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Abstract.

For a finite abelian p-extension K/k of totally real fields and the
cyclotomic Z,-extension K, /K, we prove a strong version of an equi-
variant Iwasawa main conjecture by determining completely the Fitting
ideal over Z,[[Gal(K/k)]] of the classical Iwasawa module Xk __ g,
which is the Galois group of the maximal pro-p abelian S-ramified ex-
tension of K., where S contains all ramified primes in K., /k. To do
this, we prove a conjecture which was proposed in a previous paper by
the first and second author, concerning the minors of a relation matrix
for the second syzygy module of the trivial module Z over a suitable
group ring.

§1. Introduction

In a recent paper [2] the first two authors described the Fitting
ideals of certain Iwasawa modules in terms of ideals generated by mi-
nors of a relation matrix for a second syzygy module of Z over abelian
group rings. Moreover, in §1 (Remark to Proposition 1.5) of that paper
an explicit description of those ideals was stated, but one of the two
inclusions remained conjectural. Our aim in this paper is to prove the
conjectural inclusion as well. This means that these ideals of minors are
now completely determined.

In §1.1 of this introduction, we explain the conjecture on the ideals
of minors. Then in §1.2 we give a consequence of the conjecture (now a
theorem) in Iwasawa theory. Indeed, we are now able to state and prove
our equivariant Iwasawa main conjecture.
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1.1. A second syzygy of Z
Let G be a finite abelian group such that

GZ/mZ®...07L/nZ,

where n; is a divisor of n;.q for each i = 1,...,s — 1. Suppose that
o; € G is a generator of the i-th component of the above decomposition
for each i. We put R = Z|G], which is the group ring of G over Z, and
consider the R-module Z with trivial action of G. Using the method in
[2] §1.2, we obtain a free resolution

Re(sHD(sH2)/6 B3, ps(stl)/2 22 ps 2 p 7,

of Z. The full description of this exact sequence will be given in §2,
and we just mention here that ®; is defined by ®,(z;) = o; — 1, where
(w;)1<i<s is the standard basis of R*. We put Q2 = Ker ®;, which is a
second syzygy of Z. Thus we have an exact sequence

REGHD42)/6 Ba ps(s+1)/2 02 _, (.

We denote by M, the matrix which corresponds to the R-homomorphism
®3, and which can be written down explicitly (see §2.1).

Put ¢ =s(s+1)/2.

For an integer v such that 0 < v < ¢, we define m,, = Min,, (]\Zfs) to
be the ideal of R generated by all v-minors of the matrix M;. We note
that m, is equal to the higher Fitting ideal Fitt._, r(£2?) (concerning
the definition of Fitting ideals, see [5]). The matrix M, is rather sparse,
but the calculation of the relevant minors is still difficult. The entries
are elements of the form =£7; and £v; where 7, = 0;, — 1 € R and
vi=1l+4o;+- -+ UZ”_I € R (recall that n, is the order of o; in G). We
note here the important relation 7,v; = 0.

We can easily see m,, = 0 for any v such that s(s—1)/24+1 < v <e¢,
using m, = Fitt._, r(Q?) (see Proposition 1.5 (a) in [2]). Now we state
our main theorem in which we determine all m,,.

We define H to be the ideal of R generated by 7, ..., 7s; differently
put, H is the augmentation ideal of R. We will define the notion “ad-
missible monomial” in §2.2, and denote by ng the ideal generated by all
admissible monomials of degree d, with 0 < d < s(s — 1)/2. We also
define nyg = R and Moteon) g = 0. In this paper we prove the following.

Theorem 1.1. For any integer v such that 0 < v < @ + 1, we

have

v
m, = Fitt._, p(Q%) = Z H" .
d=0
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In particular, we have

s(s—1)/2
ss=1) 4
ms(s;1)+1 =H E H =2 ng = Hms(s;) .
d=0

In [2] Proposition 1.5 (b) we proved that the left hand side is con-
tained in the right hand side of the above equality, and stated this equal-
ity as a conjecture. For s < 4 we had verified the conjecture by hand,
which was already a sizable calculation for s = 4. The third author
checked it for s = 5 in [7].

In this paper we prove the converse inclusion. To do this, we exhibit
many square submatrices of M, which are lower triangular; so their
determinants can be evaluated at once (product of the diagonal entries),
and in this way we are able to produce all monomials in the elements
7; and v; that are required to establish the desired converse inclusion.
The arguments are entirely elementary and combinatorial, but some of
the details are a bit tricky. Even though the entire motivation for this
work comes from [2], it is not necessary to be familiar with that paper
for reading the proof of Theorem 1.1.

1.2. An equivariant main conjecture for Xg__ s

Now we state one of the consequences in Iwasawa theory, which is a
main motivation of the above theorem. Let K/k be a finite abelian ex-
tension of totally real number fields, p an odd prime, and K, /K the cy-
clotomic Z,-extension. We consider the maximal pro-p abelian extension
M, s/ K which is unramified outside S, where S is a finite set of primes
of k containing all ramified primes in K, /k, and hence in particular all
p-adic primes. We put Xx__ ¢ = Gal(My, s/Kx). It is well-known that
this is a finitely generated torsion Ag_ = Z,[[Gal(Ko/k)]]-module.

The celebrated main conjecture in Iwasawa theory, which is a theo-
rem of Wiles [8], states a relationship between the characteristic ideal of
a character component of Xy g and the p-adic L-function of Deligne-
Ribet. Let ©x_ /s be the pseudo-measure of Gal(K . /k) in the sense
of Serre [6], corresponding to the p-adic L-function of Deligne-Ribet,
which interpolates the values Lg(1—n, x) of S-truncated L-functions for
characters x of Gal(K/k). Suppose that Ix__ is the augmentation ideal
Ker(Ag, = Z,[[Gal(Kw /K)]] — Zp); then we know I Ok ks C
Ak, (see [6]). Especially, if v is a generator of Gal(K/K) ~ Z, and
T =~v—1¢€ Ag_, then we have TOg_ /15 € Ax. . For simplic-
ity, assume K N ko = k where ko is the cyclotomic Z,-extension, put
G = Gal(K/k), T = Gal(K«/K), and G = Gal(K/k), so G = G x T
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For any character x of G and any Z,[G]-module M, we define the x-
component M, by M, = M ®z, g Oy, where O, = Z,[Image x| on
which G acts via x. If M is a Z,[[G]]-module, M, is an O, [[[']]-module.
We note that M, is a quotient of M. We denote the image of an element
x € M in M, by x,. The main conjecture asserts that for each char-
acter x of G, the characteristic ideal of an O, [[I']]-module (Xx_ g)y is
generated by the x-component (Ok__/x s)y of Ok kg if x is not the
trivial character, and by (T©k__/k s)y if x is the trivial character.

Our goal in this paper is to establish a more refined relationship than
the main conjecture between the two sides, that is Xk s and Ox__ /x5,
without taking the character components.

There exist several equivariant main conjectures, but they all use
modified Iwasawa modules (e.g. cohomology groups; for example, see
[1] and [4]), and there has been no equivariant theory for Xy __ g itself
before our work. The difficulty in studying Xk _ g comes from the fact
that Xk __ s does not have projective dimension < 1 over Ax__ when p
divides the order of G.

In this paper we study the classical object X __ g itself, and prove
a kind of equivariant main conjecture for it. For any ring R and any
R-module M, we denote the initial Fitting ideal Fitto zr(M) simply by
Fittg(M). We will determine the Fitting ideal Fitta, (X s) com-
pletely, by which we get more information than the characteristic ideals
of the character components. For example, we obtain information on
the size of the O,-torsion submodule of (Xf_ s)y from our knowledge
of Fitta, (Xk..s) (see also Remark 1.4 (2) and the argument just
after Remark 1.4), but first and foremost, we get the exact relationship
between the Iwasawa module Xk s and the p-adic L-function ©g__ /i, 5.

In previous work [3] by the first two authors, we proved in Theo-
rem 4.1 in [3] that

Fitta, (Xro.,s) =AOk k.5

with a certain ideal A of Ax__. What we do in this paper is performing
further computations on the ideal 2l in order to describe it completely.
We also note that the description given here is more general and explicit
than the appendix in [2].

The essential case is that K/k is a nontrivial p-extension, so we
assume it (for the general case, see [2]). We still assume that K Nkoo = k
and put G = Gal(K/k). We change the notation slightly from the
previous subsection, and write

GZ/p"Z&® - - dZL/p™7
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with 0 < ny < -+ < ng for some s € Z~g. We need the auxiliary
quadratic function

o(la) =a(2s —a—1)/2 (for any o € Z such that 0 < a < s—1).

This is an increasing function in the above range, and ¢(0) = 0, p(1) =
s—1, ¢(2) = 2s—3,..., and ¢(s — 1) = s(s — 1)/2. We define a
sequence (M, )o<p<s(s—1)/2 Of integers as follows. We define my = 0,
and if v satisfies p(a) < v < p(a + 1) for some integer o € Z with
0 <a<s—2, then m, is defined by

my=(s—1)ni+-+(s—a)ng + (v—¢(a))ngs-
In particular, m, = vn; for 0 < v <s—1, and

Mae_1) = (s—=1ni+(s—2)na+ -+ +ns_1.

Recall that I is the augmentation ideal of Ak = Z,[[G]], with
G = Gal(K/k). We define an ideal ag of Ax__ by

which is determined only by the structure of G as an abelian group. Our
equivariant main conjecture which we prove in this paper is

Theorem 1.2. Assume that the pu-invariant of koo /k vanishes', and
that S contains all ramified primes in Ko /k (as we already mentioned).
Then we have

FittAKoo (XKOQ,S) = aGIKoo@Koo/k,S-

In order to understand the ideal ag, let us consider simple cases.

Suppose that G is homogeneous, that is, ny = -+ = ng = n. Put
I, =p" Ak, + 1k, .
If n =1, Ji_ coincides with the maximal ideal my__ of Agx__. It is easy

to check that m, = nv and

s(s—1)/2 o(s=1)
ag= > P =00 1) T

_ J;((:o_l)/Q'

TAdded in proof: One may now remove this assumption on the y-invariant,
using a recent result by Dasgupta and Kakde on the Brumer-Stark conjecture
or a recent result by Johnston and Nickel on the equivariant main conjecture.
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Therefore, we get

Corollary 1.3. Assume further that ny = --- = ng = n. Then we
have

FittAKN (XKOO,S) = J;(:o_l)/QIKOCQKOO/k,S'

Also, if n = 1, we have

Fitta, (Xrs) = mie " Ix Ok ks
where my__ is the maximal ideal of Ax__ .

Remark 1.4. (1) At some stage, there was a guess that

Fitta, (Xk..s)= Ik Ok, ks

Our theorem shows that this is only true for s = 1, and the bigger s
gets, the more badly it fails, because ag becomes smaller and smaller
for s — oo.

(2) Since the ideal ag is of finite index in Ag_, its image in Ax__
is also of finite index in Ag__ . Thus Theorem 1.2 implies the usual
main conjecture, and in fact refines it.

Theorem 1.2 also gives information on the size of the O,-torsion sub-
module of (Xx__ s)y. Suppose for simplicity that we are in the situation
of Corollary 1.3, and also assume that y is nontrivial. Then we know
that the characteristic ideal of (Xg_ s)y is generated by (Ox__ /k,5)y-
This shows that

X(IKOO)X(JKQQ)S(Sil)m = Fittox[[l"]] (((XKo.8)x)tors)

where ((Xx_ . s)y)tors i the O,-torsion part. Since the left hand side
becomes fairly small if s becomes large (see also Remark 1.4 (4) below),
the above formula also shows that ((Xk_ g)y)tors is fairly big if s is
large. In this way our Theorem 1.2 also sheds light on the torsion part
of Iwasawa modules.

(3) For an abelian CM-extension L/k which is unramified outside p
and the cyclotomic Z,-extension Lo,/L, we can determine the Fitting
ideal of the Pontrjagin dual of the minus part of the p-part of the class
group of L, using Theorem 1.2. For the details, see [2].

(4) Tt appears that the (finite) quotient module Q(G) = Ix__ /acIk..
can quickly become very large. Arguments from commutative algebra
and calculations show that for example in the homogeneous case with
n=1p=3and s =5 (s = 6), the length of Q(G) is at least 1230
(13710 respectively). It also appears that in the homogeneous case with
n =1 and any p, the length of Q(G) grows at least as fast as a positive
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constant times p° for s — co. We will treat this question in more detail
in future work.

(5) The method to get Theorem 1.2 could probably be applied to
certain cohomology groups of more general p-adic representations (or
of motives) satisfying suitable properties. We will come back to this
problem in the future.

(6) We can prove the case p = 2 of Theorem 1.2 by the same method
if we can establish the usual main conjecture for each character of G,
replacing Ok /x5 by 2’[’“@161(00%,5 under the assumption that pu = 0.
And indeed, it seems that Wiles” argument in [8] implies the usual main
conjecture even for the case p = 2 if p = 0. This means that Theorem 1.2
should hold even for the case p = 2, which we hope to be able to study
in future work?.

Let us explain in which respect our equivariant main conjecture pro-
duces information that goes beyond the usual main conjecture, which
treats the characteristic ideal of the x-component of Xy ¢ for any
character x of Gal(K/k). If we denote by K, the cyclic extension of k
corresponding to x, the characteristic ideal of the y-component is deter-
mined by Xk s. In other words, the usual main conjecture contains
only information on Xg_ g for cyclic K/k, without even determining
it completely as a module. Our equivariant main conjecture gives more
precise information.

We will explain that our equivariant main conjecture even contains
information on objects attached to the finite extension K /k. Let Mg /K
be the maximal abelian pro-p extension which is unramified outside S.
We define Gg by

Gs = Ker(Gal(Mg/K) — Gal(K«/K)),

which is a Z,[Gal(K/k)]-module. Let Resg__/x : Ak, — Zp|Gal(K/k)]
be the natural map induced by the restriction. Then, we get from The-
orem 1.2

Corollary 1.5. Fitth[Gal(K/k)] (gs) = ReSKQC/K(aGIK(X, @Koc/k7s)'

In fact, taking the Galois coinvariants of Xg__ g, we can apply the
argument of Corollary 4.1 in [2] to get the above corollary. Note also that
both sides of the above equation are in principle numerically computable.

Example. Take k = Q, p = 3, and Q(¢) the unique cubic extension of
conductor ¢ for any prime £ =1 (mod 3).

2Added in proof: This was done by M. Atsuta, see Remark 1.2 (i) in his
paper “Iwasawa theory for class groups of CM fields with p = 2” in Journal of
Number Theory 204 (2019), 624-660.
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In general, suppose that G = Gal(K/k) = (Z/pZ)®? (so s = 2) and
write

N,
@Koo/k7s = a_lTG +ag+ o T+ a2T2 +

with a1 € Z,, and «; € Z,[G] for all i > 0, where Ng = E,cgo. In
this case, we have ag = mg__, which implies

Resg _/x(mi Ik, Ok /ks) = a_1pNGgZy|G] + malgao,

where mg and I are the maximal ideal and the augmentation ideal of
Z,[G], respectively.

We now take K to be the composite field of Q(7) and Q(13), so
K is the (Z/37)%%-extension of conductor 91. We denote by o and 7
a generator of Gal(Q(7)/Q) and Gal(Q(13)/Q) respectively, and regard
o, T as generators of G. (Warning: Only in the present example, we use
o, T instead of o1, o9 for generators of G. Notation will change later,
and the generators of an abelian p-group will be written o1, ..., 05, so
o becomes o1 and 7 becomes o9, and we will set 7, = 0; — 1.) In this
concrete example, a_1 is a unit, and ag is computed as

g = 48+ 420 + 3802 + 627 + 4207 + 80021 + 4572 + 44072 + 700°7%  (mod 3%)

up to a unit factor. Put x = 0 — 1 and y = 7 — 1 (again, z, y will
be 11, 72, later). As a result, we can compute the right hand side of
Corollary 1.5 as

(1) Resg_/k(mi Ik Ok ks)=(27,92,3y,zy*, 62° + z°y).

Note that this is an ideal of finite index, and that ideals of this kind do
not usually appear in Iwasawa theory.

Now we compute the left hand side of Corollary 1.5 directly. Using
PARI-GP we find that

Gs ~7Z/97. & 7.)97. & Z./9Z & 7.3,

and the actions of o and 7 are described by the matrices

1 4 -3 0 -2 -3 3 0
0 -2 3 0 0 4 00
0 -4 4 0 |’ -3 3 1 0 |’
3 3 0 1 0 0 01

respectively. This means that when we take generators ey, es, e3, e4 of
Gs corresponding to the above decomposition, the actions of ¢ and 7
are

o(er) =e; +4ea —3es, T(e1) = —2e; — ez + 3es,...  etc.
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We would like to thank J. Nomura for computing the actions for us.
Then some further computations show that Gg has the relation matrix

722 —6x 3z—-3 0

T T 0

34+ 3z 0 —T
3+y+ 3z -3 0
Tey — 3z 3y 0
6 + 3z —y 0
0 0 Y

9 0 0

0 9 0

0 0 3

as a Zp[Gl-module. Thus, Fittz [5(Gs) is the ideal generated by all
3 x 3-minors of the above matrix. We get

2 Fitty 11(Gs) = (27,92, 3y, zy?, 622 + z2y).
p[G]

For example, the determinant of the submatrix obtained by picking the
4-th, 6-th and 7-th row gives 3y times a unit. In fact, —3y% — y> —
3zy? + 18y +9zy = 3y(7+ 3z — xy) since we know y3 = —3y — 3y?, using
(1+y)® —1 = 0. In this way, we can check Corollary 1.5 numerically,
using (1) and (2). It does come out correctly, and this demonstrates

that our theorem contains rather delicate information on Gg.

The authors would like to thank both referees for their careful read-
ing, and are particularly indebted to one of them for a long list of help-
ful comments and suggestions. The third author would like to thank
F. Sudo for discussions on graph theory with him. The second author
and the third author are partially supported by JSPS Core-to-core pro-
gram, “Foundation of a Global Research Cooperative Center in Mathe-
matics focused on Number Theory and Geometry”.

§2. The matrix M, and the minors

2.1. A free resolution of Z

We consider the group G and the group ring R as in §1.1. The free
resolution of Z as an R-module

REGHD42)/6 23, ps(s41)/2 22, ps D, b 7 4

constructed in [2] §1.2 from the tensor products of group rings of cyclic
groups can be described in the following way. We write (x;)1<;<s for
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the standard basis of R®, (z;2;)1<i<;j<s for a basis of Rs(s+1)/2 and
(ziwjTy)1<i<j<i<s for a basis of R*(+D(+2)/6 Then ®; is the homo-
morphism such that ®;(z;) = 7;, and @5 is defined by ®3(2?) = vz;
and ®o(z;x;) = mx; — 1z, if ¢ < j. The homomorphism @3 is defined
by

O3(z) = 737,

3(2%2;) = ja? +vimiwy if i <,

(I)g(ZL'Z.T?) = Tiil’? — VjT;Tj if i< j,
and
Os(zjzjoy) = Tixjo, — TjrT + w1 < i<k

We define an s(s + 1)(s + 2)/6 by s(s + 1)/2 matrix M, as the matrix
corresponding to ®3. The rows of Ms are labeled by x;x;71, and the
columns are labeled by z,x,,. In any one row there are at most 3 nonzero
entries, so M, is sparse. For an example, we refer the reader to Subsec-
tion 1.2 of [2], where the matrix Ms is written out completely (see also
the beginning of §4). We will study submatrices and minors of M,. As
in §1.1 we use the notation m, to denote the ideal of R generated by all
v-minors of the matrix M,.

2.2. Admissible polynomials

We consider monomials v = v{' - -+ -vfs invy,..., vy € R. We say
v is ordered if fy > --- > fs. Also, we say it is ordered and admissible if
it is ordered and the inequalities

ij SZ(S—j)

are satisfied for all 7 such that 1 < i < s. The right hand side equals the
quantity ¢(7) introduced in Subsection 1.2.

We say v = l/{l -+ vl is admissible if it is obtained from an
ordered admissible monomial by permuting the v;. If we take s = 4,
then for example v313v3 is ordered and admissible, vy 313 is admissible
but not ordered, and v3v3 is not admissible.

Let D be the set of all doubletons in {1,2,...,s}, and let ¢ : D —
{1,2,...,s} any map satisfying ¢(D) € D for all D € D. We called every
such map a selector in [2]. A partial selector ¢ is, by definition, a map
from a subset Dy, of D to {1,2,...,s}, again satisfying the condition
(D) € D whenever ¢(D) is defined. We define a monomial v(¢)) by

v(y) = HDeDw Vy(D)-
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Lemma 2.1. Suppose that v = l/lfl - vfs is admissible. Then
there is a partial selector ¢ : Dy — {1,2,...,s} such that v = v(v).

Proof.  Since v is admissible, we can take an admissible monomial
v/ which is of degree s(s — 1)/2 and which is a multiple of v. By per-
muting the v; of v/, we have an ordered and admissible v”/. By [2]
Proposition 1.2, we know that there is a selector ¢ such that v” = v(¢).
This implies that there is a selector ¢’ satisfying v/ = v(¢’), and that
there is a partial selector ¢ satisfying v = v(v). Q.E.D.

We note that our definition of “admissibility” in this paper is slightly
different from that we gave in [2], but they are equivalent by Lemma 2.1
(see page 950 in [2]).

By Proposition 1.4 in [2] and the above Lemma 2.1, we know that
ifv= 1/{1 - -+ -vfs is admissible, then +v appears as a minor of M.

For an integer 0 < d < s(s — 1)/2, let ng denote the ideal of R
generated by all admissible monomials in 14,...,vs of degree d. We
also define ng = R and ny(s_1)/241 = 0. Now we have explained all the
notation in §1.1.

63. Proof of Theorem 1.2

In this section we prove Theorem 1.2, assuming Theorem 1.1.
Let K/k, S, Ak, XK...5, Ok ks be as in §1.2. We write

Ak = Z,[Gl[[Gal(Koo/ K]} = Zp[GI[[T1],

where 14 T is a generator of Gal(K/K). Let 01,...,0s be generators
of G corresponding to the decomposition G ~ @le Z/p™iZ. We define
7; = 0; — 1, v; = No,> as above, and define m,, to be the ideal of Z,[G]
generated by all v-minors of the matrix ]\7[‘?. We note that m, is an ideal
of Z,|G] (not of Z[G]) in this section. We define an ideal A¢ of Ak by

(s+1) (s+1)
s Dy s

+TTZ,,[G}) Ag__.

Ao = (ms(sf1)+1Ts_1 + Moy T+ -+ T
2 2

Suppose that Q2 = Ker(®; : Z,[G]* — Z,[G]) where ®; is defined as
in the previous section, and regard Q2 as a Ax__-module with the trivial
action of T (T'x = 0 for all z € Q2). Then the meaning of this ideal g
is explained by ¢ = Fitta,__ (Q2).

We proved in [3] Theorem 4.1 that

Fitta, (Xk..s) =T *AcOk_ k.-

Thus what we have to prove is the following
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Proposition 3.1. Theorem 1.1 implies T*~*Ac = aglx.. -

Let H = (71,...,7s) be the ideal of Z, [G] generated by all 7; = 0;—1,
and m,, as defined in §1.2. We suppose that ng is an ideal of Z,,[G] rather
than of Z[G], namely it is an ideal of Z,[G] generated by all admissible
v-monomials of degree d. We first prove two lemmas.

Lemma 3.2. Let aug : Z,[G] — Z, be the augmentation homo-
morphism. Then for any v such that 0 < v < s(s — 1)/2 we have

aug(n,) = p™Zp.

Proof. If v = 0, this follows from ng = Z,[G] and mg = 0. We
suppose v > 0. We note that for every 1 < a < s,

Vo =141 +7)+ -+ 1+7)"" " =p" + 700

for some B, € Z,[G]. Thus we have aug(vy) = p™. Forv =uvg,----- Va, s
we have aug(r) = p® where ¢, = Y. _ ng4,. Thus if p(a) < v <
o(a+ 1) for some o with 0 < o < s — 2 and

_.os—1 s—a., v—p(a)
(3) V=1 R NI | )

then aug(r) = p™». Note that the above v is ordered and admissible.
On the other hand, if v is admissible and aug(v) = p®, it follows

from the definitions of m, and of admissibility that ¢, > m,. Thus we

get Lemma 3.2. Q.E.D.

Lemma 3.3. We assume Theorem 1.1. Then for any integer v such
that 0 < v < s(s —1)/2, we have

v
m, = mede_d.
d=0

Proof. By Theorem 1.1 we have

v
m, = E ngH .
d=0

Therefore, it is enough to prove

(@ S gt = 3 e,
d=0 d=0

We prove this equality by induction on v. First of all, if v = 0, then both
sides are trivial and we get equality. Suppose that v = vy, - -+ - v, is

v
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admissible. Since aug(v,, ) = p™ew for any w with 1 < w < v as in the
last lemma, we have

(5) V=V4 - Vg, € H (p"aw ZP[G} + H) C mede—d

w=1 d=0
by the argument of the proof of Lemma 3.2. Note that the second
inclusion comes from aug(ng) = p"™Z, (0 < d < v), which is nothing
but Lemma 3.2. This shows that v is in the right hand side of (4).
Therefore, ng is in the right hand side of (4). We have

(6)

v—1 v—1 v—1 v—1
anH’de _ Hzndeflfd — Hzpde’Uflfd — medH'U*d
d=0 d=0 d=0 d=0

where we used the inductive hypothesis to get the second equality. Thus
we know that the left hand side of (4) is contained in the right hand
side of (4).

On the other hand, if we take v as in (3), then aug(v) = p™» and
(5) together with the equation (6) show that p™v is in the left hand side
of (4). This together with (6) implies that the converse inclusion also
holds. This completes the proof of Lemma 3.3. Q.E.D.

Now we prove Proposition 3.1. First of all, it follows from Theo-
rem 1.1 that Mo 4 = Hwm.—1. Thus by the definition of 25 and
2 2
Lemma 3.3, we have
s(s—1)

1-s st 4y
T Ao = E m, 1" 2 +Hms(s;1) AKOQ
v=0

s(s—1) *1)

Zzpmdﬂ_v de(s 1)+1 U+HZ pde

v=0 d=0

S
Ak
oo

Since I is generated by H and 7', we have

s(s—1) s(s—1)
1-s m B -
T UG =T Y p™Ic? “+H > p
d=0
s(s 1)

I Z o 5<§ D _y

= IKOOClg.
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Thus we have proved Proposition 3.1 and Theorem 1.2, assuming The-
orem 1.1.

§4. Outline of the proof of Theorem 1.1

In the rest of this paper we prove Theorem 1.1. We compute the
higher Fitting ideals of 2, using the relation matrix of ®3. As we
mentioned in §1.1, we only have to prove m, D ZZ:O H"=%n,. To show
this inclusion, for an element z of the right hand side, we construct an
explicit lower triangular submatrix of the relation matrix of ®3, whose
determinant is 2. Thus we may neglect the signs of entries of the
relation matrix, and think of the matrix M, in the following way. The
row and the column labels of M, are x;x;r) and xew,, respectively,
which we denote, for simplicity, by ijk and ¢n, respectively.

In the i = i -4 - i-row, there is only one nonzero entry 7; in the
i? = i -i-column. In the i?-j =i -i-j-row with i # j, there are only two
nonzero entries: 7; in the i* = i - i-column, and v; in the i - j-column.
In the ¢ - j - k-row with ¢ < j < k, there are only three nonzero entries:
T in the 7 - j-column, 7; in the ¢ - k-column, and 7; in the j - k-column.
Therefore, M, is roughly of the following form:

1-1 -+ s-5 1:2 1:3 -+ 2.3 . (s—1)-s
1-1-1 7'1

Ts
T2 14}

= ®»
e
[NORVA

V)

o |
o=
»
VAl

Ts—1 Vs
T3 T2 T1

—_

(s—2)-(s—1)-s Ts—2
In the rest of this paper we assume s > 3. Put

s(s—1)

t=—"—+1.
5 +
We fix 0 < v < t and consider elements z € HY %ny (with 0 < d <)
of the form = = 7(x)v(z), where 7(z) is any monomial in 7q,...,7
of degree v — d and v(z) is any admissible monomial in vy,...,vs of

degree d. Sometimes 7(x) (and v(z)) will be called the 7-part (v-part
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respectively) of z. For the proof of Theorem 1.1, we may assume that
there is no index ¢ such that 7(z) contains the factor 7; and v(z) contains
the factor v;, since then  would be zero.

For any such monomial x, it is our plan to exhibit a square subma-
trix M(z) of M, which is lower triangular and whose determinant is .
Note that then the determinant is the product of all diagonal entries;
these entries are of the form 7; or v;, and hence the size of the matrix
must equal the degree v of the given monomial z. It turns out that
the essential difficulty is to handle the case where v = ¢ (the maximal
possible value); it will only take one paragraph at the very end of §9 to
deduce the case v < ¢ from this.

However, handling the case v =t is an arduous task and requires a
series of intermediate steps. Let us try to outline these steps. We call
x a T-monomial if z = 7(x) in the above notation, that is, v(x) = 1.
Similarly, z is a v-monomial if = v(z). In general, x will be a (7,v)-
monomial, meaning that it contains factors 7; as well as v;.

We first explain our proof for 7-monomials. We consider the subma-
trix C, of M, whose row labels are 17k such that 4, j, k are all distinct,
and whose column labels are ¢n with ¢ # n. This submatrix is in a fairly
large southeastern part of M,. We systematically construct lower tri-
angular submatrices of Cy, which “realize” T-monomials = of relatively
small degree.

As a first step (§5), we will construct lower triangular submatrices

Nj s, = Njs,(ai,...,an), which realize T-monomial of degree m < s—2,
where j is an integer 3 < j < s, ay,...,a,, are certain integers in
{1,...,7—1}, and S; is a subset of {1,...,s}. Two important properties
of this matrix is that (i) det Nj s, (a1,...,am) = 74, - -+ - Ta,,, and (ii)

the column labels are b5 for some b’s. There is one more important
property of this matrix, which we do not state here, see Proposition 5.2.

Using these submatrices in §5, we will realize in §7 an arbitrary
7-monomial 7 of degree (s — 1)(s — 2)/2 by constructing a submatrix
T(7) of Cy (see Theorem 7.3). By the property (ii) we mentioned in the
previous paragraph, the column labels of N3 g,, ..., N, g, are all distinct.
Noting this, we construct T'(7) by combining N3 g,,..., N5 g.. In this
section there are two subcases. Case I occurs when 7 does not involve

every factor 7y, ...,7s; then a fairly straightforward combination of the
submatrices Nj s, with S; empty, produces the desired result. Case II
is the case that all 71, ...,7, divide 7. This case is much harder and we

need to make a careful choice of Sy with the help of graph theory. We
give no details here but refer the reader to §7 and in particular to the
example given there.
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Next, in §8 we are able to raise the degree to the required maximum,
namely to ¢, constructing a submatrix M (1) of M,. Now we use subma-
trices outside Cs to construct M (7), but the result in §7 we mentioned
above plays the most important role.

We explain our proof for a general monomial z. If x is a v-monomial,
the conclusion was already proved in the end of §2. So we assume that
x is neither a 7-monomial nor a v-monomial. In §6, we first slightly
modify and extend the construction of §5: here we construct a sub-
matrix Nisj = N;)Sj (a1, yam) of M, which realizes a monomial
whose 7-part is as in §5, and whose v-part is of the form ij for ar-
bitrary j (as in §5) and suitable exponent f. More precisely, we get
detNiSj(al, e ) = VJfTal ST .

Finally, in §9 we combine the outcome of §6 and §8 to treat general
(7,v)-monomials x of degree t. To construct a submatrix M (z) which
realizes a general monomial z, we have to combine several N; g with
careful choices of S;’s, M(7) in §8 for some 7 dividing the 7-part of =z,
and several other submatrices of M. This will then complete the proof
of Theorem 1.1.

85. Small 7-monomials

In this section we deal with certain 7-monomials of relatively small
degree. For this, we consider the submatrix Cy of MS whose row labels
are ijk with 1 < i < j < k < s and whose column labels are ¢n with
1 < ¢ < n <s. This matrix Cs has s(s—1)(s—2)/6 rows and s(s—1)/2
columns. It occupies a large region in the south-east of the entire matrix
M, which (let us recall) has format s(s + 1)(s 4+ 2)/6 by s(s 4+ 1)/2.

Suppose that j is an integer such that 3 < j < s and fix it in this
section. Let S be a subset of {1,2,...,5 —1}. Weput m = j —2 —
#S5, and assume m > 0. The subset S may be empty. We consider
a sequence of integers ai,...,a,. We say in this paper that an m-
tuple (a,)1<u<m is cautiously increasing if it is non-decreasing and never
jumps by more than one; namely a,41—a, =0or 1foralll < p<m-—1.
Suppose that (a,)i1<u<m is cautiously increasing, 1 < a1 < @y, < j —
1, and {ai,...,a;,,} NS is empty. We will construct in this section a
certain submatrix Nj s(ai,...,an) of Cs (and hence of Ms), which has
determinant 7,, - --- - 7,,, -

We arrange the numbers 1, 2, ..., j — 1 in the following order:

al,al—|—1,...,j—1,1,2,...,a1—1,
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and remove the elements in S. Let us call the resulting sequence
bo, b1,y by

Especially, by = a; since a; is not in S. Note that (b,)i<u<m de-
pends only on a; and S. We use (b,)i1<u<m for the construction of
N;s(ai,...,am), but not by. We note that by definition if yu # p, we
have b, # b,.

Lemma 5.1. For any p and p such that1 < p <m and p < p < m,
we have a, # b,.

Proof. Suppose at first that a; < b, < a,,. Since ay,...,a,, are
not in S and cautiously increasing, we have by = a1+ 1, b = a1 +2,...,
b, = a1+ p. Since (a,) is cautiously increasing, we have a, < a;+p—1.
Thus we obtain

ay<ar+pu—1<a+p—-1<a+p=0b,

which implies a,, # b,,.
Next, if b, > a,, it is clear that a, # b, because a, < a,, < b,.
Finally, suppose that b, < a;. Since p # 0, we know b, # a; and
get b, < a1 < a,. Thus we obtain the conclusion. Q.E.D.

By Lemma 5.1 we have a, # b, for all 1 < p < m. Since a,
b, < j, we know #{a,,b,,j} = 3 and #{b,,j} = 2. Therefore, we
can pick a submatrix N = Nj g(a1,...,an) of Cs by specifying the row
labels a1b1j, asbsj, ..., amby,j and the column labels byj, baj, ..., b7,
in this exact order. Then the diagonal term at position (a,b,J,b,j) is
Ta,, since the p-th row label is a,,b,j and the p-th column label is b,,j.

Thus Nj (a1, ..., an) is the matrix of the form
bij boj -+ bmj
arbij [ Ta,
agbgj 7',12 O
ambmj \ K Tam

If u < p, the (aub,j,byj)-entry of N is zero, since b, # b, and b, # a,
by Lemma 5.1. This shows that the matrix N is lower triangular, and
the product over the diagonal is 7, - - - 74,,. Thus we have obtained
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Proposition 5.2. Take S C {1,2,...,5 — 1}, and a cautiously in-
creasing sequence ai,...,G, of elements in {1,2,...,5 — 1} \ S such
that m = j — 2 — #S > 0. Then the matriz N;s(a1,...,an) is lower
triangular and

m
det Nj s(ar,...,am) = H Ta,-
p=1

This matriz has no column labels a1j, nor kj with k € S. In other
words, the column labels of Njs(ai,...,am) are bj withbe {1,...,j —

1\ (SU{a1}).
Example. Take j = 10, S = {1,7} and Ni0,5(3,3,3,4,4,5). Then,

since
ap=ay=az3=3<ag=a5=4<ag=>,

we find
by =4, by =5, b3=26, by =8, b5 =9, bg = 2.

Therefore, the matrix Nyg s(3,3,3,4,4,5) is
4-10 5-10 6-10 8-10 9-10 2-10

3-4-10 T3

3-5-10 T3 O
3:6-10 T3

4-8-10 T8 T4

4-9-10 T9 T4
5-2-10 T2 75

§6. Introducing a power of v;

We construct a submatrix N]'-’S(al, ooy Q) Of J\;IS, which is a mod-
ification of Nj g(a1, ..., an) in the previous section. Note that this is no
longer a submatrix of Cy since we will now use row labels of type bj7,
that is, with repeated numbers. The column labels we use, however,
will still be “square-free”. The point will be that the determinant of our
submatrix is a 7-monomial as in the previous section multiplied by a
power of a single element v;. This will be used later to assemble much
bigger matrices whose determinant involves powers of several v;.

Let j, S C {1,2,...,5 — 1} be as in the previous section. Sup-
pose that aq,...,a,, is a cautiously increasing sequence of elements in
{1,2,...,5 =1} \ S with m/ <m =7 —2—#S.

Using a; and S, we define a sequence by, ...,b,, as in the previ-
ous section. Recall that p — b, is a bijection from {0,1,...,m} to
{1,2,...,7 —1}\'S. Put f = m —m' + 1. We consider the square
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matrix N/ = N]’-’S(al7 ...y am) of size m + 1 whose column labels are
boj, b1j,...,bmj and whose row labels are bgj?, b1j2,. .. ,bf,1j2, arbyrj,
asbgi1j, ..., GmebyJ, in this exact order. Note that f+m’'—1=m. We
define (aj,)1<u<m by a;, = ay for p=1,..., f, and a), = a,,_ 41 for any
w such that f < g < m. Then N’ has row labels bj2, byj2, ... ,bf_ljz,
atbyj, asybpiads ..., anbyj. By definition, (a),)i<u<m is cautiously
increasing. We have
a;L #b,

for any p and p such that f < pu < p <m by Lemma 5.1. Therefore,
#{a),, by, j} = 3 and N’ is certainly a submatrix of M. We see that N’
is of the form

boj b1j - bpo1j bpj bppaj o0 bmj
b0j2 Vj
b1j2 I/j O
bf_1j2 Vj
a}bfj Tal
a/f+1bf+1j Tagy
@ bin ] X Taps
In the rows having labels boj2, b1j2, ..., bs_1;2, there is only one nonzero

entry v; at the diagonal position because b, # j. Therefore, the above
inequality a; # b, implies that N’ is lower triangular. Thus we have
obtained

Proposition 6.1. Take S C {1,2,...,5 — 1}, and a cautiously in-
creasing sequence ai,...,anms of elements in {1,2,...,5 — 1} \ S with
m' < m = j—2—4#S. Then the matriz N; g(a1,...,am’) is lower
triangular and

m/
!
det NJ g(ar,...,am) = l/]f | I Tay
p=1

where f = m —m' + 1. This matriz Nj g(a1,...,am) has no column
labels kj with k € S.
§7. Bigger T-monomials

In this section we exhibit lower triangular submatrices whose deter-
minants are 7-monomials of much higher degree than in Section 5. We
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do not quite reach the necessary maximal degree t = s(s —1)/2 + 1 yet,
but we save some room for later, only working within the submatrix Cj
introduced earlier. The matrix 7'(7) constructed in this section plays an
important role in later sections. We put

(s—=1)(s—2)

tg = ——F——— .
2
Let 7 be a monomial of degree tg in 71, ...,7s;
_ €1 €2 €es
T=T'Ty T4

We will construct a submatrix of Cy which is lower triangular and whose
determinant is 7. We say 7 is ordered if e; > -+ - > e, is satisfied.

We may and will assume 7 is ordered. Since the degree of 7 is ty,
we have

) ;ei:to:(s—l);s—z).

For a monomial x = 74,74, * * * Ta, such that a; < --- <agis satisfied,
ity =74 7a, and z = 74, -+ Tq, for some p with 1 < p < g, we
say that © = yz is an ordered decomposition. We make the ordered

decomposition
=73 @) L)

such that the degree of 7() is j —2 for any j with 3 < j < s. This means
that if we write
T = TayTas """ Tay,

with a; < ag < --- < ay,, then 7)., 7(5) are defined by

3 4
T():Tal, T():TagTa3a--~7

T(j) 7_(5)

= Tadj+17—adj+2 to Tadj+j—27 LR = Tag,11Tag 42 """ Tag,

where d; = (j —2)(j —3)/2. Since 7 is ordered, (a4, {n)i<n<j—2 is
cautiously increasing for all j.

Lemma 7.1. For any j such that 3 < j < s —1, 79 consists of
Ti's with i < j — 1.

Proof. It is enough to prove

J—1 Jj—2 . .
-1 -2)
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Since 7 is ordered, it follows from (7) that

S 5-D(-2) j-1 (s=3)(G-1 , j-1
;eiz 2 . s 2 + s

(s=3)0-1)  U-DG~-2)
2 - 2 ’
This completes the proof. Q.E.D.

>

Case I. We assume e, = 0.
For any j such that 3 < j <'s, suppose that
) — Taay1Taay 2" Taa; 15
as above. Then by Lemma 7.1 we have aq;41 < ag;42 <+ < ag;45-2 <
j—1ifj < s—1. For j = s, since e, = 0 by our assumption , 7/) consists
of 7,,,’s with m < s — 1.

Therefore, noting that (ad]. 4n)i<n<j—2 is cautiously increasing, we
can construct Nj s(adq;+1,0d;42,---,0d,+;-2) with S = () (see §5) for
any j such that 3 < j < s. We denote this matrix by N;(7()).

We define

N3(7(3)
’ N4(T(4)) 0

* Ny (1)

which is a submatrix of C.

If abj is a row label of T'(7) for some a, b < j, then it is a row label
of Nj(’]'(j)). For any j’ such that j° > j and any k, the entry of (abj, kj’)
is zero because {k,j'} ¢ {a,b,j}. This together with Proposition 5.2
shows that T'(7) is lower triangular. It is clear from Proposition 5.2 that

detT(1) = RSP O N C) Sy

Case II. We assume e; > 0. We note that this condition together with
the condition that 7 is ordered implies s > 5, since t; < s if s < 4.
Note that no case s > 4 was covered by the verifications done in [2]. By
Lemma 7.1 we can define N;(7()) for any j such that 3 < j < s —1 as
in Case L.

In our arguments so far, we used row labels abj with a,b < j <'s
to produce factors 7, in the determinant. So this excludes a = s, which
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means that in order to produce factors 75, we have to resort to tricks.
The row labels used for this will be abs, with corresponding column
labels ab, and the pairs ab used for this have to be chosen with the
utmost care, to control the interference with other rows and columns
(some row labels abs have probably been used up already). We will
have to use some graph theory at this point.

We put z = (s — 2)(s — 3)/2 = ds and write

e

= Ta.41Tazi2 " Tazps—2o
where a,y1,0,42,...,0,+5—2 is cautiously increasing. By our assump-
tion, we know a,ys_2 = ay, = 5. Put s —¢ = a,4 for some ¢ € Z. Since
Gyi1,0z42,...,0,45—2 1S cautiously increasing, we get

41> 5—(s—2)+1=3,

which implies ¢ < s — 3. Also, the inequality in the proof of Lemma 7.1
for j = s — 1 shows that

260(8_3)2(5_2):2’

which implies a, 11 < s — 2. Therefore, we have 2 < ¢ < s — 3.
Let m be the positive integer such that a4, =s—1and a,ym4+1 =
§. Since ayqmi1 =+ = Grps—2 = S, we have

(8) es=8—2—m.

Since a,11 =s—LCand a,ympmp1 = S, we know £ = a,4mi1 — Ay <M,
which implies

es+l=s5s—-m—-1<s—/0—-1<s—/.

Let j be an integer satisfying 3 < j < s—1. We note that 70) begins
with 7, a1 namely there is an ordered decomposition 7) = 7, 4 T
for some 7'. Then by Proposition 5.2, ag;;1j is not a column label of
N; (7)) for any j.

For an integer k such that 3 < k < s — 1, we consider an undirected
graph G(k) whose vertices V (k) and edges FE(k) are defined as follows:

V() ={1,....k}, E(k) = {{ag; 115} [3 <j < k}U{{12}}.

By induction on k we can show that G(k) has no closed path. Therefore,
it is a tree and connected (see for example, [9] Theorem 3.1).
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We consider the graph G(k) with k = s — ¢, namely G(s —¢). Using
the inequality s — ¢ > es + 1 which we showed above and the fact that
G(s — {) is connected, we can take a subgraph G’ of G(s — ) such that

e (' is a tree (hence connected),

e s — ( is a vertex of G,

e the set V(G’) of vertices of G’ consists of e5 + 1 elements, and

e the set E(G’) of edges of G’ consists of e, elements.

We write

E(G") ={{hg}.-- - {he.ge.}}-

Example. Take s =7 and 7 = m{737377727272. The degree of 7 is 15.

By the ordered decomposition of 7, we have 7 = 7, 7(4) = 72, ) =
7273, 76) = 737275, and (D = 15772, Therefore, £ = #{5,6,7} — 1 =
3 —1=2. The graph G(6) has edges

E(6) = {{12}, {13}, {14}, {25}, {36} }.

Certainly, G(6) is a tree. We consider G(5). In this case there is a unique
connected subgraph G’ of G(5), which has 3 vertices, and of which 5 is
a vertex. Namely, G’ has vertices V(G') = {1,2,5} and edges

B(G) = {{12},{25}}.
So we can take h; =1, g1 =2, ho = 2, go = 5.

In what follows, some of the row and column labels become a little
complex. For better visibility, we sometimes put them between curly
brackets { }, that is, we sometimes use {abc}, {ab} instead of abc, ab for
row and column labels.

We consider a matrix N7 s(G') whose row labels are {h,g,s}1<u<e.
and whose column labels are {h,g,}1<u<e,. Since {h,g,} are all differ-
ent, this is a submatrix of Cy. It is a diagonal matrix 74/ where [ is the
identity matrix;

higi haga -+ he e,
higis Ts
haogos Ts O
NTfS(G,) = ...
he.Ge.S O Ty

Next, we set Sgr = V(G')\{s—{}. Then we have #S¢ = es+1—1 =
es. It follows from (8) that

m=s—2—es=5—2—#Sq.



340 C. Greither, M. Kurihara and H. Tokio

Therefore, we can define Ny s, (az41,0242,...,0.4m), which was con-
structed in §5 for j = s and S = Sg.. We put

NS,G’ (T(S)) - NS,SG/ (afz-‘rla Az42, ... 7az+m)~

Lemma 7.2. (i) For any p such that 1 < p < e, {h,g,} does
not appear in the column labels of N3(1(®), Ny(r®)), ... Ny_1(r(5=1),
Ns7gl (T(S))

(i) For any p such that 1 < p < e,, {h,g,s} does not appear in the
row labels of N3(13)), Ny(r®), ..., No_1(767D), N, o (705)).

(iii) For any p such that 1 < p < ey, neither {h,s} nor {g.s}
appears in the column labels of N3(7®)), Ny(v®), ... N,_1(r(=1D),
Ns,G’ (T(S))

Proof. (i) By Proposition 5.2 and the definition of G(s — ¢), no
edge of G(s — £) appears in the column labels of N3(7®)), Ny(7(4),
oy Ne_1 (7). Since h,, g, < s — ¢ < s and the column labels
of Ny (7)) are of the form {bs}, {h,g,} is not a column label of
Nq.c (7). Thus we get the conclusion.

(ii) Since the row labels of N;(7(7)) are of the form {abj}, {h,g,s}
cannot appear in the row labels of Nj(T(j)) for any 7 < s. Suppose that
{a,b,s} is a row label of Ny c/(7(¥)). Then by the definition of b, it is
not in Sgr U {s — ¢}. Therefore, we have

9) by & {hugu | L=1,2,... es}.

Thus we get {h,,g,,s} # {a,,b,, s}, which implies (ii).

(iii) Since the column labels of N;(7()) are of the form {bj}, neither
{h,,s} nor {g,,s} appears in the column labels of N;(7()) for any j < s.
For a column label {b,s} of Ny g/ (7)), by (9) we have h, # b, and
gu # b, for any p such that 1 < p < e,. Thus neither {h,s} nor {g,s}
appears in the column labels of Ny ¢ (7). Q.E.D.

By Lemma 7.2 (i) and (ii), we can define T'(7) by

N s(G)
N3 (7)) O
N4(7—(4))

N571 (T(s—l))
* NS,G’ (T(s))

which is a submatrix of Cy. It follows from Lemma 7.2 (iii) that there is
only one nonzero entry in a h,, g, s-row of the matrix 7'(r). For j/ > j, the



The second syzygy of Z and an equivariant main conjecture 341

(abj, kj’)-entry with a, b < j is zero. Therefore, using Proposition 5.2,
we know that T'(7) is lower triangular.
Combining Cases I and II, we get

Theorem 7.3. For any T which is a monomial in 11, ...,Ts of degree
to = (s—1)(s—2)/2, we can construct a submatriz T(7) of Cs, which is
lower triangular and whose determinant is 7. For the case T is ordered,
an explicit construction of T(T) is given above.

Example. Consider 7 = 7757577727872 for s = 7 as above. Then

T(7) is described as

1.2 25 2.3 24 34 35 45 1.5 46 56 16 26 67 3.7 4.7
127 [
2:5-7 T7
1-2-3 T3 T1 O
1-2-4 T4 T1
1-3-4 T1
2-3-5 T3 T5 T2
2:4-5 T4 T5 T2
315 T1 T3
346 T6 T3
4-5-6 T6 T5 T4
4-1-6 T1 T4
5-2-6 T6 T2 75
5-6-7 7 T5
6-3-7 T3 T
6-4-7 T7 T4 T6

68. The final step for T-monomials

So far we have obtained T-monomials of degree ¢y = (s —1)(s—2)/2.
In a final round we now consider a monomial in 7q,...,7, of degree t.
Recall that
s(s—1)

2
and that ¢ is the final degree required in Theorem 1.1. We will construct
a submatrix M(7) of M, of size t, which is lower triangular and whose
determinant is 7.

As in the previous section, we may assume

+1:t0+5,

T=TitTs T
is ordered, namely e; > --- > e;. Note that we are assuming ¥7_,e; = t.
We define r to be the positive integer such that e, > 0 and e,;1 = 0 if
es =0. If e > 0, we define r = s. We put

/ o1 —1_ea—1 -1
=TT T
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which is also ordered.

At first we assume e, = 0. Then r < s holds. We take the or-
dered decomposition 7" = 7(1)7(2) such that 7(1), 7(2) are monomials
of degree ty, s — 7, respectively.

We define a diagonal matrix A, by

1.1 2.2 o ey

1-1-1/ 7n
2-2-2 T2 O

which is a submatrix of M,.
Suppose that 7(2) = T T, T 2 . Let us now define a diagonal
1 2

—r

matrix B,41,4(7(2)) = BT_H,S(a?), cee a§2_)r) by

(r+1)% (r+22 .. s2
a§2) (r+1)2 T®
aé2) (r+2)? T\ O
B, y1,5(7(2)) =
ai)r - 52 O Ty

s—r

where we wrote j2 for j - j. We note that ag) with 1 <n <s-—r
satisfies @' < r + 1, which implies that B, 41,5(7(2)) is a submatrix of
M. Clearly, the determinant of B, +(7(2)) is 7(2).

We now have

T=m-717(1)7(2)
with deg7(1) = tg and deg7(2) = s —r. We also note that 7(1) is

ordered. Therefore, as we explained in §7, we can construct a lower
triangular matrix T'(7(1)) with det T'(7(1)) = 7(1). We define M (1) by

A, Ch Cy
M(r)y=| C3 T(r(1)) Cy
Cs * Br11,5(7(2))

Since the rows of A,, T(7(1)), By41,5(7(2)) are all distinct and the
columns of these three matrices are also all distinct, M (7) is a submatrix
of M. Since {i*} does not appear in the column labels of T(7(1)) for
any i with 1 <i < s, we know C; = 0. If 1 <4 <, {i®} does not appear
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in the column labels of B,41,4(7(2)), which implies Co = 0. Also, no
row label of the form {i?j} appears among the row labels of T(7(1))
for any 4, j with 1 < 4,7 < s, which implies C3 = 0 and Cy = 0. If
1 <i < r, no row label of the form {i?;} appears among the row labels
of By41,5(7(2)). This shows that C5 = 0. It follows that M (r) is lower
triangular, and

det M(7) = det A, det T'(7(1)) det B, 11 5(7(2))

=7 -1.7(1)7(2) =T,

Next, we assume e; > 0. In this case, we have r = s, and the degree
of 7/ = 71717871 is 1y, Therefore, by the method of §7 we can
construct a lower triangular matrix T'(7’) with det T'(7") = 7'.

We let Ag be the matrix A, defined above with » = s, and define

M(r) by
M(r) = (é’z T((j;') >

which is a submatrix of MS. By the same method as in the case e = 0,
we can show that Cy = 0, Cy = 0, and M (1) is lower triangular. Also,
we have

det M(7) =71+ -77 =1

For any monomial 7 in 7, ..., 7s of degree ¢ without assuming it is
ordered, it is clear by symmetry that we can construct a submatrix of
My, which is lower triangular, and whose determinant is 7. Thus we
obtain

Proposition 8.1. For any 7 which is a monomial in T,...,Ts of
degree t = @ + 1, we can construct a submatriz M (1) of M, which
s lower triangular, and whose determinant is 7. Above, we gave an
explicit method of constructing M (1), assuming T is ordered.

§9. Synthesis: General (7, v)-monomials

We now assemble our previous constructions, as the final step of
the proof of Theorem 1.1. We now work on monomials = in 7,...,7s
and vq,...,vs of degree t = 3(5—2_1) + 1. Every such monomial = factors
uniquely as 2 = 7(z)v(z) where 7(z) is a product of factors 7; and v(z)
is a product of factors v;. We call 7(z) and v(x) the 7-part and the
v-part of x, respectively. Recall that T;v; = 0 for all ¢ with 1 <17 < s.
As said earlier, the case of monomials of degree less than ¢ will be dealt
with at the very end.
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For a v-monomial v = V{ ! 1/2f2 vfs. we call v anti-ordered admis-

sible if f1 <--- < fg and

s s+1—1
SNH< > (s—4)
j=i j=1

for all 1 < ¢ <'s. Clearly, a monomial which is anti-ordered admissible
is admissible.

It is our goal to construct, for every = of degree ¢ such that v(z)
is admissible, a lower triangular submatrix of M, whose determinant is
2. To achieve our goal, we may assume that both 7(x) and v(z) are
nontrivial, because the cases v(z) = 1, 7(z) = 1 were already proved
in Proposition 8.1 and in Proposition 1.4 in [2] (see also the end of §2),
respectively. Also, by symmetry and 7;1; = 0, we may assume

_eiex  _en fo Fotr  fe
T=T] Ty - TrrVgng+1 vy®

with 1 <7 < g < s. By symmetry we may also assume

612622"'26r>07 O<fg§fg+1§"'§fs,
(10) .
and v(z) = y;"g ygfll .- v{s is anti-ordered admissible.
Assuming this, we will construct a submatrix M (z) of M, which is lower
triangular, and whose determinant is x.
For v = v(z) = yggz/gfll ---vls the existence of a partial selector
for v implies the following lemma.

Lemma 9.1. The v-part of © can be written as
V= y(x) = y(g)y(g+1) A I/(S)
such that for all j satisfying g < j <'s,
degrV) < j—1

and

/
0 — £
VY = Vg Va, Vaj, Vj

for some non-negative integer r; € Z>q and positive integer fj’ € Zxo,
and some (a;r)1<k<r; such that g < aji < ajo <--- <aj, <j.
Proof. By Lemma 2.1, there is a partial selector ¢ : Dy, — {g, 9+

1,...,s} corresponding to v. If it is needed, since g > 2, we can change
¥ to ¢’ such that v(¢') = v(¢) = v and that for any j such that
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g <j<s,thereisi with 1 <i<j, {i,j} € Dy, and ¥'({i,j}) =j. In

fact, if for some j there is no 7 satisfying the above, then since f; > 0 and

{i,j} € Dy, for some i with ({3, j}) = j, we can take ¢’ obtained from ¢

by removing {7, j} from D, and adding {1, j} € Dy with ¢'({1,5}) = j.
For any j with g < j < s, we define

-1
v = T vy
=1
{Lj}eDW

Then v) satisfies the conditions in Lemma 9.1, in particular we have
degr) < j—1and f] > 0. Q.E.D.

Example. Consider v = vovivivivirs for s = 7. This v is admissible.

For this v, we can decompose

2

v =y, 3 = V3 3

4) _ 4
7V()7V4

5) __ 4
L) =

6 7 4
, V( ) = V3lg, V( ) = V3lV4lr.

We decompose v as in Lemma 9.1, and put
m;=7—1 — deg v

for all j such that g < j < s. Noting f]’ > 0 in Lemma 9.1, we have
deg ) > 0, which implies

0<m;<j—2.

We put
T=1(x) =TT T
Then we get
s s . s ‘ S(S—].)
ij:Z(jfl)fdegl/:Z(jfl)* T‘Fl*degT
Jj=g Jj=g J=g
—1 -2
=degT — (7(9 )2(9 ) + 1) .

Therefore, we can write down the ordered decomposition

=709 g+1) . 1(s)
such that deg 7(9=1) = % +1 and

deg ) = m
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for any j such that g < j <s. _ _
For each j with g < j < s, we take 70, () as above, in particular
v) as in Lemma 9.1;

L) £

= VajVajs " Vay, V-

We write _
+0) = TogiTrgs " Tgm,
with 1 S e S lemj.
We define S; by
Sj=Aaj1, ., a50,},

which is a set of 7; elements. By definition, we have

m]-—l—fjl-—l:j—l—degu(j)—l-f;-—l
=j-1=(fi+r)+fi-1
—j— 2 #S;.

Therefore, m; < j —2—#S;, and we can consider NJ’-737 (15 Mjm, )s
which is defined in §6. It is lower triangular and

’

/ N
det Nj g (g1, Mjmy) = V3" Tngy Ty < T,

by Proposition 6.1 and f; = (j — 2 — #5S;) —m; + 1.
To the matrix N} ¢ (nj1, ..., %jm;), we now add rows labeled {a?uj}

and also columns labeled {a;,j} for 1 < p < r; as follows:

ajlj e a‘j’!‘jj
2 .
a%j [ va.
J1 1 O
2
@jr;J Vajr,
Nj/',SJ (’Iljl, ey Tijj)
b S
First of all, the labels {a;15},...,{a;,j} do not appear among the col-
umn labels of N} g (nj1, ..., njm; ), and the labels {a?lj}, cey {a?”j} do
not appear among the row labels of NJ’-7S7, (nj1, ..., Mjm;). Therefore, the

above matrix is a submatrix of M,. We call this matrix M (v(), 70)).
In the rows with index {a?ij} the only nonzero entry sits at the
diagonal position. This together with the fact that Nj g (nj1,. .., njm,)
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is lower triangular implies that M; (), 7()) is also lower triangular.
We have

!
(@) )y — fi
det M; (v, 7V)) = vy V0, Vay,, Vi Toj Tnge * " T,

— 06,

Since 7971 is of degree W + 1 and ordered, by Proposi-
tion 8.1 we can build a lower triangular matrix M (7(9=) of degree
W +1, whose row labels are of the form {abc} with a, b, ¢ < g—1,

and whose column labels are of the form {bc} with b, ¢ < g — 1.
For x as in (10) we define M(x) by

M(r(a—1)
( ) Mg(y(g)’T(g)) O
M(z) =

*k M (), 7))

Suppose that {abc} is a row label of M(7(9=1)). Then as we explained,
since a, b, ¢ < g — 1, we have j & {a, b, c} for any j such that g < j < s.
This shows that the column labels of M(z) are all distinct, and so
are the row labels. Thus M(z) is a submatrix of M,. Also, for any
row label {abc} of M(79=D) we have {n,j} ¢ {a,b,c} for any j such
that ¢ < j < s and any n, and so M(x) is lower triangular. By the
construction of M(x), we get

det M(z) = det M (797Y) H det Mj(l/(j)77—(j))

Jj=g

— @D T[99 = 7y = 2.
J=9

Thus we finally obtain the following theorem.

Theorem 9.2. Let x be a monomial in T1,...,7Ts and vq,...,Vs
of degree t = 3(5—2_1) +1 satisfying the condition (10). Then we can
construct a submatriz M(x) of My, which is lower triangular, and whose
determinant is x.

By symmetry this theorem implies that any monomial z in 7, ..., 7
and vy, ..., of degree t such that the v-part of x is admissible, we can
construct a submatrix M (x) of My, which is lower triangular, and whose
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determinant is . Thus we have proved that

t
m; O ZHtidnd .
d=0

To finish the proof, we now discuss the case where the monomial z
has degree v < t. Let 7(x) and v(z) be the 7-part and the v-part of x
respectively as usual. Let d be the degree of v(x). Thend <v <t—1=
s(s—1)/2. Let e = v —d be the degree of 7(x), so e+d = v. First let us
note that the case e = 0 need not be considered for the following reason.
If e = 0, then z is a v-monomial, and admissible. It was already shown
in Proposition 1.4 of [2] and Lemma 2.1 that all admissible v-monomials
can be obtained as minors of M, (see the end of §2). Hence we may
assume that e > 0, so the T-part of x contains a factor 7;, say. We then
define 7 = 7/~" - x. This is then of degree t. (Note that & will not be
zero since the v-part of x has no factor v;, otherwise we would already
have z = 0.) By Theorem 9.2 and the remark following it, there is a
lower triangular ¢ x ¢t submatrix of M, whose determinant (= product
over the diagonal) is Z. Since z is a monomial of degree v dividing Z, we
can extract a v X v matrix M(z) from M(Z) such that det(M(z)) = z,
simply by deleting rows and columns corresponding to factors 7; that
sit on the diagonal of M(Z) and that appear in Z but not in z. This
means that we have established the inclusion m, D Z(Ui:o Hv= %, for
any v < t, and this completes at last the proof of Theorem 1.1.
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