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Abstract. Let p be an odd prime number and Mf,D a quadratic twist by a
square-free integer D of an Fp-valued representation of Gal(Q/Q) attached to a
modular form f . Putting Kf,D as a number field cut out by Mf,D, we study the
ideal class group ClKf,D

of Kf,D. We give a condition that ClKf,D
⊗Fp has Mf,D as

its quotient Gal(Kf,D/Q)-module in terms of Bloch-Kato’s Selmer group of Mf,D.
This is a generalization of the result of Prasad and Shekhar on elliptic curves for
modular forms of higher weight.

1. Introduction

The ideal class groups of number fields, the Tate-Shafarevich groups and the Selmer
groups of elliptic curves are central objects to study in number theory. Various
relations between them have been studied by many people. For example in [23],
Washington considered a specific elliptic curve defined by the equation of the simplest
cubic, and studied a relation between its 2-Selmer group and the class group of its
2-division field. In [14], Nekovář studied a relation between the ideal class groups of
certain quadratic fields and the Tate-Shafarevich groups of twists of the cubic Fermat
curve. We note here that they studied the ideal class groups of abelian number fields
over Q. Recently, non-abelian number fields over Q have been also studied well. Let
E be an elliptic curve over Q and p an odd prime number. Hiranouchi [10] studied
the class number of the pn-th division field Q(E[pn]) in terms of the Morell-Weil
group E(Q), where the extension Q(E[pn])/Q is non-abelian in general. Ohshita [17]
further generalize Hiranouchi’s result for a number field F cut out by a general p-adic
Galois representation. He studied the class number of F using the Selmer group of
the p-adic representation.

On the other hand, Prasad and Shekhar [19] studied the structure of the ideal class
group of the p-th division field Q(E[p]) as a Gal(Q(E[p])/Q)-module rather than the
class number. Here we briefly introduce their result.

Theorem (Prasad-Shekhar). Let ρ̄E,p : GQ → GL2(Fp) be a Fp-valued Galois rep-
resentation associated to E[p] where GQ denotes the absolute Galois group of Q.
Suppose that the following conditions on E hold:
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(1) E has good reduction at p.
(2) In the case that E has good ordinary reduction at p, ap(E) ≡ 1 (mod p), and

E has no CM over an extension of Qp, then ρE,p is wildly ramified at p.
(3) For every finite prime ` ̸= p, the Tamagawa number cℓ(E/Qℓ) of E/Qℓ is a

p-adic unit.
(4) The Fp-representation ρ̄E,p of GQ is irreducible.

Then dimFp(Sel(Q, E[p])) ⩾ 2 implies that the Fp-representation ClQ(E[p]) ⊗ Fp of
Gal(Q(E[p])/Q) has E[p] as its quotient representation.

In this article, we study a higher weight analogue of the above theorem of Prasad
and Shekhar. In other words, we consider Fp-valued representations attached to
modular forms rather than those associated to elliptic curves. Here we describe the
details. Let f(z) =

∑∞
n=0 anq

n be a normalized Hecke eigen newform of even weight
k ⩾ 2 and level Γ0(N) where q := e2π

√
−1z and the parameter z is in the complex

upper half plane. We fix p again as an odd prime number and assume p splits
completely in the Hecke field of f . Then there is an associated p-adic representation
ρ0f : GQ → AutQp(V

0
f )

∼= GL2(Qp) where V 0
f denotes its representation space. Note

that we take V 0
f as the one with the Hodge-Tate weight {0, k − 1}. Fixing a Galois

stable Zp-lattice T 0
f of V 0

f , we put A0
f := V 0

f /T
0
f , M0

f := T 0
f /pT

0
f and ρ̄0f : GQ →

AutFp(M
0
p )

∼= GL2(Fp) as a group homomorphism corresponding to M0
f . We take

twists of these representations to make them self-dual. Let χcyc (resp. ωcyc) denotes

the p-adic (resp. mod p) cyclotomic character. We define ρf := ρ0f ⊗ χ
1− k

2
cyc , ρ̄f :=

ρ̄0f⊗ω
1− k

2
cyc . Next we consider various quadratic twists of ρf and ρ̄f . Taking a quadratic

discriminant D and corresponding quadratic character χD of GQ, we put ρf,D :=
ρf ⊗ χD, ρ̄f,D := ρ̄f ⊗ χD and write Vf,D,Mf,D as their representation spaces. We
take Tf,D as the Galois stable Zp-lattice of Vf,D which is the same as T 0

f as a Zp-
module and put Af,D := Vf,D/Tf,D. Let Kf,D be the Galois extension of Q cut out
by ρ̄f,D. Note that we consider the representation ρ̄f,D and the number field Kf,D

as analogues of ρ̄E,p and Q(E[p]) in the theorem of Prasad and Shekhar respectively.
The main theorem of this article is the following.

Theorem 1.1. Under the above setting, we further assume the following conditions
are satisfied.

(1) p ∤ N .
(2) If f is supersingular at p, then k ⩽ p+ 1.

If f is ordinary at p, then p−1 ∤ k−1 and the conditions in Proposition 5.11
do not occur.

(3) Im(ρ0f ) ⊃ SL2(Fp)
(4) c(Qℓ, Af,D) = 1 for all prime ` | N .
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Then dimFp

(
H1

f (Q,Mf,D)
)
⩾ 2 implies that the Fp-representation ClKf,D

⊗ Fp of
Gal(Kf,D/Q) has Mf,D as its quotient representation. Here c(Qℓ, Af,D) denotes the
Tamagawa factor of Af,D at ` and H1

f (Q,Mf,D) is Bloch-Kato’s Selmer group of
Mf,D.

Remark 1.2. Due to Bloch and Kato’s conjecture, the order of XBK
p (Q, Af,D) is

related to the central value L(k/2, χD, f) of twisted L function of f if it does not van-
ish. Here XBK

p (Q, Af,D) denotes the p-part of Bloch-Kato’s Tate-Shafarevich group
of Af,D. Especially, if p divides the algebraic part Lalg(k/2, χD, f) of L(k/2, χD, f),
then we have XBK

p (Q, Af,D) ̸= 0 assuming the conjecture. On the other hand, we
know that if XBK

p (Q, Af,D) ̸= 0, then we have dimFp

(
H1

f (Q,Mf,D)
)
⩾ 2 because of

the existence of the generalized Cassels-Tate pairing for Af,D. Hence, under Bloch
and Kato’s conjecture, if p divides Lalg(k/2, χD, f), we can see that the class group
ClKf,D

has the representation Mf,D as its quotient from our main result. Thus we
conjectually obtain an Herbrand-Ribet type phenomenon for a representation associ-
ated to a modular form.

At the end of this section, we write the outline of this paper. In section 2, we
recall the definition of Bloch-Kato’s Selmer groups and Tate-Shafarevich groups for
p-adic representations and write a sketch of the proof of Theorem 1.1 dividing it into
3 steps. In section 3, we prove the first step of the proof. In section 4, the basic
notions of Tamagawa factor are explained and the second step is proved. In section
5, we prove the third step and complete the proof. Finally in section 6, we introduce
two numerical examples of Theorem 1.1.

Acknowlegement. The author would like to thank his supervisor Professor Masato
Kurihara heartily for his continued support, guiding the author to the topic in this
paper and helpful discussions. He also would like to express his sincere gratitude
to Professors Dipendra Prasad and Sudhanshu Shekhar for valuable comments on
his previous paper [3]. Thanks are also due to Dr. Ryotaro Sakamoto who teaches
him the basic properties of Tamagawa factors which are used in Section 4. He is
also grateful to Professor Neil Dummigan for introducing his paper [4] kindly to the
author, which was really helpful to make some numerical examples in Section 6.

2. A sketch of the proof

In this section, we describe a sketch of the proof of Theorem 1.1. We mainly follow
the strategy used in [3] in which we gave a condition that ClQ(E[p]) ⊗ Fp has other
irreducible Gal(Q(E[p])/Q)-representation than E[p] as its quotient representation
in the same setting as [19]. In [19], they used the classical p-Selmer group Selp(E/Q)
for an elliptic curve but, to treat representations coming from modular forms, we
have to deal with Bloch-Kato’s Selmer group H1

f which we first recall.
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2.1. Bloch-Kato’s Selmer groups and Tate-Shafarevich groups. For a field
F , GF denotes its absolute Galois group Gal(F/F ). For every prime number ` and
the p-adic representation Vf,D which we define in Section 1, we fix a local condition
H1

f (Qℓ, Vf,D) in H1(Qℓ, Vf,D) as{
H1

f (Qℓ, Vf,D) := H1
ur(Qℓ, Vf,D) := Ker (H1(Qℓ, Vf,D) → H1(Qur

ℓ , Vf,D)) (` ̸= p),

H1
f (Qp, Vf,D) := Ker (H1(Qp, Vf,D) → H1(Qp, Vf,D ⊗Bcrys)) (` = p).

Here Qur
ℓ is the maximal unramified extension of Qℓ and Bcrys denotes Fontaine’s crys-

talline period ring which is defined in [1, Section 1]. We also define H1
f (Qℓ, Af,D) :=

π
(
H1

f (Qℓ, Vf,D)
)

for every `, where π : H1(Qℓ, Vf,D) → H1(Qℓ, Af,D) is a homomor-
phism induced by a natural map π : Vf,D → Af,D.

Definition 2.1. For Vf,D and Af,D, we define Bloch-Kato’s Selmer groups as

H1
f (Q, Vf,D) := Ker

(
H1(Q, Vf,D)

∏
Locℓ−−−−→

∏
ℓ

H1(Qℓ, Vf,D)

H1
f (Qℓ, Vf,D)

)
,

H1
f (Q, Af,D) := Ker

(
H1(Q, Af,D)

∏
Locℓ−−−−→

∏
ℓ

H1(Qℓ, Af,D)

H1
f (Qℓ, Af,D)

)
,

where for every prime number `, Locℓ denotes the restriction of cohomology classes
to the decomposition group at ` and the products run over all prime numbers.

The p-part of Bloch-Kato’s Tate-Shafarevich group for Af,D which we write as
XBK

p (Q, Af,D) is defined in [1, Section 5] as follows.

Definition 2.2. We define the p-part of Bloch-Kato’s Tate-Shafarevich group for
Af,D as

XBK
p (Q, Af,D) :=

H1
f (Q, Af,D)

π(H1
f (Q, Vf,D))

,

where π : H1(Q, Vf,D) → H1(Q, Af,D) is a homomorphism induced by a natural map
π : Vf,D → Af,D. In other words, XBK

p (Q, Af,D) is defined by an exact sequence

0 → π(H1
f (Q, Vf,D)) → H1

f (Q, Af,D) → XBK
p (Q, Af,D) → 0.

We note that π(H1
f (Q, Vf,D)) is the maximal divisible subgroup of H1

f (Q, Af,D), so
their quotient XBK

p (Q, Af,D) is always finite which is a well-known conjecture for
classical Tate-Shafarevich groups for elliptic curves.

We also define Bloch-Kato’s Selmer group for the finite module Mf,D. We have an
exact sequence of GQ-modules

0 →Mf,D
ι−→ Af,D

×p−→ Af,D → 0



5

from which we obtain an exact sequence

0 → (Af,D)
GQ ⊗ Fp → H1(Q,Mf,D)

ι−→ H1(Q, Af,D)[p] → 0,(1)

where the map ι in the first exact sequence denotes the inclusion and the second
denotes the one which induced by the first one.

Definition 2.3. We define Bloch-Kato’s Selmer group for Mf,D as

H1
f (Q,Mf,D) := ι−1(H1

f (Q, Af,D)[p]).

The Selmer group H1
f (Q,Mf,D) can be also defined by using local conditions. In

fact, we define local conditions for Mf,D at ` as H1
f (Qℓ,Mf,D) := ι−1(H1

f (Qℓ, Af,D)).
Then we have

H1
f (Q,Mf,D) = Ker

(
H1(Q,Mf,D)

∏
Locℓ−−−−→

∏
ℓ

H1(Qℓ,Mf,D)

H1
f (Qℓ,Mf,D)

)
as in Definition 2.1.

2.2. A sketch of the proof of Theorem 1.1. Now we describe a sketch of the
proof of Theorem 1.1. In the following, we fix a modular form f and a quadratic
discriminant D and omit the suffixes of Vf,D, Tf,D, Af,D,Mf,D, Kf,D as V, T,A,M,K
when no confusion occurs.

(Step1) We show that a restriction map

ResK/Q : H1(Q,M) → H1(K,M)Gal(K/Q)

is injective under the assumption (3) in Theorem 1.1.

Let F be a number field or a local field and N a GF -module. We define the
unramified cohomology group H1

ur(F,N) as a subgroup of cohomology classes in
H1(F,N) which are trivial on the inertia subgroup at every place of F . Assuming
the claim in (Step1), the restriction map ResK/Q induces an injective homomorphism
between unramified cohomology groups

ResK/Q : H1
ur(Q,M) ↪→ H1

ur(K,M)Gal(K/Q).

Using class field theory, we have H1
ur(K,M)Gal(K/Q) = HomGal(K/Q)(ClK ⊗ Fp,M).

Every nontrivial homomorphism in HomGal(K/Q)(ClK ⊗ Fp,M) is surjective since we
assume the condition (3) in Theorem 1.1 which implies that M0

f and so M = Mf,D

are irreducible. Hence every non-trivial homomorphism in HomGal(K/Q)(ClK⊗Fp,M)
realizes M as a quotient Gal(K/Q)-module of ClK ⊗ Fp. From this observation and
the above injection between unramified cohomology groups, we obtain an implication,

H1
ur(Q,M) ̸= 0 ⇒ ClK ⊗ Fp has M as its quotient Gal(K/Q)-module.
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We will show the existence of non-trivial elements in H1
ur(Q,M) using Bloch-Kato’s

Selmer group of M in the succeeding steps.

(Step2) Under the assumption (4) in Theorem 1.1, we show that the image of
H1

f (Q,M) in H1(Qur
ℓ ,M) is zero for any ` ̸= p. In other words, we show that

elements in H1
f (Q,M) are unramified outside p.

Here H1
f (Q,M) is the Selmer group of M defined in Definition 2.3. Assuming the

claim in (Step2), for a restriction map

Resurp : H1
f (Q,M) → H1(Qur

p ,M),

we have Ker(Resurp ) ⊂ H1
ur(Q,M). Thus it suffices to show that Ker(Resurp ) ̸= 0 to

get the main theorem.

(Step3) We study the image of Resurp and show that dimFp(Im(Resurp )) ⩽ 1.

This completes the proof since we assume dimFp(H
1
f (Q,M)) ⩾ 2.

3. Injectivity of the restriction map

In this section, we prove the claim in (Step1).

Proposition 3.1. Suppose that Im(ρ̄0f ) contains SL2(Fp) (the assumption (3) in
Theorem 1.1). Then the restriction map

ResK/Q : H1(Q,M) → H1(K,M)Gal(K/Q)

is injective.

(Proof of Proposition 3.1)
It suffices to show that H1(Gal(K/Q),M) = 0. We use the following lemma.

Lemma 3.2. Let G be a finite group and N a finite dimensional representation of
G over Fp. If there is a normal subgroup H of G such that

(1) #H is prime to p
(2) NH = 0

then H i(G,N) = 0 for all i ⩾ 0.

For a proof of this lemma, see [3, Lemma 3.2]. We divide a proof of Proposition
3.1 into two cases.
(Case 1: p ⩾ 5)

Let L := Q(ζp,
√
D) where ζp is a primitive p-th root of unity. First we show

that the image of ρ̄0f : GQ → GL2(Fp) still contains SL2(Fp) when restricted to GL.
Let F and FL be the fields corresponding to the kernel of ρ̄0f and ρ̄0f |GL

in Galois
theory respectively. So we have Gal(F/Q) ∼= Im(ρ̄0f ) ⊃ SL2(Fp) and Gal(FL/L) ∼=



7

Gal(F/F ∩L) ∼= Im(ρ̄0f |GL
). Let F ′ be the intermediate field of the Galois extension

F/Q corresponding to SL2(Fp). Then F ′ · (F ∩ L)/F ′ is an abelian extension as
the extension F ∩ L/Q is. Since we assume p ⩾ 5, SL2(Fp) is a perfect group. In
other words, SL2(Fp) has no non-trivial abelian quotients. So we have F ′ · (F ∩
L) = F ′ and hence Gal(F/F ∩ L) ∩ SL2(Fp) = SL2(Fp) from Galois theory. Thus
Im(ρ̄0f |GL

) ∼= Gal(F/F ∩ L) ⊃ SL2(Fp). Since ρ̄f,D|GL
= ρ0f |GL

, the image of ρ̄f,D
also contains SL2(Fp) which implies that −I ∈ Im(ρ̄f,D) ∼= Gal(K/Q), where I
denotes the unit matrix in SL2(Fp). Let H ⊂ Gal(K/Q) be the order 2 subgroup
generated by −I. Then H satisfies the conditions (1), (2) in Lemma 3.2 and we have
H i(Gal(K/Q),M) = 0 for all i ⩾ 0.
(Case 2: p = 3)

In this case, we know #SL2(F3) = 8 and the elements in SL2(F3) are the following:(
1 0
0 1

)
,

(
1 1
1 −1

)
,

(
−1 1
1 1

)
,

(
0 −1
1 0

)
,(

−1 0
0 −1

)
,

(
−1 −1
−1 1

)
,

(
1 −1
−1 −1

)
,

(
0 1
−1 0

)
We put

A1 =

(
1 1
1 −1

)
, A2 =

(
−1 −1
−1 1

)
.

Since we assume that Im(ρ̄0f ) ⊃ SL2(F3), we can take σ ∈ GQ such that ρ̄0f (σ) = A1.
Since both mod 3 cyclotomic character ωcyc and χD are order 2, we have ρ̄f,D(σ) = A1

or A2. We can show that there are no non-trivial elements in M which fixed by A1 or
A2 by direct computation. So if A1 = ρ̄f,D(σ) ∈ Gal(K/Q) (resp. A2 ∈ Gal(K/Q)),
then the subgroup of Gal(K/Q) generated by A1 (resp. A2) satisfies the conditions
(1), (2) in Lemma 3.2 since every subgroup of SL2(F3) is normal and 2-group. Thus
we have H i(Gal(K/Q),M) = 0 for all i ⩾ 0 from Lemma 3.2. □

Thus the restriction map ResK/Q : H1(Q,M) → H1(K,M)Gal(K/Q) is in fact an
isomorphism although its injectivity is enough for the proof of the Theorem 1.1.

4. Unramifiedness of H1
f (Q,M) outside p

4.1. Tamagawa factor of Af,D at `( ̸= p). First, we introduce some basic notions
on the Tamagawa factor of A. For a prime number ` ̸= p, let Iℓ denotes the inertia
subgroup of GQℓ

and A := AIℓ/(AIℓ)div, where (AIℓ)div denotes the maximal divisible
subgroup of AIℓ . So A is a finite group.

Definition 4.1. We define the p-part of the Tamagawa factor of A at ` as

c(Qℓ, A) := #A/(Frobℓ − 1)A = #AFrobℓ=1.
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Here Frobℓ denotes the Frobenius element in Gal(Qur
ℓ /Qℓ). Note that for an end-

morphism g of A, the orders of ker(g) and coker(g) are the same since A is finite,
hence the second equality in the definition holds. Roughly speaking, this Tamagawa
factor of A can be used to measure the difference H1

ur(Qℓ,M) and the local condition
H1

f (Qℓ,M).

Proposition 4.2. If c(Qℓ, A) = 1, then H1
f (Qℓ,M) = H1

ur(Qℓ,M).

(Proof of Proposition 4.2)
We first consider the local condition with the coefficient in A.

H1
ur(Qℓ, A)/H

1
f (Qℓ, A)

∼−→ coker
(
H1

f (Qℓ, V ) = H1
ur(Qℓ, V )

π−→ H1
ur(Qℓ, A)

)
∼−→ coker

(
V Iℓ/(Frobℓ − 1)(V Iℓ)

π−→ AIℓ/(Frobℓ − 1)(AIℓ)
)

∼−→ A/(Frobℓ − 1)A.

Here we use the following identification in the second isomorphism above.

H1
ur(Qℓ, V ) = H1(Qur

ℓ /Qℓ, V
Iℓ)

∼−→
ev

V Iℓ/(Frobℓ − 1)(V Iℓ)

where the isomorphism ev is given by evaluating every 1-cocycle with Frobℓ. Thus
if c(Qℓ, A) = #A/(Frobℓ − 1)A = 1, we have H1

ur(Qℓ, A) = H1
f (Qℓ, A). On the

other hand, since H1
f (Qℓ,M) is the inverse image of H1

f (Qℓ, A) = H1
ur(Qℓ, A) under

ι : H1
f (Qℓ,M) → H1

f (Qℓ, A), we have

H1
f (Qℓ,M) = ker(H1(Qℓ,M) → H1(Qℓ, A) → H1

f (Qur
ℓ , A)

Frobℓ=1)

= ker(H1(Qℓ,M) → H1(Qur
ℓ ,M)Frobℓ=1 g→ H1

f (Qur
ℓ , A)

Frobℓ=1).

Here the homomorphism g is injective. In fact, from an exact sequence of Iℓ-modules

0 →M −→ A
×p−→ A→ 0,

we have an exact sequence

0 → (AIℓ ⊗ Fp)
Frobℓ=1 −→ H1(Qur

ℓ ,M)Frobℓ=1 g−→ H1(Qur
ℓ , A)

Frobℓ=1.

Since AIℓ ⊗ Fp = A⊗ Fp, we obtain

ker(g) = (AIℓ ⊗ Fp)
Frobℓ=1 = (A⊗ Fp)

Frobℓ=1 = AFrobℓ=1 ⊗ Fp = 0.

In the third equality above, we use the assumption c(Qℓ, A) = #AFrobℓ=1 = 1 to get
H1(Qur

ℓ /Qℓ,A) = 0. Thus the homomorphism g is injective and we get

H1
f (Qℓ,M) = ker(H1(Qℓ,M) → H1(Qur

ℓ ,M)Frobℓ=1) = H1
ur(Qℓ,M).

□
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4.2. Unramifiedness of H1
f outside p. Now we prove the following proposition

which is the claim in (Step 2).

Proposition 4.3. If the Tamagawa factor c(Qℓ, A) of A at ` is trivial for every prime
` with ` | N (the assumption (4) in Theorem 1.1), then the elements in H1

f (Q,M)
are unramified outside p.

(Proof of Proposition 4.3)
Since p ⩾ 3, there is nothing to prove for unramifiedness at the infinite place of

Q. If ` ∤ N , the inertia subgroup Iℓ at ` acts on A0
f = V 0

f /T
0
f trivially. So we have

AIℓ
f,D =

{
Af,D (

√
D ∈ Qur

ℓ ),

0 (otherwise).

Hence we have c(Qℓ, A) = 1 in both cases to get H1
f (Qℓ,M) = H1

ur(Qℓ,M) from
Proposition 4.2. While for ` | N , we assume that c(Qℓ, T ) = 1 and obtainH1

f (Qℓ,M) =

H1
ur(Qℓ,M). Thus elements in the Selmer group H1

f (Q,M) are unramified outside p.
□

Finally, we introduce a sufficient condition on M = A[p] for c(Qℓ, A) = 1.

Proposition 4.4. For a prime number ` ̸= p, if MGQℓ = 0, then c(Qℓ, A) = 1.

(Proof of Proposition 4.3)
We have an commutative diagram of exact sequences

0 // (AIℓ)div //

Frobp−1
��

AIℓ //

Frobp−1
��

A //

Frobp−1

��

0

0 // (AIℓ)div // AIℓ // A // 0.

Since we assume MGQℓ = 0 and this is equivalent to the condition H0(Qℓ, A) = 0,
the middle vertical arrow is injective and so is the left vertical arrow. While (AIℓ)div
is the direct sum of finite number of Qp/Zp, the injective left vertical arrow is in
fact an isomorphism. So the right vertical arrow is injective by Snake lemma which
implies c(Qℓ, A) = #AFrobp=1 = 1. □

5. The image of the restriction map Resurp

5.1. Image of the localization at p. In this section, we consider the restriction
map Resurp : H1

f (Q,M) → H1(Qur
p ,M) at p and show that its image has at most

dimension 1 over Fp under the assumptions (2) in Theorem 1.1. We decompose the
restriction map as

Resurp : H1
f (Q,M)

Locp−−→ H1(Qp,M)
ResQur

p /Qp−−−−−−→ H1(Qur
p ,M),
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and study the image of Locp which is the restriction of cohomology classes to the de-
composition group at p. The image of H1

f (Q,M) under Locp is in the local condition
H1

f (Qp,M) at p. By the definition of the local condition and the exact sequence (1),
we have an exact sequence

0 → AGQp ⊗ Fp → H1
f (Qp,M)

ι−→ H1
f (Qp, A)[p] → 0.

So we have an inequality
dimFp(Im(Locp)) ⩽ dimFp(H

1
f (Qp,M))

⩽ dimFp

(
AGQp ⊗ Fp

)
+ dimFp

(
H1

f (Qp, A)[p]
)
.(2)

The dimension of H1
f (Qp, A)[p] can be computed by p-adic Hodge theory. We use

the following fact.

Proposition 5.1 ([1], Corollary 3.8.4). Let V be a p-adic representation of GQp,
and DdR(V ) := (V ⊗BdR)

GQp ,D+
dR(V ) := (V ⊗B+

dR)
GQp , where BdR is Fontaine’s de

Rham period ring and B+
dR is its valuation ring. If V is a de Rham representation,

then

dimQp(H
1
f (Qp, V )) = dimQp(DdR(V )/D+

dR(V )) + dimQpH
0(Qp, V ).(3)

Since we assume p ∤ N , the p-adic representation V 0
f of GQp is crystalline and its

Hodge-Tate weight is {0, k − 1}. So V = Vf,D is also crystalline with Hodge-Tate
weight {1− k/2, k/2}, hence we obtain dimQp(DdR(V )/D+

dR(V )) = 2− 1 = 1. Since
H1

f (Qp, A) is the image of H1
f (Qp, V ) and cofinitely generated as a Zp-module, we

have dimFp

(
H1

f (Qp, A)[p]
)
= dimQp(H

1
f (Qp, V )). Then by (3), we obtain

dimFp(H
1
f (Qp, A)[p]) = 1 + dimQpH

0(Qp, V ).(4)

From (2), (4), we have

dimFp(Im(Locp)) ⩽ dimFp

(
AGQp ⊗ Fp

)
+ 1 + dimQpH

0(Qp, V ).(5)
In the following, we compute the first and the third terms in the above equality.

5.2. Supersingular case.

Proposition 5.2. If f is supersingular at p and k ⩽ p+ 1, then we have

AGQp ⊗ Fp = V GQp = 0.

We use the following result of Fontaine and Edixhoven.

Theorem (Fontaine-Edixhoven).
If the weight k of f satisfies 2 ⩽ k ⩽ p+ 1, then ρ̄0f |GQp

is irreducible.

Remark 5.3. Note that we cite their result as far as we use it. Their result describe
a more precise local behavior of ρ̄0f at a supersingular prime. See for example [6].
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(Proof of Proposition 5.2)
From the above result, M0

f and its twist M = Mf,D are irreducible GQp-modules.
Hence we obtain MGQp = A[p]GQp = 0 and AGQp = 0 to get AGQp ⊗ Fp = 0. Since
the residual representation M is irreducible, the p-adic representation V is also irre-
ducible as a GQp-module which implies V GQp = 0. □

5.3. Ordinary case.

Proposition 5.4. Suppose f is ordinary at p. Then we have V GQp = 0.

(Proof of Proposition 5.4)
We fix a basis of T 0

f over Zp and this also yields a basis of V 0
f over Qp. Taking

corresponding bases {v1, v2} for its twist V = Vf,D, we know g ∈ GQp acts on it as(
χ
k/2
cyc (g)ψ−1(g) u(g)

0 ψ(g)χ
1−k/2
cyc

)
· χD(g),(6)

where ψ : GQp → Z×
p is an unramified character and u(g) ∈ Zp. We have a subspace

W1 := Qpv1 of V on which GQp acts via the character χk/2
cycχDψ

−1 : GQp → Z×
p . If

V GQp ̸= 0, in other words, there is a non-trivial subspace W0 of V on which GQp

acts trivially, then that is 1-dimensional and linearly independent with W1 since
χ
k/2
cycχDψ

−1 ̸= 1. Then the matrix (6) is similar to(
χ
k/2
cyc (g)χDψ

−1(g) 0
0 1

)
.

Taking determinants of above matrices, we have

χcyc(g) = χk/2
cyc (g)χD(g)ψ

−1(g) for all g ∈ GQp ,

but this equality can not be hold. This is a contradiction and hence we obtain
V GQp = 0. □

Proposition 5.5. Suppose f is ordinary at p and p − 1 ∤ k − 1. Then we have
MGQp = 0 if and only if the following situations depending on D do not happen:
(When p ∤ D)

(a) M does not split as a GQp-module and p− 1 | k/2 and ap ≡ 1 (mod p).
(b) M splits as a GQp-module and p− 1 | k/2 or 1− k/2 and ap ≡ 1 (mod p).

(When D = p∗ := (−1)
p−1
2 p)

(c) M does not split as a GQp-module and p− 1 | k−p+1
2

and ap ≡ 1 (mod p).
(d) M splits as a GQp-module and p− 1 | k−p+1

2
or k+p−3

2
and ap ≡ 1 (mod p).
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(Proof of Proposition 5.5)
We fix a basis of T 0

f over Zp as in the proof of Proposition 5.4 and this yields a
basis of M0

f over Fp. Taking a corresponding basis {m1,m2} for its twist M =Mf,D

over Fp, we know g ∈ GQp acts on M as(
ω
k/2
cyc (g)ψ̄−1(g) ū(g)

0 ψ̄(g)ω
1−k/2
cyc

)
· χD(g),(7)

where ψ and u(g) ∈ Zp are as in (6) and ψ̄ and ū(g) are their reduction modulo p.
We show that MGQp = 0 if the situations described in Proposition 5.5 do not occur
by a case-by-case computation.
(Case 1 : p ∤ D)

In this case we have
√
D ∈ Qur

p . So g ∈ Ip acts on M via a matrix(
ω
k/2
cyc (g) ū(g)

0 ω
1−k/2
cyc

)
.

First, suppose M splits as a GQp-module, in other words ū = 0. For a, b ∈ Fp, an
element x = am1 + bm2 ∈M and g ∈ Ip,

g(x) = g(av1 + bv2) = aωk/2
cyc (g)m1 + bω1−k/2

cyc (g)m2.

Thus x ∈M Ip if and only if

aωk/2
cyc (g) = a, bω1−k/2

cyc (g) = b for all g ∈ Ip.(8)

If p − 1 ∤ k/2 and p − 1 ∤ 1 − k/2, then conditions in (8) implies a = b = 0 and
we get MGQp ⊂ M Ip = 0. If one of the conditions p − 1 | k/2 or p − 1 | 1 − k/2
holds, then M Ip = Fpm1 or M Ip = Fpm2 respectively. We know that the Frobenius
element Frobp acts on Fpm1 and Fpm2 via multiplication by ap(f)

−1 mod p and
ap(f) mod p respectively, where ap(f) is the p-th Fourier coefficient of f . Thus
MGQp = (M Ip)Frobp=1 = 0 if we have ap(f) ̸≡ 1 (mod p). If ap(f) ≡ 1 (mod p),
MGQp is a 1-dimensional subspace of M .

Next, suppose M does not split as a GQp-module, we use the following lemma.

Lemma 5.6. Suppose M does not split as a GQp-module. If p − 1 ∤ k − 1, then we
have ū(GQab

p
) ̸= 0 for a suitable basis of M , where Qab

p denotes the maximal abelian
extension of Qp.

We prove this lemma later. From (7), GQab
p

acts on M via
(

1 ū(g)
0 1

)
. By

a similar argument with which we obtain the condition (8), we can show that an
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element x = am1 + bm2 ∈M is fixed by GQab
p

if and only if

a = a+ bū(g) for all g ∈ GQab
p
.

From Lemma 5.7, once we retake a suitable basis of M , there exist g ∈ GQab
p

such

that ū(g) ̸= 0 which implies b = 0 and we obtain M Ip = (M
GQab

p )Ip = (Fpm1)
Ip .

Since retaking the basis of M in Lemme 5.7 changes only the upper right component
ū of (7) from the proof of Lemma 5.7, Ip acts on Fpm1 still via the character ωk/2

cyc .
Hence if p − 1 ∤ k/2, then MGQp ⊂ M Ip = 0. If p − 1 | k/2, then M Ip = Fpm1 and
Frobp acts on this space via multiplication by ap(f)

−1 mod p. Thus if ap(f) ̸≡ 1
(mod p), we have MGQp = (M Ip)Frobp=1 = 0 otherwise MGQp = Fpm1.

(Case 2 : p | D and D ̸= p∗)
In this case, Qur

p (
√
D) and Qur

p (ζp) are linearly disjoint over Qur
p . Hence there exists

σ ∈ GQur
p (ζp) such that χD(σ) = −1. From (7), GQur

p (ζp) acts on M via(
1 ū(g)
0 1

)
· χD(g).

Thus an element x = am1 + bm2 ∈M fixed by GQur
p (ζp) if and only if

χD(g)(a+ bū(g)) = a, χD(g)b = b for all g ∈ GQur
p (ζp).(9)

Putting g = σ, we obtain b = 0 from the second equality in (9) since p is odd and
then we get a = 0 from the first equality. Thus we have MGQp ⊂M

GQur
p (ζp) = 0.

(Case 3 : D = p∗)
In this case we have an inclusion Qur

p (
√
D) ⊂ Qur

p (ζp). Suppose M splits as a
GQp-module. As the calculation in (Case 1), an element x = am1 + bm2 ∈ M fixed
by Ip if and only if

aωk/2
cyc (g)χD(g) = a, bω1−k/2

cyc (g)χD(g) = b for all g ∈ Ip.(10)

This condition is equivalent to the condition that the same equations hold for a
generator τ of the Galois group Gal(Qur

p (ζp)/Qur
p ). We have χD(τ) = −1 and ωcyc(τ)

is order p− 1. Thus (10) is equivalent to the condition

−aωk/2
cyc (τ) = a, −bω1−k/2

cyc (τ) = b.(11)

If p−1
2

̸≡ k/2 (mod p− 1) and p−1
2

̸≡ 1− k/2 (mod p− 1), then a = b = 0 from the
above condition and we get MGQp ⊂ M Ip = 0. If one of the conditions p−1

2
≡ k/2

(mod p−1) and p−1
2

≡ 1−k/2 (mod p−1) holds, then M Ip = Fpm1 and M Ip = Fpm2

respectively. As in the argument in (Case 1), if ap(f) ̸≡ 1 (mod p), then MGQp =
(M Ip)Frobp=1 = 0 otherwise MGQp is a 1-dimensional subspace of M .
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Finally, suppose M does not split as a GQp-module. By the same argument in
(Case 1), we can show that an element x = am1 + bm2 ∈ M is fixed by GQab

p
if and

only if
a = a+ bū(g) for all g ∈ GQab

p
.

and this implies b = 0 from Lemma 5.7 after retaking a suitable basis of M . Then
M Ip = (M

GQab
p )Ip = (Fpm1)

Ip and Ip acts on Fpm1 via ωk/2
cycχD. So we can see that

x = am1 ∈M
GQab

p is fixed by Ip if and only if

−aωk/2
cyc (τ) = a

as we get the condition (11). If p−1
2

̸≡ k/2 (mod p−1), then a = 0 from this equality
and we obtain MGQp ⊂ M Ip = 0. If p−1

2
≡ k/2 (mod p− 1), then M Ip = Fpm1 and

we have MGQp = (M Ip)Frobp=1 = (Fpm1)
Frobp=1. This is trivial if ap(f) ̸≡ 1 (mod p)

otherwise MGQp = Fpm1. □

To finish the proof of Proposition 5.5 completely, we prove the Lemma 5.7.

Lemma 5.7. Suppose M does not split as a GQp-module. If p − 1 ∤ k − 1, then we
have ū(GQab

p
) ̸= 0 for a suitable basis of M , where Qab

p denotes the maximal abelian
extension of Qp.

(Proof of Lemma 5.7)
If M =Mf,D does not split as a GQp-module, then so does M0

f . Recall that Ip acts
on M0

f via a homomorphism ρ̄0f and the image of g ∈ Ip under this is a matrix(
ωk−1
cyc (g) v̄(g)
0 1

)
,(12)

where v̄(g) ∈ Fp. We show that v̄(GQab
p
) ̸= 0 which immediately implies ū(GQab

p
) ̸= 0

since v̄ differs from ū by a character ω1−k/2
cyc ⊗ χD. We use the following fact.
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Proposition 5.8 ([13], Lemma 2.2). Let p > 2 be a prime number and B ⊂ GL2(Fp)

a Borel subgroup such that B contains a matrix g =

(
a b
0 c

)
with a ̸≡ c (mod p).

Let B′ := h−1Bh with h =

(
1 b/(c− a)
0 1

)
.

(1) We can decompose B′ which is conjugate to B as

B′ = B′
d ·B′

1,

and B/[B,B] ∼= B′/[B′, B′]. Here groups B′
d, B

′
1 are defined as

B′
d = B′ ∩

{(
a 0
0 c

)∣∣∣∣ a, c ∈ F×
p

}
,

B′
1 = B′ ∩

{(
1 b
0 1

)∣∣∣∣ b ∈ Fp

}
.

(2) [B′, B′] = B′
1.

We put Dp := ρ̄0f (GQp), Ip := ρ̄0f (Ip). Since we assume p− 1 ∤ k − 1, ωk−1
cyc is not a

trivial character. Then there exist a matrix A ∈ Ip ⊂ Dp such that A =

(
a ∗
0 1

)
,

and a ̸≡ 1 (mod p). Thus Dp satisfies the assumptions in Proposition 5.8 and we
have a decomposition of Dp as in Proposition 5.8 for a suitable basis of M0

f .

Dp = (Dp)d · (Dp)1

=

{(
ωk−1
cyc (g)ψ

−1(g) 0
0 ψ(g)

)∣∣∣∣ g ∈ GQp

}
·
{(

1 b
0 1

)∣∣∣∣ b ∈ Fp

}
.

Since we assume that M0
f does not split, we have (Dp)1 ̸= {I}. From Proposition

5.8 (2), this means the commutator subgroup of Dp is non-trivial which implies Dp

is non-abelian. Thus we obtain v̄(GQab
p
) ̸= 0 in (12). □

Thus we get conditions on which we have MGQp = (A[p])GQp = 0 in Proposition
5.2 and 5.5. Under such conditions, we especially have AGQp ⊗ Fp = 0. Then from
the inequality (5), Proposition 5.2, 5.4 and 5.5, we obtain the desired inequality

dimFp(Im(Resurp )) ⩽ dimFp(Im(Locp)) ⩽ 1

which is the claim of (Step 3) under the assumptions of the propositions.
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5.4. CM case. However, in the ordinary case, if k = 2 and T/pnT splits for all n,
we still have the above inequality dimFp(Im(Resurp )) ⩽ 1 even when the situation (b)
in Proposition 5.5 occurs.

Proposition 5.9. If k = 2 and T/pnT splits as a GQp-module for all n, then we
have dimFp(Im(Resurp )) ⩽ 1.

(Proof of Proposition 5.9)
When the situation (b) occurs, we know that MGQp is 1-dimensional over Fp from

the proof of Proposition 5.5 which implies AGQp ⊗Fp is also 1-dimensional. Thus we
have dimFp(Im(Locp)) ⩽ dimFp(H

1
f (Qp,M)) = 1 + 1 = 2 from (5).

For every n ∈ Z⩾1, Ip acts on T/pnT via a diagonal matrix(
χ
(n)
cyc(g) 0
0 1

)
since k = 2 and we assume that T/pnT splits as a GQp-module. Here χ(n)

cyc denotes
the mod pn cyclotomic character. Note that in the situation (b), we assume p ∤ D
and hence χD is trivial when restricted to the inertia subgroup Ip. So we have
(A[pn])Ip ∼= (T/pnT )Ip ∼= Z/pnZ and AIp ⊗ Fp

∼= (Qp/Zp) ⊗ Fp = 0. On the other
hand, there is a commutative diagram

0 // AGQp ⊗ Fp
∼= Z/pZ

��

// H1
f (Qp,M)

ResQur
p /Qp

��
0 // AIp ⊗ Fp = 0 // H1(Qur

p ,M).

Thus the restriction map ResQur
p /Qp is not injective and its kernel has at least dimen-

sion 1 over Fp. Since we have a decomposition Resurp = ResQur
p /Qp ◦ Locp, we get the

desired inequality dimFp(Im(Resurp )) ⩽ 2− 1 = 1. □

Remark 5.10. The splitting condition in Proposition 5.9 corresponds to the con-
dition (2) in the theorem of Prasad and Shekhar. Let T be an integral p-adic Tate
module of an elliptic curve E over Q and suppose E has complex multiplication over
an extension of Qp. Then T/pnT splits as a GQp-module for every n. Thus the split-
ting condition in Proposition 5.9 holds for T . It is conjectured by Ghate that for a
modular form f which is ordinary at p, T 0

f /p
n splits as a GQp-module for all n if and

only if f has complex multiplication. For detail, see [9] for example.

To summarize, we obtain the following proposition.

Proposition 5.11. We assume the following:
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• If f is supersingular at p, then k ⩽ p+ 1 holds.
• If f is ordinary at p, then p−1 ∤ k−1 and the conditions below do not occur:

(If p ∤ D.)
(a) M does not split as a GQp-module and p− 1 | k/2 and ap ≡ 1 (mod p).
(b1) k > 2 and M splits as a GQp-module and p− 1 | k/2 or 1− k/2 and

ap ≡ 1 (mod p).
(b2) k = 2 and M splits as a GQp-module and T/pnT does not split for some

n.
(If D = p∗ := (−1)

p−1
2 p.)

(c) M does not split as a GQp-module and p−1 | k−p+1
2

and ap ≡ 1 (mod p).
(d) M splits as a GQp-module and p−1 | k−p+1

2
or k+p−3

2
and ap ≡ 1 (mod p).

Then we have an equality dimFp(Im(Resurp )) ⩽ 1.

This completes the proof of Theorem 1.1 as we explain in Section 2.

6. Numerical examples

We finally introduce some numerical examples of Theorem 1.1. To do this, we
consider situations in which the inequality

dimFp

(
XBK

p (Q, Af,D)[p]
)
⩾ 2(13)

holds. This inequality implies the condition dimFp

(
H1

f (Q,Mf,D)
)
⩾ 2 in Theo-

rem 1.1. Since the p-adic representation Vf,D is self-dual, the Fp-dimension of
XBK

p (Q, Af,D)[p] is even due to the existence of the generalized Cassels-Tate pairing
in [7]. Hence the inequality (13) holds if and only if XBK

p (Q, Af,D) is non-trivial.
We study when this occurs assuming the Bloch-Kato conjecture.

6.1. Ratios of central L-values. In the following, we assume N = 1. For a qua-
dratic discriminant D and a modular form f(τ) =

∑
anq

n, we consider a twisted
L-function of f by a quadratic character χD

L(f, χD, s) :=
∞∑
n=1

χD(n)an
ns

which converges absolutely when the real part of s is sufficiently large. This complex
L-function can be continued analytically to the whole complex plane and we can
consider its central value L(f, χD, k/2).

Let D,D′ ∈ Z be two quadratic discriminants. We think the ratio of central values
of twisted L-functions L(f, χD, k/2) and L(f, χD′ , k/2). Suppose that L(f, χD, k/2) ̸=
0. Then the Bloch-Kato conjecture predicts such a value in terms of arithmetic in-
variants including the order of Bloch-Kato’s Tate-Shafarevich group XBK

p (Q, Af,D),
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and implies an equality of the following p-adic valuations:

vp

(
L(f, χD, k/2)

vol∞(χD, 1− k/2)

)
= vp

(
#XBK

p (Q, Af,D)

(#ΓQ(Af,D))2

)
.(14)

Here vol∞(χD, 1−k/2) denotes certain transcendental part of the value L(f, χD, k/2)
and ΓQ(Af,D) := H0(Q, Af,D). For the precise definitions, see [5, Section2]. Note
that the product of Tamagawa factor does not appear in the above equality since we
assume N = 1.

Suppose f satisfies the conditions in Theorem 1.1. Then Mf,D = Af,D[p] is irre-
ducible as a GQ-module which implies #ΓQ(Af,D) = 1. Thus (14) yields

vp

(
L(f, χD, k/2)

vol∞(χD, 1− k/2)

)
= vp

(
#XBK

p (Q, Af,D)
)
.(15)

For the transcendental factor vol∞(χD, 1− k/2), we have the following property.

Lemma 6.1 ([4], Lemma 6.1). For D > 0, we have vol∞(χD, 1−k/2) =
vol∞(1− k/2)√

D
.

Here vol∞(1− k/2) denotes the transcendental part of the L-value L(f,1, k/2) for a
trivial character 1.

Suppose we take two positive quadratic discriminants D,D′. Using Lemma 6.1
and taking a quotient of (15) for D and D′, we have

vp

(√
D√
D′

· L(f, χD, k/2)

L(f, χD′ , k/2)

)
= vp

(
#XBK

p (Q, Af,D)

#XBK
p (Q, Af,D′)

)
.(16)

On the other hand, the twisted L-value L(f, χD, k/2) is studied by Kohnen and
Zagier in [12] in terms of Shimura’s theory of modular forms of half integral weight.
Shimura’s theory gives a correspondence between modular forms of half integral
weight and modular forms of even integral weight. Let Sk(SL2(Z)) be the space
of cusp forms of even weight k on the full modular group SL2(Z) and S k+1

2
(Γ0(4))

the space of cusp forms of weight k+1
2

on the congruence subgroup Γ0(4). In [11],
Kohnen defined a certain subspace S+

k+1
2

(Γ0(4)) of S k+1
2
(Γ0(4)) and showed Shimura’s

correspondence induces an isomorphism κ : S+
k+1
2

(Γ0(4))
∼−→ Sk(SL2(Z)). In [12],

Kohnen and Zagier gave a formula of the value L(f, χD, k/2) for f ∈ Sk(SL2(Z)) in
terms of the |D|-th Fourier coefficient of κ−1(f).

Theorem (Kohnen-Zagier). Let f ∈ Sk(SL2(Z)) be a normalized Hecke eigenform,
g := κ−1(f) =

∑∞
n=1 cnq

n ∈ S+
k+1
2

(Γ0(4)) the inverse image of f under the Kohnen’s
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isomorphism κ. Let D be a quadratic discriminant with (−1)k/2D > 0. Then
c2|D|

⟨g, g⟩
=

(k/2− 1)!

πk/2
|D|(k−1)/2L(f,D, k/2)

⟨f, f⟩
,

where ⟨·, ·⟩ denotes the Petersson inner product.

Now we put f = ∆(z) :=
∑∞

n=1 τnq
n (q = e2πiz), Ramanujan’s cusp form of

weight k = 12 and level N = 1. Using the theorem of Kohnen and Zagier for
f = ∆(z), k = 12 and the quadratic discriminants D,D′ we take before, we have

√
D√
D′

· L(∆, χD, 6)

L(∆, χD′ , 6)
=
c2D
c2D′

·
(
D′

D

)5

,

where cD, cD′ are the D and D′-th Fourier coefficients of κ−1(∆(z)) respectively.
From (16) we obtain an equality of p-adic valuations

vp

(
#XBK

p (Q, Af,D)

#XBK
p (Q, Af,D′)

)
= vp

(
c2D
c2D′

·
(
D′

D

)5
)
.(17)

The main example in [12] provides a formula

κ−1(∆(z)) =
60

2πi
(2G4(4z)θ

′(z)−G′
4(4z)θ(z)) ,

where G4(z) :=
1

240
+
∑∞

n=1 σ3(n)q
n (σ3(n) =

∑
d|n d

3) and θ(z) := 1 + 2
∑∞

n=1 q
n2 .

Thus we can compute the coefficients of κ−1(∆(z)) explicitly and hence the right-
hand side of (17).

6.2. Mod p representations attached to elliptic curves with bad reduction
at p. We set p = 11. This is an ordinary prime of ∆(z). We consider quadratic
discriminants which are proper multiples of 11 since we assume no conditions in (2)
in Theorem 1.1 for these cases. From the formula

κ−1(∆(z)) =
60

2πi
(2G4(4z)θ

′(z)−G′
4(4z)θ(z)) ,

we compute the 11i-th Fourier coefficient of κ−1(∆(z)) =
∑∞

n=1 cnq
n for 2 ⩽ i ⩽ 7

as follows:

i 11i c11i
2 22 0
3 33 −6480 = −24 · 34 · 5
4 44 −43680 = −25 · 3 · 5 · 7 · 13
5 55 0
6 66 0

Continued on next page
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Table 1 – Continued from previous page
i 11i c11i
7 77 110880 = 25 · 32 · 5 · 7 · 11

We take 11 × 7 = 77-th and 11 × 3 = 33-th Fourier coefficients of κ−1(∆(z)). We
have 33, 77 ≡ 1 (mod 4), so they are both quadratic discriminants. We set D = 77,
D′ = 33. From (17) for D = 77, D′ = 33, p = 11, we have

v11

(
#XBK

11 (Q, A∆,77)

#XBK
11 (Q, A∆,33)

)
= v11

(
c277
c233

·
(
3

7

)5
)
.

We know 11 | c77 and 11 ∤ c33 from the above table. Thus we have 11 | #XBK
11 (Q, A∆,77)

which implies rkF11(X
BK
11 (Q, A∆,77)[11]) ⩾ 2. Now we check that p = 11, f = ∆, k =

12, D = 77, D′ = 33 satisfies the assumptions of Theorem 1.1. Since we assume
N = 1, there is nothing to check for the conditions (1), (4) in Theorem 1.1. It is
known that the image of the representation ρ0∆ : GQ → GL2(Fp) contains SL2(Fp)
except for the cases p = 2, 3, 5, 7, 23 and 691. Thus the assumption (3) is now sat-
isfied. Since our quadratic discriminants D = 77, D′ = 33 are proper multiples of
11, we are not in the situations described in Proposition 5.11, and this is the as-
sumption (2). Thus we can apply our Theorem 1.1 in this situation and see that the
F11-representation ClK∆,77

⊗ F11 has M∆,77 as its quotient representation.
We note that this F11-representation M∆,77 of GQ comes from an elliptic curve

over Q. Let E be the modular curve X0(11) and fE =
∑∞

n=1 anq
n ∈ S2(Γ0(11)) the

corresponding cusp form. For ∆(z) =
∑∞

n=1 τnq
n and fE, we have a congruence of

coefficients τn ≡ an (mod 11) which induces an isomorphism between F11 represen-
tations M0

∆ and E[11]. Thus we have an isomorphism M∆,77
∼= E77[11] ⊗ ω5

cyc as
GQ-modules where E77 denotes the quadratic twist of E by 77, and M∆,77 comes
from an elliptic curve. However, we can not treat M∆,77 by the theorem of Prasad
and Shekhar or its generalization in [3] since E77 is bad at 11 and their theorem and
ours in [3] can be used for only good primes.

6.3. Mod p representations attached to modular forms. In the second ex-
ample, we put p = 67. This is also an ordinary prime of ∆(z) as the first exam-
ple and we consider quadratic discriminants which are proper multiples of 67. For
i ∈ Z, 2 ⩽ i ⩽ 43, the 67i-th Fourier coefficient of κ−1(∆(z)) =

∑∞
n=1 cnq

n is
computed as follows:
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i 67i c67i
2 134 0
3 201 −2686320 = −24 · 32 · 5 · 7 · 13 · 41
4 268 −4016160 = −25 · 32 · 5 · 2789
5 335 0
6 402 0
7 469 −32215680 = 27 · 32 · 5 · 7 · 17 · 47
8 536 24612000 = 25 · 3 · 53 · 7 · 293
9 603 0
10 670 0
11 737 52764720 = 24 · 3 · 5 · 109 · 2017
12 804 150433920 = 27 · 32 · 5 · 72 · 13 · 41
13 871 0
14 938 0
15 1005 380298240 = 210 · 34 · 5 · 7 · 131
16 1072 96387840 = 28 · 33 · 5 · 2789
17 1139 0
18 1206 0
19 1273 293666160 = 24 · 3 · 5 · 17 · 167 · 431
20 1340 −197892480 = −27 · 3 · 5 · 103069
21 1407 0
22 1474 0
23 1541 1340143920 = 24 · 33 · 5 · 620437
24 1608 122186880 = 27 · 34 · 5 · 2357
25 1675 0
26 1742 0
27 1809 −67695264 = −25 · 34 · 72 · 13 · 41
28 1876 −257725440 = −210 · 32 · 5 · 7 · 17 · 47
29 1943 0
30 2010 0
31 2077 −1106652480 = −26 · 3 · 5 · 1152763
32 2144 −590688000 = −28 · 32 · 53 · 7 · 293
33 2211 0
34 2278 0
35 2345 −743484000 = −25 · 3 · 53 · 7 · 53 · 167
36 2412 −36145440 = −25 · 34 · 5 · 2789
37 2479 0

Continued on next page



22

Table 2 – Continued from previous page
i 67i c67i
38 2546 0
39 2613 −981246240 = −25 · 32 · 5 · 13 · 23 · 43 · 53
40 2680 3359129280 = 26 · 3 · 5 · 13 · 17 · 71 · 223
41 2747 0
42 2814 0
43 2881 −2622438960 = −24 · 3 · 5 · 67 · 71 · 2297

We take 67× 3 = 201-th and 67× 43 = 2881-th Fourier coefficients of κ−1(∆(z)).
Since 201, 2881 ≡ 1 (mod 4), they are both quadratic discriminants. We set D =
2881, D′ = 201. Then from (17) for D = 2881, D′ = 201, p = 67, we have

v67

(
#XBK

67 (Q, A∆,2881)

#XBK
67 (Q, A∆,201)

)
= v67

(
c22881
c2201

·
(

3

43

)5
)
.

From the above table for i = 43, 3, we know 67 | c2881 and 67 ∤ c201 to get 67 |
#XBK

67 (Q, A∆,2881). Thus rkF67(X
BK
67 (Q, A∆,2881)[67]) ⩾ 2. Now we check that the

assumptions in Theorem 1.1 satisfied for p = 67, f = ∆(z), k = 12, D = 2881, D′ =
201, N = 1. As in the first example, we see that the conditions (1), (3), (4) are
satisfied. The assumption (2) is also satisfied since ∆(z) is good ordinary at 67 and
our quadratic discriminants 2881, 201 are proper multiples of 67. Hence we can
apply our main theorem and we can see that the F67-representation ClK∆,2881

⊗ F67

has M∆,2881 as its quotient representation.
In this case, unlike the first example, we can show that the F67-representation

M∆,2881 never comes from elliptic curve over Q. In other words, M∆,2881 can not
be isomorphic to E[67] ⊗ ωi

cyc for some elliptic curve E over Q and i ∈ Z with
0 ⩽ i ⩽ p− 2. We prove this when i = 0 and the other cases can be proved similarly.
Since ∆ is good ordinary at 67, elements of the inertia subgroup g ∈ I67 at 67 acts
on M∆,2881 as (

ω6
cyc(g) ū(g)
0 ω−5

cyc

)
· χ2881(g).(18)

Hence M∆,2881 has a one dimensional subspace N1 on which I67 acts via ω6
cyc · χ2881.

Suppose this representation M∆,2881 comes from a group of 67-torsion points of an
elliptic curve E over Q. Suppose E has good reduction at 67. Then the representation
E[67] has a 1-dimensional subrepresentation when we see it as aGQ67-module. So E is

good ordinary at 67 and the above matrix (18) is similar to
(
ωcyc(g) v̄(g)

0 1

)
for all
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g ∈ I67 where v̄(g) ∈ F67. ThenM∆,2881 has a 1-dimensional subspaceN2 on which I67
acts via ωcyc. Since it is known that M∆,2881 does not split as a GQ67-representation,
we have N1 = N2 which implies ω6

cyc · χ2881 = ωcyc ⇐⇒ ω5
cyc · χ2881 = 1. However,

ω5
cyc and χ2881 have orders 66 and 2 respectively and their product is never trivial.

This is a contradiction. Next we suppose E has bad reduction at 67. First we assume
the reduction is potentially multiplicative. Then the theory of the Tate curve says

that g ∈ I67 acts on E[67] via
(
ωcyc(g) w̄(g)

0 1

)
, where w̄(g) ∈ F67. Hence we get

the same conclusion as in the case E is good ordinary at 67. Finally we assume that
E has bad and potentially good reduction at 67. It is a well-known fact that for an
elliptic curve E over Qℓ which has potentially good reduction at `, E acquires good
reduction over a totally ramified extension of degree 4 or 6 over Qℓ. Let L be such

an extension. Then g ∈ GQur
67·L acts on E[67] via a matrix

(
ωcyc(g) x̄(g)

0 1

)
, where

x̄(g) ∈ F67. Hence this matrix and (18) are similar for all g ∈ GQur
67·L and this yields a

equation ω5
cyc ·χ2881 = 1 on GQur

67·L as in the above argument. Then, putting F as the
Galois extension of Qur

67 cut out by the character ω5
cyc · χ2881 of I67, we have F ⊂ L.

However we know [F : Qur
67] = 66 since Qur

67(ζ67) and Qur
67(

√
2881) are linearly disjoint

over Qur
67. This is a contradiction and hence the representation M∆,2881 never comes

from an elliptic curve over Q.
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