ON AN EXPLICIT RECIPROCITY LAW IN LOCAL CLASS FIELD
THEORY VIA (¢,I')-MODULES

NAOTO DAINOBU

ABSTRACT. Let K be an unramified extension of Q5 and psn the group of 2™-th
root of unity for a fixed integer n > 2. In this paper, we give an explicit formula
for the pon-valued Hilbert symbol over K, := K(u2n) using the theory of (p,T')-
modules.

1. INTRODUCTION

In local class field theory, we have a long tradition of describing the reciprocity
map explicitly. Such a theory is usually called explicit reciprocity law. Especially
for Kummer extensions, we can study the behavior of the reciprocity map using the
Hilbert symbol, which we first recall. Let p be a prime number and F' a local field
with finite residue field of characteristic p. Here we assume F' contains the group of
p"-th roots of unity y,» for some n € Z-q in a fixed algebraic closure Q, of Q,. The
Hilbert symbol over F' is a pairing defined as follows.

Definition 1.1 (Hilbert symbol). We define the p™-th Hilbert symbol (-,-)p,,m over

F as
pr(2)(7/Y) x
T Y)ppr = i € pn (T, € F7),
(.9 e )
where pp : F* — Gal(F*/F) denotes the local reciprocity map over F' and F® the
maximal abelian extension of F.

The history of explicit reciprocity law began with Kummer’s work in 1858 where
he essentially treated the case F' = Q,((,) for an odd prime p, and gave an explicit
formula for the p-th Hilbert symbol (z,y)q,(c,)» for principal units z,y. Currently,
so many types of explicit formulas are known for the Hilbert symbol. In [3], Artin
and Hasse gave such a formula of (z,y)g, () for special pairs (z,y) € (F*)* as
in Theorem 4.2 below. Iwasawa generalized their formula for more general pairs in
[15], and then Coleman further generalized it in [6]. Several generalizations of the
Hilbert symbol are now also known. Wiles gave an explicit formula of the generalized
Hilbert symbol for Lubin-Tate extensions of local fields in [19] and de Shalit gave

its generalization in [7]. The Hilbert symbol can be extended to higher local fields.
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Kurihara [17] and Zinoviev [21] gave generalizations of classical Iwasawa’s formula to
ones for higher local fields. Florez further generalized them for an arbitrary Lubin-
Tate extension in [8]. Kato treated certain cohomological symbol defined for general
local ring which is a vast generalization of the Hilbert symbol and gave an explicit
formula for it in [16].

Thus, the Hilbert symbol has been studied deeply by many people. However, when
p = 2, we still have a less understanding of the symbol than the case p > 2. In fact,
some formulas to compute the symbol we noted above do not work when p = 2. For
example, Kummer, Iwasawa, Wiles, de Shalit, Zinoviev, Florez and Kato’s result do
not work in such a case. It is because we can not apply some theory to calculate the
symbol in that case. For instance, the theory of syntomic cohomology Kato used in
[16] does not work when p = 2. Thus we often have some difficulties in the theory of
explicit reciprocity law in the case p = 2, and that is the case we treat in this paper.

In [4], Benois calculated the Hilbert symbol with the theory of (p,I')-modules
when p is odd, and reproved Coleman’s explicit formula. In this paper, extending
this Benois’ work, we give an explicit formula for the Hilbert symbol via (¢,I')-
modules when p = 2.

Here we describe some details of our main result. We often omit the suffix p™ in
the Hilbert symbol (-, ) g~ and write it as (-, -) p if no confusion occurs. Let K be an
unramified extension of Q,, Ok its ring of integers and K, := K (p,n). Choosing a
primitive p"-th root of unity (,» € pi,n, we define another symbol [-, |, : KX K¢ —

Z/p" by (x,y)k, = (Z[ff{y]’{". The main result in this paper is the following formula.

Theorem (Main result). Suppose n > 2 and p = 2. Let U}<n be the principal unit
group of K,,. For x,y € U}(n, we have

[x7y]Kn

= —(1+ 2" Trg/q, (Resﬂn (Dlog f£(g) — £(f)w(Dlog(g)) %)

n dmy,
2 Trge, (Res, (2(7)0(03) - Ve20) =7 ).

Here m, is an indeterminate defined in Section 2, f = f(m,),g9 = g(m,) are power
series of m, in 1+ m,Ok|[[m,]] which satisfy f((m —1) = z,g({m — 1) =y, and Res,,
denotes the residue of power series with respect to m,. Power series Y, (m,),Y,(m,) €
10k|[m,]] and operators D, £ are defined in Proposition 3.2.

The first term in our formula is similar to Benois’ result in [4, Proposition 2.3.1.],
but our formula has an extra term. It is interesting for the author to see the ap-
pearance of such an extra term since he expected that the result would be a similar
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one to Benois’ result. We explain from where this extra term comes, describing some
difficulties to extend Benois’ work to the case p = 2 and how we overcome them.
To calculate the Hilbert symbol, Benois interpreted the Kummer map x : K —
HY(K,,Z,(1)) in terms of (p,I')-modules in [4, Proposition 2.1.5.]. We have an iso-
morphism h' : HY(K,,,Z,(1)) = Har(Ak, (1)) where Hi (A, (1)) denotes certain
cohomology group defined by (¢, I')-modules (see Theorem 2.8). For z € Uy , Benois
determined a representative of the cohomology class h' o k(z) explicitly. This is the
most essential part in his work. However, this Benois’ calculation of h' o x has 2
in its denominator. Hence this result is no longer valid when p = 2 since we treat
cohomology groups with integral coefficients. Thus we need to calculate h' o x with
a different manner. This is the main difficulty in our case p = 2.
One of the main ideas to overcome this difficulty is to compute h'! o x permitting
the denominators once. In other words, we use the following commutative diagram
Uk, — H'(Ky, Zo(1) —5—> Hir(Ax, (1))

~

ib \LMH‘
hl

H (K, Qo(1) —=> Hir(Ax, (1) © Qu),

and compute the composite homomorphism h}@2 orok(x) forz € U }(n Here, the
isomorphism hg, : H'(K,, Qa(1)) = Hgp(Ak, (1) ® Q) is a scalar extension of h'
to the field of fractions. The vertical arrows ¢, ter which are almost injective denote
the morphisms induced by the inclusions between coefficients. We get an explicit
representative of the cohomology class h(1@2 oo k(x) with denominators here. We do
this calculation in Lemma 3.3, and this is the most technical part in this paper. Next,
we determine a suitable new representative of the cohomology class h(1@2 oo K(x)
explicitly within integral coefficients in the proof of Proposition 3.2. Then the new
representative gives a cohomology class in Hj(Ag, (1)), the cohomology group with
integral coefficients. The image of this cohomology class under tgp is h}@2 oo K(x).
Thus, this new representative is exactly the one which represents h'o k() due to the
commutativity of the above diagram and almost injectivity of ter (See Proposition
3.2 for more details).

To determine a new integral representative of the cohomology class h@ oo k(x),
we subtract a suitable 1-coboundary from the old representative of hg, oro x(x) with
denominators, and make it integral. We construct such a suitable 1-coboundary for
each x € U Il(n in Lemma 3.8, solving certain equation of power series. Then we show
the result of the subtraction has no denominators in Lemma 3.9 using the cocycle
condition of Hir(Ak, (1) ® Q) and explicit calculations of power series.

The extra term in our formula in the main result comes from the modification of
the representative of h(1@2 ot o k(x) by subtracting the suitable 1-coboundary. We
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note that our argument can yield Benois’ result when p > 2. In this case, we need
no modifications of the representative of hbp oo k(x) since 2 is invertible, and we
have no extra terms as a result.

Note also that Benois showed his result is the same as Coleman’s formula in [6].
However, because of the extra term in our formula, we do not understand precise
relations between our formula and Coleman’s formula for p = 2.

From a viewpoint of the theory of (¢, I')-modules, the author thinks Proposition
3.2 which is a calculation of h' o is important. This is the first result which gives an
interpretation of Kummer map with integral coefficients in terms of (p,I')-modules
when p = 2. The author hopes Proposition 3.2 would have some contribution to the
integral theory of (p,I')-modules and its application of the theory of general explicit
reciprocity law of integral p-adic representations.

At the end of this section, we write the outline of this paper. In section 2, we
introduce some basic tools such as (p,I')-modules and describe how to use them for
calculating the Hilbert symbol. In section 3, we give an explicit interpretation of
the Kummer map in terms of (p,I")-modules. Using this interpretation, we finally
calculate the Hilbert symbol and show the main theorem in section 4.

Acknowledgement. The author would like to thank his supervisor Professor Masato
Kurihara heartily for his continued support and helpful discussions. Thanks are also
due to Professor Ivan Fesenko who gave an intensive course on class field theory in
Kyoto in 2018. The course greatly led the author to this topic. The author also
grateful to Professor Victor Abrashkin and Denis Benois. They kindly replied to
author’s questions on their paper [1], [4] respectively. This research was supported
by JSPS KAKENHI Grant Number 21J13502.

2. PRELIMINARIES

This section is devoted to describe some fundamental tools we mainly use to com-
pute the Hilbert symbol.

2.1. (p,I')-modules. We first recall Fontaine’s theory of (¢, [')-modules.

Definition 2.1. Let C, be the p-adic completion of Q, and Oc, its ring of integers.
We define

Et = @OCP, E:= I'Ln(:p.
Here the transition maps of projective limits are the p-th power homomorphisms.

It is a well-known fact that E+ and F are perfect rings of characteristic p under
some addition defined properly and componentwise multiplication. We define a val-
uation vz on E as vg((xo, 21,...)) = vpy(x9) where v, is the p-adic valuation on C,
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normalized as v,(p) = 1. Then E7 is the valuation ring of vz and E is a complete
discrete valuation ring with respect to vz. Fixing a compatible system of roots of

unity {Gy}n such that (%, = G (n > 0), we set & := (1, Ge, - +) € E*. In the
following, we write W(R) as the Witt ring of R for a perfect ring R of characteristic
.

Definition 2.2. We define
At = W(E"), A:=W(E).

Putting 7 := [¢] — 1, we consider the (p, 7)-adic topology on A+ and A. There is an
injective map F, — ET (a— ([a], [a]%, [a]z%?, -++)) where [-] denotes the Teichmiiller
representative and we can identify I, as a subring of E*. Hence we can identify O
as a subring of AT, For every integer n > 1, we set m, = [61%”] — 1 and introduce
the following ring Ak, of power series in A.

Definition 2.3.

Ak, = Ox{{m.}} = {Z it | a € Oky Gy —— O} :

m——o0
mEZ

This ring Ay, is the p-adic completion of O ((,)). Since O ((m,)) C A and A
is p-adically complete, Ak, is a subring of A. We put A, as the p-adic completion
of the maximal unramified extension of Ag, in A. Let Keye := K((e) and T, :=
Gal(Key/K,). We assume I',, is a procyclic group. When p = 2, this holds if
n > 2 while this holds automatically when p is odd. We fix a topological generator
vn of I';. Here we see actions of I';, and Frobenius ¢ on Ag, . Since there is a
componentwise action of Gk, on E, we have an action of G k, on its Witt ring A
This action is stable on the subring A,, and it is well-known that A Keve Ak, .
Thus the quotient group I', = Gk, /Gk.,,. acts on Ag,. We can see that 7, acts on
T a8 Yo (1) = (147,)Xv0") — 1 and on the coefficient ring Ok trivially, where ycye
denotes the p-adic cyclotomic character. On the other hand, we have the Frobenius
homomorphism ¢ on A= W(E) as the lift of p—th power homomorphism on E. This
induces an action of ¢ on the subring Ax, C A. We can see that @ acts on m, as
o(m,) = (1 + m,)? — 1 and on the coefficient ring Ok as the Frobenius element in

Gal(K/Q,).

Definition 2.4. A (¢,T,)-module over Ak, is a finitely generated A, -module
equipped with continuous semilinear actions of ¢ and I';, which commute with each
other.
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Let B := A+ ® Qp, B:=A® Qp, Bk, = Ak, ®Q, and B,, :== A, ® Q,. We can
Zp Zp Zp Zp

also define the notion of (¢, I';,)-modules over By, in the same way as Definition 2.4.

2.2. p-adic representations and (¢, ')-modules. In [9], Fontaine proved the fol-
lowing striking theorem.

Theorem 2.5 (Fontaine). Let Repy, Gk, be the category of p-adic representations
of Gk, over Z, and CIDFffK the category of étale (o, 1',)-modules over Ak, . Then
there is a category equivalence

D : Repy Gk, — OTY, |
where for an object T' in Repy Gk, , the functor D is defined as
D(T) = (T ® A,,)Keve.

Zp

Here, we consider a diagonal action of I';, and an action of ¢ only on the right
component A, on D(T).

We do not define the notion of étale (¢, I';,)-module. Here is an example of Theo-
rem 2.5. Let T :=Z,(1) := W /i, then
D(Zy(1)) = (Zy(1) ® Ay) P = (An(1)) 0w = A, (1).

In the above computation, we define Ay, (1) := Z,(1) ® Ak,
Z

P
The similar category equivalence exists between the category Repg, G, of p-adic
representations over Q, and the category ®T'F  of étale (¢, T',)-modules over B, .

Theorem 2.6 (Fontaine). There is a category equivalence
D : Repg, Gk, — OI'F,
where D(V) := (V @ B,)%%ee for an object V in Rep; Gk,
Qp
We can compute the Galois cohomology group of T € Repy, G, using the corre-
sponding (¢, I';,)-module D(T).

Definition 2.7 (Fontaine-Herr). Let T' be an object in Repy G, . For the corre-
sponding (p,T',)-module D(T), we define a complex

C*(D(T)) : 0 = D(T) — D(T)%? 2 D(T) — 0,



where the maps «, B defined as

a(z) = [((¢ =1)(@), (3 = D(x))] (z€D(T)),
Bly:2) = llm =D + (1 =¢)(2)] (y,2 € D(T)).
In the following, we write the cohomology group H'(C*(D(T))) as Hyr(D(T)).

Theorem 2.8 (Fontaine-Herr). Let T be an object in Repy, Gk, . For each i > 0,
we have an isomorphism

h': HY(K,,T) = Hi (D(T)).

Thanks to Theorem 2.8, for example, an element in H'(K,,Z,(1)) correspond to
a cohomology class in Hy (A, (1)) represented by a pair of power series in Ay, (1)
via h'. In the succeeding sections, we use this explicit interpretation of Galois coho-
mology classes to compute the Hilbert symbol.

We note that exactly the same statement as Theorem 2.8 holds for p-adic repre-
sentation V' over Q.

Theorem 2.9 (Fontaine-Herr). Let V' be an object in Repg G, . For each i > 0,
we have an isomorphism

B, HU(K,, V) S Hye(D(V)) := H'(C*(D(V))).

Here, the complex C*(D(V)) of (¢,I's)-modules over By, defined the same way as
in Definition 2.7.

We can compute a cup product of Galois cohomology groups using that of (p,I',)-
modules and isomorphism A’.

Proposition 2.10 (Fontaine-Herr). Let T1,Ts be objects in Repg, Gk, . We define a
bilinear pairing Usr : Hyp(D(Ty)) x Hip(D(Ty)) — Hzp(D(T) ® Ty)) as

[(ma,n1)] Usr [(ma, n2)] = [n1 @ yu(ma) —m1 @ p(na)],
where my,ny € D(T1) and ma,ny € D(T3). Then the following diagram is commu-

tative.
HY(K,,T}) x H\(K,,Ty) —— H*(K,, T\ @ T))

hlxhll J/hQ

Hir(D(T)) x Hpp(D(T)) — H3p(D(T} © T))

Note that Fontaine and Herr gave cup products of cohomology groups of (p,T,)-
modules for other degrees than H'. See [12] or [13] for details.

Finally, we introduce an isomorphism TRy, : H3 (Ak, (1)) — Z, corresponding
the invariant map invg, : H'(K,,Z,(1)) — Z, in local class field theory. In the
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following, we consider ¢ as a basis of the Tate twist Z,(1) and write a®e¢ for a € A,
when we consider a as an element in Ak, (1). In [4], Benois proved the following
result.

Proposition 2.11 (Benois). Define TRy, : Hip(Ak, (1)) = Z, as

—=1r Res;, a€ Ag,),
Toa (xere (7)) /% (17%) e

where for an element f(m,)dm, = (3o, i) dm, of an Ox-module of differential
I-forms QY /O We define Res(f(m,)) := a_y1. Then the following diagram is
commutatwe

n d "
TRk, ([a®e¢]) == — P adn

1+m,

VK,

(K, 7)) "5 7,
(A, (1)

Remark 2.12. Although Benois proved the above result for an odd prime p, we can
check the result is also valid for p =2 by the similar way in [4].

2.3. Fontaine’s crystalline period ring. In our calculation of the Hilbert symbol,
we use Fontaine’s crystalline period ring Ay which we recall below.

Definition 2.13. We define a ring homomorphism 0 as

0: AT Oc,, Z[xl]p’ — Z(ﬂfi)op
=0 =0

where x; € E* and ()0 € Oc, denotes its 0-th component.

This is a homomorphism of Ogu:-algebra where Q)" denotes the maximal unram-
ified extension of Q, and Ogu its ring of integers. Put v := 7/m = 1+ [6%] +
1 1
[e?]? + -+ + [e»]P7. Then it is a well-known fact that the kernel of 6 is principal

and generated by v. We put A2, = g*[{%}mw], the divided power envelop of At
with respect to Kerf). We define Acrys as its p-adic completion. More explicitly,

crys = { E am

We define an element ¢ € Acrys as

= log(1 + ) :Z m+17T

m=1

Ay — 0 (M — 0) p—adically} :
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In fact, this infinite sum converges in A.ys with respect to its p-adic topology. We
put B = Acrys[}%] and Beys := Bl [7]. Here we state a lemma we use in the next

section.

Lemma 2.14. Suppose a € A+ satisfies 0(a) = 1, then

o0

loga := Z(—l)m+l—(a :nl)m

converges in Acrys.

(Proof of Lemma 2.14)
Since 0(a) = 1, there exist © € A" such that a = 1 4+ zv. Then we have,

log a = log(1 =3 (-1 e (20)"
oga = log(1 + xv) m:1( ) -
While
oy @) ey gm . O
(~m (-

The factor (m — 1)! converges to 0 as m — oo with respect to the p-adic topology in
Acrys, which implies the convergence of log a in Ag,ys. O

2.4. Strategy of the calculation. In thissubsection, we briefly describe the method
of calculation. We mainly follow Benois’ strategy in [4]. There is an exact sequence
of Gk,-modules

1= ppm — K, — K, =1

from which we get ,, : K — H'(K,, uym) as its connecting homomorphism. Taking
the inverse limit with respect to m, we have

ki K — HY (K, Z,(1))

which we call the Kummer map. Using this x, we have the following cohomological
interpretation of the Hilbert symbol.

(K5)®

\L H®2
mod p"

Uga v K,
HY (K, Z,(1))%2 =2 H(K,, Z,y(2)) —— H2(Ky, fiyn) ® pyn — iy,

("')Kn

where Uga denotes the cup product of Galois cohomology groups. Note that since
K, contains i, we have an isomorphism H?(K,, u5:) = H?(Ky, pyn) @ ppn which
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induced by the cup product. On the other hand, the morphisms in the second row
can be calculated using the theory of (¢, ')-modules as

mod p"

Uga inv
HY(K,,Z,(1))%% =% H*(K,,Z,(2)) —= H?(K,, jipgn) @ fipn ——> fipn

lhl ®2 \Lh2 \Lh2 /
TR,

mod p"

U
Hip(Ak, (1)® == Hip(Ax,(2)) —= Hip(ppm) © pipn,

where Ugp is the cup product we define in Proposition 2.10 and TR, is the mod
p" reduction of the isomorphism TR, in Proposition 2.11. Since Ugr and TRy,
are given explicitly, all we have to do for the calculation of the Hilbert symbol is an
explicit computation of the composite homomorphism h'! o k.

Remark 2.15. Kato computed this cup product Uga via the theory of syntomic
cohomology in [16] for more general setting when the residue characteristic p is odd.
Note that this cohomology theory does not work for our case p = 2.

3. CALCULATION OF THE KUMMER MAP
In this section, we compute the composite homomorphism A' o &.

3.1. explicit calculation of the isomorphism h'. First, we give an explicit for-
mula of the isomorphisms

B H (Ko, Zy(1)) = Hap(Aie, (1)), By« H' (K Qy(1) = Hip (B, (1)).

Proposition 3.1. For a cohomology class [c] € H (K, Z,(1)) (resp. H*(K,,Q,(1)))
which is represented by a 1-cocycle ¢ : Gk, — Zy(1) (resp. Qy(1)), g+ c(g9) ® e, we
have

h([e)) = [(p =D& ®e),(Tn — 1)(& @) + c(Tn) @]
(resp. hg,)([d]) = [(p = 1) (& ®e), (Tn = 1)(&c® &) + () ® €] )
Here, 4, is any lift of v, to Gk, and . € A, (resp. B,) is an element which satisfies

9(&) =& —clg) (Vg € GKcyC)'

(Proof of Proposition 3.1)
Since computations for h! and h(bp (1) are exactly the same, we give a proof only for

h'. The cohomology class [c] € H' (K, Z,(1)) corresponds to the following extension
of Z, by Z,(1) as a Gk, -module:

0 — Zy(1) = Ty 5 7, — 0

We take 1 ® ¢ and e as a basis of T}, over Z, where g € G, acts on e as g(e) = e+
c(g)®e. Then for an element z := a®e+b-e € Tjy (a,b € Z,), the homomorphism f is
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given by f(z) = b. Applying the functor D, which is exact, we have a corresponding
exact sequence of (¢, I';,)-modules

0= Ag, (1) = D(T}y) 2 Ak, — 0.
Putting ¢ : Z, - H'(K,,Z,(1)) and dar : Z, = Hop(Ax,) — Hir(Axk, (1)) as
the connecting homomorphisms of the above exact sequences respectively, we have
a commutative diagram

Zy H (K, Zy(1))

\L h0=id \L ht

dgr
Hor(Ak,) = Zp —— Hyp(Ak, (1)).

Since 6(1) = [¢], we know dpr(1) = h'([c]) by the above diagram. So we compute
dor(1) following the definition of the connecting homomorphism. By the definition
of the functor D we have,

GKcyc _ Kecye
D(Tjy) = (Tlg ® Ay) = (Z,(1) ®Z, - )"k
= (A, (1) @ A, - &) Fere .
For an element v :=a®c+b-ec A,(1) A, -e (a,b € Ay) and g € Gk,
g(z)=gla®@e+b-€) = Xeyel(9)g(a)®e+g(b)(e+c(g) ®e)

= (g9(a) +g(b)c(g)) @ e+ g(b) - e.

Thus x = a®e +b- e is fixed by Gk, if and only if
gla) +g(b)e(g) = a, g(b) =b (Vg € Gk,,.)-

From the second condition, b € (A,)%%eve = A and thus the first condition says
g(a) +be(g) = a (Vg € Gg,,.). Hence

D(Tig) ={a®e+b-e|a€ A, be Ak, s,t g(a)+bc(g) =a (Vg € Gk,,.)} -

Now we compute dpp(1). First we pick {,®e+e € D(T}g) for some & € A, satisfying
g(&) = & —c(g) for all g € Gg,,.. This element maps to 1 € A, under D(f) and
we compute its image under the homomorphism « in Definition 2.7 as

ale@et+e)=((p—D(Rec+e),(n—1)(ERe+e)).

On the first component, we have

(p—1E®ete)=(pl)®ete)—(Ec®@ete)=(p—1)(&)®e,
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and the second component,

(’771 - 1)(50 Q€+ 6) = (’?;l - 1)(50 ®€> + (% - 1)(6)
= (=D& ®e) + () ®e.
Here since each term {. ® ¢ and e respectively are not fixed by Gk . although the

element § ® € + e is fixed by Gk, we have to take some extension 4, of v, € I, to
Gk, in the above computation. Thus we get

afe@ete)=((p—1)(&) @ (Tn =D ®e) +c(fn) ®e).

The cohomology class in Hg(Af, (1)) defined by this pair is nothing other than the
image dgr(1) by the definition of the connecting homomorphism. Hence we obtain
the proposition. O

3.2. Computation of h' o k. In the following, we set p = 2. This subsection is
devoted to the computation of the homomorphism

hlok: KX — H' (K, 7Z(1)) = Hyp(Ag,(1)).

We put (Uj )/ as the free part of the principal unit group Uj = ((n) & (U )7 of
K, as a Zo-module. The following is a key proposition for our main result.

Proposition 3.2. For z € (U )/, we have

B o () = [£((m) -~ ® e, Aalma) @< (Xevelm) = D¥elma) @

where f(7) € 1+ m,0k|[m,]] is a power series which satisfies f(Con — 1) = x for
which the operator £ defined as £(f(mn)) = (£ — 1)log(f(m,)). The power series
ANm,) € Okl[[my]] is uniquely determined one corresponding to the 1-st component
and satisfies

-1
Ae(Tn) = %Dbg f(mn) mod 7Ok|[m,]],
where D := (1 + Wn)%. The power series Yy(m,) € $Ok|[[mn]] is defined as

Valma) 1= 5 30 (S ()

Although the power series Y (m,) itself has a denominator, the term (xcye(7n) —
1)Y,(m,) in the second component of h' o k() is an element of Ak, since Xeye(Vn) —
1 € 2"Zs (n > 2). We prove this key proposition after introducing some lemmas.
First we consider a situation tensored with Q,, in other words, we think x(x) €
HY(K,,Z,(1)) as an element of H*(K,,,Q,(1)) and compute the image of x(x) under
the isomorphism hg, : H' (K, Q(1)) = Hgp(Bk, (1)) in Theorem 2.9.
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Lemma 3.3. Forz € (U[l{n)f7

b one) = [207m)) - (542 ) @2 Mlm) o],

™

where f(m,) is the same as Proposition 3.2 and \,(m,) € Ok[[m,]] ® Qq satisfies
Za
X(m) =1

Ao (7)) = o

Dlog f(m,) mod mOk|[m,]] %{) Qs.

(Proof of Lemma 3.3)

From Proposition 3.1, it suffices to construct {.) € B, explicitly and compute
a ~ ~
actions of ¢ and 7, on it. Put w, := [x,x%,xzﬁ,...] € ET and a, = % € At.

Applying 6 : At & Oc, which we defined in subsection 2.3 on a,, we have
n—1

Thus log a, defines a well-defined element in A,y from Lemma 2.14. Since 6(a,) = 1,

i T

there exists a € AT such that a, = 1 + av and log(a,) can be expressed as

(3.1) logaxzav—@Jr@—---Jr(—l)m“%jt---

Sublemma 3.4. There exists an element b, € A% such that

b, =loga, + gaQ mod 7 Bf .

(Proof of Sublemma 3.4.)
Since E has characteristic 2, we have

e—11\° 1/2 2
51/2—_1 :(8 —1> =c—1.

2
Takeing the Teichmiiller lift of the both sides, we obtain [i] = [ — 1], and

el/2—1
hence ) )
o lel-1 _ | e—1 _ — A
V2 — (W) = LI/Q—_J =[e—1] =7 mod24".

Thus there exists & € A* such that v2 = 7 + 20. We show that the m-th term
(—1)m+1% in (3.1) has a suitable representative ¢,, in AT when considered with
mod 7*Bf, for every m > 2.

(Case 1: 2tm)
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In this case, (—1)’”*1% € AT and we see that

T w2 4 27 )™
Um:_:(l 1) :(71_1_’_2)771‘

m m
™ ™

This converges to 0 as m — oo in A and so does ¢, 1= (—1)”“%.
(Case 2 : 2| m and m > 2)
Writing m = 2+ s (21,0 > 1), we have

Y G o P o O o s ) i

m S 2L S 2L

On the last factor, we see that

-1 -1
CEG = (Gro) T

2f—1

=1 —1o_ =1,
= o 2% 427 5202 Tl mod WZB,;YS,

where since m > 2, we have 2°7's — 2 > 0. The right-hand side converges when
m — oo. We put
(_1)m+1

=1, ob—1,._ -1, 0—1,
e = am-<a2 592/ Ts—t | 92 ls2 2t 17r>.
s

Then ¢, € A* is congruent to (—1)m+1% mod 7°Bf,, and converges to 0 as
m — 00.
Finally, on the second term in (3.1), we see that
(_1)2+1M _ @ t2a) _ T2
2 2 2 '

Then we obtain

T o0
loga, = av — —a®> —a + Zcm mod m?Bt

9 crys
m>=3

This implies that log a, + 5a* mod 7*Bf, is represented by a well-defined element
by i =av—a+) " scm € AT O
We go back to the proof of Lemma 3.3. First, we consider G, action on this

element b, € A™.
Sublemma 3.5. For g € Gg,,,,
g(by) = b, — k(z)(g)7 mod mwBL

crys
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(Proof of sublemme 3.5.)
For g € G,,., we have

- 9(f(mn)) f(n)
7% B T RO
— tog T @)y

Here, the element ¢ is the one we defined in subsection 2.3. From Sublemma 3.4, this
implies a congruence

(3.2) g (bgc - ga2> =0, — gaz — k(z)(g)m mod mwBE,,.
Note that we use a congruence of mod m 7B, here which is immediately deduced
from Sublemma 3.4. Since a = (% — 1) . %, we have

<f(7T") — 1) Ly mod ™ BY

[ ww] v crys”®

—

Hence we see that

g (zcﬂ) = gg(a)2 = gaQ mod mmw B .

From (3.2), this congruence yields

g(by) = b, — k(z)(g)m mod mwBL

crys®

Next, we consider the action of ¢ on b,.

Sublemma 3.6.

(g _ 1> by = L(f(m,)) + g(gp — 1)(@2) mod 7T17TB:I—-yS

(Proof of Lemma 3.6)
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On the action of ¢ on loga,, we see that

<§ — 1) loga, = (g — 1) log f(mn)

2 [w ] % )
= (g — 1) log f(mn) = £(f (7))
On the other hand,

(£-1) Ja* = Je(me(@d) = Ja* = L(x*+2mp(a®) - %

(¢ —1)a® mod m7B}

B

crys®

2
Thus from Sublemma 3.4, we obtain
P _ — Tio—1)a?
(2 1) by = £(f(m)) + S(p— 1)’ mod mmB,,.

U
From Sublemma 3.4, 0(b,) = 0 and there exists an element b/, € A* such that
b, = bl,v. By sublemma 3.6,

((5-130+5) =20 (1 )5 - 0H(145) s,

Transforming this, we obtain

(p—v) <b; : (1 + g)) = £(f(mn)) - (1 - g) +7m(p —1) (%) mod m T BJ.

Since the both sides of the above congruence mod 7w BY . are actually elements in

crys

BT, we have the same congruence mod m 7B = mT Bl N BT.

Sublemma 3.7. There ezists ¢, € B+ such that ¢, = bl - (1 + g) mod m 7B+ and

(o — v)(cy) = &(f(mn)) - (1 + g) +m(p—1) (%2)

(Proof of sublemma 3.7.)
We show that for any y € mwB™, there exists z such that (¢ — v)(z) = y. For
this, it suffices to show the following convergence for any mmz (z € BT),

(O (2= (GG -)) =0 o
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In fact, for any y € m7wB*, a power series — - (%)m (£) is a solution z of the
equation (¢ —v)(z) =y. If m =1, we see that
2

(5) (=) - (2) (69 - 2

v v
Ifm=2,
2 rmmx
(£) (F5) = (%) mme@) = me(m)e*(@).
Thus inductively, we have (£)™ (Z22) = o™ (7)™ (z) and @™ () goes to 0
when m — oo in B*. Hence we obtain the desired convergence. U

Dividing the both side of the equation in Sublemma 3.7 by 7, we have
c, a® 1 1
(3.3) (=D == )=L0m)-{=+35)-
1 2 s 2

On the other hand, g € Gk, acts on ¢, as

9(ev) =9 (bm ' <1 + g)) = (b — K(x)(g)m) - (1 + g)

cov — k(z)(g)r mod mmwBT.

This implies
g (C—x) - —k(z)(g) mod mB*.

Since we know g(a) = a mod 7 B* from the proof of Sublemma 3.5, we have

(9-1) (C— - a—Q) = —k(z)(g) mod mB*.

1 2

The above congruence actually yields an equality. In fact, the right hand side
—k(z)(g) € Q. For the left hand side,

e-(o-0(2-%)) = e-0(e-0(=-%))
~ -1 (0@ (343)) =0

Here in the second equality, we use (3.3). There is an exact sequence
0-Q, > BY5 B0,

Then we see that (g — 1) (fr—j — a—;) € Q. Since QyN 7 BT = 0, we obtain a equality
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. 2 . . . .
We now check this 2 —4- is an element in B,,. There is an diagram of exact sequences

0 Q, B, B, 0

i id i incl lincl

0 Qs B B 0.

Since we have (p—1) <C—’“ — %) € Bg, C B, from (3.3), we can see that i—j—% € B,

T
from the above diagram. Hence, this element %—% is nothing other than the element
§x(z) € By in Proposition 3.1. From (3.3), we have finished the computation of the
first component of h@ o k(z). We finally compute its second component which we

call A\,(m,) ® . Due to Proposition 3.1,
Ae(Mp) @e = (Tn — 1)(&®e) + £(Tn) ®e.
We see that

G-vee +amo: = G-y ((2-5) o) +am e

()7, c; a? c;  a? -
n - T 5 - - T 5 I{-/ n
Xeye\Yn)Tn P 9 = 5 7

From Sublemma 3.7, we have a congruence
. 1 1 ~
&= b, - (— + —) mod 7B™.
T 2

T

Then Sublemma 3.4 implies

Cx T 5 1 1 *
_ (log ay + 50 > (; + 5) mod mB
- 2 1 1
— Z_ % _oga,- (4= mod 7B
m 2 T 2 Y

On the factor % + %, 4, acts as

11 1 1
54) o (1+1) = L
B4 7 (w " 2) 1+ mpetn =1 ' 2

1 cyc\ In) — 1 1
_ <1 - ww) + - mod 7B
Xeye (Vo) 2 2

B 1 (1 n 1)
chC('Vn) ™ 2]
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Thus we have

1 1 1 1
—(loga,- =+ = mod 7B
™ T 2 Y

- 1 1 1 1 1
= Xeye(1n) log Tn(az) - (— + 5) - (log ay - <; + 5)) mod 7B,

Xeyc (Wn) ™

Il

>~

(e}

<

o

B

)
/3

o

(0]

s

8
/|\

_|_
N |

1 1
= (logFn(as) —loga,)- (= +3).
(ogar) ~Togar) - (= 45

Here, we see that

) = 5. (122 - )

[w:] wy[g]#(@)Gn) "
Hence,
log %(aac) - IOg Ay = %(k)g f(ﬂ-n)) - 1Og f(ﬂ-n) - I{(J;)(%)W mod 7T2B<-:tys'
Due to [4, Lemma 2.2.1],
cyc\ In -1 53
Tn(log f(m,)) — log f(m,) = %Dlog f(m,) -7 mod 7°BT.

This implies a congruence mod wB*

( ) ~ Cp a2 Cyp a2
XeyelTn)Tn 1 2 T 2

= (%(bgf(ﬂn))—10gf(7rn)—f-€(x)(%)7r)-(%Jr%) mod 75"

where we use 7B, N B = 7B*. Thus we obtain

nm) = (el (Z2-5) - (2-5)) +u5)

= (2o ptog i) m— n(a)adn ) (4 5) +5() mod nB
= MDIog(f(wn)) mod 7B

2n

However, since A\, (m,) € By, and TBTNBg, = 1O |[1,]]©Qs, the above congruence
Zo

mod w37 is in fact the one mod 7Ok [[m,]] ® Qs and hence A, (m,) € Ox[[m,] @ Q.
z z
Thus we finally obtain the claim of Lemma 5.3. ’ U
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Lemma 3.8. There exists a power series Yy (m,) € %AKn such that

(9~ ¥alma) = 5£(F(m)

(Proof of Lemma 3.8)
Since z € Uy , we have f(m,) € 1+ m,Ok|[m,]] and £(f(m,)) = (% — 1) log f(m,) €
TnOk|[[ms]]. We define

V() = - iso (st -3

Note that this Y, (,) is a well-defined element in $ Ak, since ¢'(m,) — 0 as i — 0o
in By, . We can see that Y, (m,) satisfies (o — 1)(Y,(m,)) = +£(f(m,)) O

— 2
From Lemma 3.8, we have a 1-coboundary of the complex C*(Bk, (1))

= DY) @ ) (o = DY) 9] = | £(7) - 5 92, (xvelin) = DYalm) ]

Subtracting this 1-coboundary from the result in Lemma 3.3, we obtain
1
35) B, on(a) = |2(Fm) %92 Aalm) 82 = (el) = DY) 02

Thus the first component of the above representative for h@ o k(z) is actually an
element in Ak, (1). We show that so does the second component.

Lemma 3.9. We have \,(m,) € Ok|[[m,]], hence

Ae(Tn) = %Dbg f(m,) mod mOk|[m,]].

(Proof of Lemma 3.9)
From (3.5), the 1-cocycle condition says

= 1) (£ )+ 1 8 2) = (0 = 1) ulm) @ 2 = (ela) — DYalm) 99

= (= DO = Xoelm i (27D 7 ) = £ 7+ (0= el = DY

Then we can see that (¢ —1)(A\.(7,)) € Ak, . While, there is a commutative diagram

0 7 A, 2 A, 0

\L incl \L incl i incl
1

0 Q, B, 2B, 0
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which implies that there exists r € Qo such that \,(m,) — r € A,. However, from
Lemma 3.3, we have

Ao () = %Dlog f(m,) mod mOk|[[m,]] % Qo.

In other words, we can see that \,(7,) = (an element in A, )+(terms divisible by 7).
Hence r must be 0 and \,(m,) € A, N (Ok[[m]] @ Q2) = Ok|[m,]]- O
Za

We finally prove Proposition 3.2.
(Proof of Proposition 3.2)
There is a commutative diagram

(UL )~ (HY (K, (1)) o (HA(Ax, (1))

ib qu)F
hl

0

H' (K, Q1)) —=— Hp(Bx, (1)),
where (M)/ denotes the torsion-free part of a Zy-module M. Note also that ¢, Lo are
the homomorphisms which induced by inclusions. Since we consider only torsion-free

parts of Zs-modules in the first row, the vertical arrows ¢, ter are injective. From
(3.5) and Lemma 3.9, for any z € (Uf, )/, we have

B o) = [ £ 82, ) 9 = (xneln) = DYalm) 0.

and the first and second components of the above representative are in Ak, (1). Thus
the pair of elements in Ay,

(S0 7 92 Aalm) 2 = (o) = D¥alm) 92

also defines a cohomology class in Hgp (A, (1)) which maps to hg, o k(z) under tqrp.
By the commutativity of the above diagram and the injectivity of ter, we have

B o k(z) = [£((m)) - 1 2, ) @€ = (veel) ~ DYa(m) 0.

This completes the proof of Proposition 3.2. U

4. CALCULATION OF THE HILBERT SYMBOL

In this section, we calculate the Hilbert symbol and give an explicit formula fol-
lowing the strategy we mentioned in Subsection 2.4.
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4.1. Computation of the cup product Ugr.

Lemma 4.1. Let z,y € (Ui ). There is a power series H,, € Ak, such that
(Rt o k() Ugr (b o k(y)) = [Hyy @ 2] and

i, = =Y Doy poe(g) — e(peDI0n ) - -

+(Xeye(m) = 1) (E(N)e(Yy) — YaL(g)) - % mod O[]l

Here f(m,),9(mn) € Okl[m,]] are power series which satisfy f((on — 1) = x, g(Con —
1) =uy.

(Proof of Lemma 4.1)

Using Proposition 3.2, we have

hl o 'Li(x) = [E(f(ﬂn)) ' % ®e, )‘x(ﬂn) ®e— (chc(ﬁ)/n) - 1>Y;0<7Tn) ® €:| )

hlok(y) = {ﬂ(g(ﬂn)) . % ®e, A\y(Tn) @€ = (Xeye(Vn) — )Yy (1) ® 8} )

From Proposition 2.10, we can compute the cup product as (h'or(z))Usr (h'ok(y)) =
[H,, ® €], where

Huy = (v = (o) = DY2) - Xere(3)m (2<g> - 1)

™

- (S(f) : %) 2 Ay = (eyelm) = DY)

As we saw in (3.4), we have

w(2) = s mod Oxlml)

T) Xeye(Yn)T
and from [4, Lemma 2.2.1], for F'(X) € Ok[[X]], we also have

Yu(E (7)) = F(m,) mod nOk|[m,]]-

These congruences implies
1
Hey = (A = Xeye(n) — 1DY2)£(g) - -
1

_S(f> 4 (/\y - (chc(%z) - 1)Yy) -— mod OKHT‘-n]]

T
Here, from Proposition 3.2, we know

cyc\ In —1 cyc\ In —1
Ao (70) %Dlogﬂ () %Dlogg mod 7Ok |[m,]].
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Then we obtain

H,, = %(Dlogf-ﬁ(g)—S(f)w(Dlogf)) %
+(Xeye (1) = 1) (£(f)e(Yy) — YaL(g)) - % mod Og|[m,]].

g

4.2. Explicit formula for the Hilbert symbol. We finally compute the image of
(h' o k(x)) Ugr (h' o k(y)) under TR, and complete the calculation of the Hilbert
symbol.

Theorem 4.2. For x,y € U}<n,
I:x7 y]Kn

—(1+ 2N Trg g, <Resﬁn (Dlog f - £(g) — £(f)p(Dlog(g))) ﬁ)

n dmp
—2"Trk/q, (Reswn (£(f)e(Yy) — YaL(g)) m) -

Here power series f(m,), g(m,) are the same as in Lemma 4.1.

(Proof of Theorem 4.1)

First we show the theorem for z,y € (Uj )7. All we have to do is just computing
TR, (H,, ® €) mod 2". By the fact that elements in O[[r,]] have no residue and
Lemma 4.1, we have

TR, (H,, ® ¢)

= TR, <% (Dlog f - £(g) — £(f)¢(Dlog f)) - %)

™

TR, ( Yere() — 1) (£(1)(Y,) — Yal(g)) - 1)

(
_M”)%))Trm@z (Res,rn (Dlog f - £(g) — £(f)¢(Dlog f)) L)

108 (Xere T )
_on Xeye(Tn) — v os _ dm,,
2 e dn T (R (el w”)—wmm)'

On the other hand, we can see that

M: . - mod 2"
og i) = LT g (o) = 1) (mod 27).
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Since 7, is a topological generator of the Galois group T',,, there exists u € ZJ such
that Xeye(7) —1 = 2"u. Then we have $(Xeye(7) — 1) = 2" 'u = 277! (mod 27)
because Z5 = (—1,5). Thus we obtain Theorem 4.1 when z,y € (U ).

Next we consider the case that one of « and y is not in (Ui )/. Since U} =
(Con) ® (U, )Y, it suffices to consider the case when y = (5». in the following, we use
the Artin-Hasse formula and some facts from [4] on power series.

Theorem (Artin-Hasse, [3]). Fory € UQ2 (Gan)?

1+ 271
[, G la(an) = —2—Tf@2(<2n)/@2(10g ).

Lemma 4.3 (Proposition 2.2.1, [4]). For any F(X) € Ok|[[X]],

Re%ﬁ(wa@—T§I7af> o Y F(¢-1).

CEpan

Lemma 4.4 (Lemma 2.2.5.1, [4]). Let x € Uk, and f(X) € Ok|[[X]] which satisfies
f(Cn — 1) =x. Then

TrKn/QQ IOgZL‘ = _TrK/@Q ( Z S(f)(C - 1)) .

(Epgn

We verify the validity of Theorem 4.1 for x € Uy, and y = (o». First we compute
the Hilbert symbol via the Artin-Hasse formula. We see that

(o, o), = P Gn) _ P10 (®) oty (@) PRatean) N/ atin) () (C)
, Gon ) K,y Cyon Com T

= (C2n, Nk, /02(c0n) (%)) Q2 (Can)»

where Ng, /g,(c,n) denotes the field norm of the extension K, /Qy((sn). Then the
Artin-Hasse formula implies

14201
[z, Gonl i, = [NK,/a(cen) (7), ConlQa(on) = g TQa(een) /02 (108(N g, /Qa(cn) (7))

1+ 2!

= 2—TI‘K /Q2 (log ZL')

Next we compute the right-hand side of the formula in Theorem 4.1. When y = (o,
we can take g(m,) = m, — 1 to get £(g(m,)) = (£ — 1) log(1+ 7). Hence by Lemma
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4.3 and the definition of the power series Y, (7,), we have

Res., (£(f)e(Y,) — Ya£(g)) ﬁ
1

= o0 2o BUX))e¥y(X)) - Ye(X)L(9(X))) [x=¢-1=0.

(Epan

Similarly, we also have Res,, (Dlog f - £(g)) = 0. Thus we can see that

(142" Y Trg g, (Resﬂn (Dlog f - £(g) — £(f)#(Dlog(g))) %)

—2"Trg g, (Resﬁn (L(N)e(Yy) — YaL(g)) ﬁ)

— (4 2T, (Ress, (2()p(Dlos(o)) )

(1+m,)
_ 1
::(1+TlUﬂk@2<§;2:(20%4Dk%@»HXﬁq>
CEpan
1 + 2n71
= —5—Tixge, ), (S(f(C—1)
(Epan
14271t 14 o1
- T o Trr/q, (TrKn/Qz log 1‘) = —TTrKn/QQ (log x)

Here we use
o(D1og(g(X))) = p((1 + X)-L log(1 + X)) = 1

dX
in the third equality and Lemma 4.4 in the fourth equality. This completes the proof.
O
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