q(x%/8),  for f € Hy.
n<x
o Generalized Riemann Hypothesis (GRH) gives
Z)\f(n)2 = crx + O(x1/?%9),

n<x



The Rankin—Selberg L-functions

Assume f € Hy.

The Rankin—-Selberg L-function: L(s,f x f) = >_ )“XTQ('") =((2s) > Aelo)®,
m>1 n>1

The Euler product: L(s,f x f) =[], (1 _ %)*1 (1 - #)72 (1 B M)*l

The Rankin—-Selberg method (unfolding method):

A(s,fxFf)y=~(s,f x f)L(s,f x f)=N1—s,f x f),

o [stk s+k—-1 s+1 (f)
y(s,fxf)=m F< 5 )F( 5 r 5 r 5)
A(s, f x ) admits a meromorphic continuation to s € C of order 1 with at most
poles at s =0 and s = 1.

where




Proof of Rankin—Selberg Theorem

By the Rankin—Selberg method we get (e.g. Landau, Friedlander—lwaniec)

> Arsr(m) = Cex + O(x/%°).

m<x

Note that Ar(n)? = >, _, i(€)Arxr(m). Hence we have

DA =303 i(OAex(m)
n<x 2
) €<§X:1/2 #0 (Cfe% +0(x* 5+Eg—e/5))

— C(C£)x+ O(x3/5+5). O



L-functions of degree d

More generally, consider an arithmetic function Ag(n) such that its Dirichlet series
L(s, F) is an L-function of degree d:

L(s,F) = Hf[( O‘J(”> 1, Re(s) > 1.

n>1

Gamma factor: (s, F) = m~9/2 H}j:1 r (ST") :

The complete L-function
N(s, F) = q(F)*/*y(s, F)L(s, F)

admits an analytic continuation to a meromorphic function for s € C of order 1
with at most poles at s =0 and s = 1.
Functional equation:

A(s,F) = e(F)N(1 — s, F),

where F is the dual of F for which Az(n) = A¢(n), 7(s, F) = (3, F),
q(F) = q(F), and (F) is the root number of L(s, F) satisfying that |e(F)| = 1.



Friedlander—Iwaniec

Theorem (Friedlander—lwaniec 2005)

Assume Ag(n) < n°. Then we have

L( F) + OF(Xd+1+E)

Z)\F(n = Resgoq ———

n<x

Example: Let f € Hi. Thanks to Deligne 1972, we have |A¢(n)| < 7(n). We at

least have
> Ae(n) = O(x1/3F).

n<x

(Hecke, Walfisz, ..., Deligne, Hafner and lvi¢, Rankin, J. Wu, H. Tang, Z. Xu, L.
Yang, ...)

@ Compare to Dirichlet divisor problem.



Friedlander—lwaniec: proof

Proof sketch:

o Perron’s formula: > . Ar(n) = — lfsejiiTT L(s, F)X?Sds + O(lee ).

X1+2

o Shifting the contour: 7 _ Ar(n) = Ress— W +1(x) + O(*+) where
I(x) = 5= [~ 1(s, F)<ds.

27i J—e—iT
@ Changing variable s ~> 1 — s and applying functional equation:
1

100 = 2 [ L= s, F)imgds = 50 [0 G(s)L(s, )i ds.
@ Stationary phase method:

I(x) ~ Cex@@ Y, _y Ar(n)n= % e(£T(n/N)V/?), with N < T9/x.
@ Bounding dual sum trivially:

S pex Ae(n) = Resg_y HEEXX 4 o(T5

X1+25

). Take T =x@1. O

Conjecture: L(s. F)x® _
onjecture Z)‘F(n) — Res_; % + Op(x 7@ ).

n<x

GRH implies: L(s, F)x® 1
rmples Z)\,:(n) = Ress—1 % + Op(x27°).

n<x



The Rankin—Selberg problem

The Rankin—Selberg problem

Let f € Hy. Can we unconditionally prove

D Ar(n)? = erx 4+ 0(*>70),

n<x

for some § > 0?




Main result

Theorem 1 [H. 2021]

If f € Hy, then we have

Z)\f(n)z = crx + O(x3/579),

n<x

for any § < 1/560.

@ The same result holds for a Hecke-Maass cusp form f for SL(2,Z).

@ The mean square of the divisor function: (Ramanujan, Wilson,
Ramachandra—-Sankaranarayanan, Jia—Sankaranarayanan)

LERR}

Z 7(n)? = xPs(log x) + O(x*/?(log x)®).

n<x



The symmetric square L-functions

Let f € Hy. The symmetric square lift L-function:

L(s,sym? f):c(zs)Z@
e 66

Shimura (1975): The complete L-function A(s,sym? f) = ~(s,sym? f)L(s,sym? f)
admits an analytic continuation to an entire function for s € C of order 1.

Functional equation:
A(s,sym? f) = A(1 — s,sym? f).

Gelbart and Jacquet (1978): sym? f is an automorphic cuspidal representation for
GL(3).

We have f x f = 1B sym?f, that is
L(s, f x f) = ¢(s)L(s,sym? f).



The GL(1) B GL(3) case

By L(s,f x f) = ((s)L(s,sym? f) we have

>\f><f(n) = >\1EE|5ym2 f(n) = (U * Asymz)(n) = Z )‘symz f(m)'

{m=n

Let ® be a Hecke-Maass cusp form for SL(3,Z).
Let Ao (1, n) be the normalized Fourier coefficients of ®.
The generalized Ramanujan conjecture (GRC) for ® asserts that A (1, n) < n°®).

Theorem 2 [H. 2021]
Assuming GRC for ®, then we have

> Aume(n) = L(1,®) X + 0o (X¥/°70),

n<X

for any § < 1/560.

Furthermore, if ® = sym2 f, then we don't need to assume GRC for ¢.




Dual sum

The dual sum (e.g. Friedlander-lwaniec):

S=> Mme(n)e(T(n/N)*),

n=N
with T = x?/5t0 and N < T*/x = x3/5+49
So for some L, M such that LM < N,
S )N A m)e(T(L/L)*(m/M)M*),

=L m=xM

o If L > T" then we use exponential pairs to get nontrivial bounds (Weyl, van
der Corput, ..., Bourgain).

o If L < T7 then M > x3/5+46—n s, T3/2=p,



Analytic twisted sum of GL(3) Fourier coefficients

Let A(1, m) be the Fourier coefficients of a GL(3) automorphic form, e.g.
A(1, m) = Aym2 ¢(m). Consider the following sum

> A e (o (2)) v (),

where T > 1 is a large parameter, ¢ is some fixed real-valued smooth function,
and V € C°(Rxp) and satisfying that V1) <; 1 for all j > 0.

o Munshi [JAMS 2015] proved the first nontrivial bound for ¢(u) = log u with
M < T3/2*¢ and then proved the subconvexity bounds of GL(3) L-functions
in the T-aspect.

o This was strengthened to the above bound for ¢(u) = log u and M < T3/2+¢
by Aggarwal.

e For ¢(u) = u® and T = aM”, Kumar-Mallesham—-Singh proved nontrivial
upper bounds (with bounds depending on «).



Analytic twisted sums: Main result

To bound

D

=L

> A m)e(T(¢/L)M A (m/ M)V,

m=M

we prove the following theorem.

Theorem 3 [H. 2021]
Assume ¢(u) = u” with 8 € (0,1). Then we have

7= 3 tn e (1 () () < Toompree

if TS5 <M < T8/5-¢,

Trivial bound for . is O(M). For our application we need 5 = 1/4.



Sketch of proof of Theorem 3

The Duke—Friedlander—lwaniec delta method:

0. X 0 X () Letane(G5) o

amodq

for some large Q and certain g(qg,x). So (generic case)

yw_)n;/lanMA(l,n)e(T‘P (1))
QZ Z ((m—n )/Xx1e<(mq_0”)x>dx.

amodq

Rearranging the sums and integral we get

7o D e () e (e () + )

S ame () (g )

We need to save M plus a little more.



Sketch of proof of Theorem 3, cont

By Poisson summation formula and Voronoi summation formula, we get

yw—z /XM Y V(magx)

|m|=<QT/M
A 1
q Z (,,772, )S(fﬁ?a n2;q) \Uf (n§> an
m=M2/Qd 2 q

where S(a, b;c) :=>" d(e) (ad+bd> is the classical Kloosterman sum,

V(m, q,x) < T~Y2 and wi( ) ("ZM)W.

LS MQI = T1/2 from the m-sum and a-sum;
M 7172

We save

\mz

from the n-sum.

B2(Z M)L/2 = M1/2

w

q

We will save ,/@ = MT from the x-integral.
In total we save T1/2 (for some @ such that MY/3 < Q@ < M/?),




Sketch of proof of Theorem 3, cont

By Cauchy:
M M

S Q1/2 Q3/2

T1/2

where

T~ % ‘Z Z S(— W(m, n,q)

n"Mz/Q3 mVQT/M

Opening the square and applying the Poisson modulo qq':

TWZ )DED SRS DD HEO0!

mAQT/Mq =Q m VQT/M n€z

where the character sum is given by

S S(mbia)S (A, —biq)e (”b)-

bmod qq’ qq



Sketch of proof of Theorem 3, cont

Diagonal term (n = 0):
The generic terms will be g = ¢’ and m = m’. So we save (for .¥)

— ML/2Q3/2,

QT\Y? _ @1/ : MQY2 QT2
<Q. /\/I) = i Hence in total: AT

Off-Diagonal terms (n # 0):
2 M

A 3
The length of the dual sum is M§’2 = % We can save Q from the character

Q3

sums (square root cancellation) and % from the integral transforms. So we
save (for .%¥)

1 1/2 V34 ' MQY/2  M3/4 M7/4
Q- @% :W. Hence in total: T2 Q32 = QT2

The best choice is Q = "#1;;; which proves Theorem 3. O

24



The GL(1) H GL(2) case

Let f € Hi. Consider the arithmetic function A\ime(n) = >,,,_, Ar(m), that is, its
Dirichlet series is

Ls,18f) =" M) _ (515, )

ns
n>1

This is a degree three case, and we have (even a trivial application of GRH)

> dse(n) = crx + O(x2+).

n<x

Theorem (H., Yongxiao Lin, and Zhiwei Wang 2021)

We have
Z)\lggf(n) = crx + O(xY/27%),

n<x

for any d3 < 4/739.

Here we have used the classical result on analytic twisted sums of GL(2) Fourier
coefficients due to Jutila.



The GL(1) B (GL(2) ® GL(2)) case

Let f € Hy and g € Hy. Consider the arithmetic function
MiB(fog) (M) = D apeen AF(C)Ag(c), that is, its Dirichlet series is

L(s,1B(fog)) = Z M(rog)(n) =((s)L(s, f ® g).

ns
n>1

Theorem (H., Qingfeng Sun, and Huimin Zhang 2021)

Assume f # g. Then we have

> Mmrog (n) = crgx + O(x*/375%),

n<x

for any 65 < 1/356.

@ Yongxiao Lin and Qingfeng Sun improved the exponent 5/7 for the
GL(3) ® GL(2) case under GRC.

@ Huimin Zhang improves (in progress) 3/4 for the GL(1) H (GL(3) ® GL(2))
case under GRC.



Analytic twisted sums of GL(2) x GL(2) Fourier coefficients

The key to our improvement is the following estimate:

Theorem (H., Qingfeng Sun, and Huimin Zhang 2021)

Let o(x) = alogx or ax” (B € (0,1)\{1/2,3/4}, a € R\{0}). Let
V(x) € C(1,2) with total variation Var(V) < 1 and satisfying the condition

VO (x) <; &

for any integer j > 0 with /A < tY/2=¢ for any € > 0. Then we have

gxf(n)xg(n)e (2o (%)) % (;) g BI5XIE

for t8/5 < X < t12/5,

Previously, Acharya, Sharma and Singh proved the upper bound O(t7/10X3/4+¢)
for the case ¢(x) = alogx and X < ti*¢,




Short intervals and arithmetic progressions

Friedlander—Iwaniec:

S ae(n) - Res HERNOEATZA o

x<n<x+y
if y > x e,
Arithmetically we have

1 X —-A
Z Af(n) — m Z Ae(n) €a E (log x)

n<x n<x
n=a mod q (n,q)=1

for g < XTIE,

For degree three case, breaking 1/2 was done for GL(1) B GL(1) BB GL(1) case by
Friedlander-lwaniec, Heath-Brown, Fouvry—Kowalski-Michel, Ping Xi; for
GL(1) B GL(2) case by Kowalski—-Michel-Sawin.



Thank you for your attention!
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