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Abstract

For an elliptic curve E over QQ, and a positive integer n satisfy-
ing some properties, we introduce in this paper analytic quantities d,
using modular symbols, and give conjectures that these quantities con-
trol the maps of reduction modulo primes dividing n on E(Q). These
conjectures also describe the structure of Selmer groups and the Tate-
Shafarevich group of E. In the direction of the conjectures, we gener-
alize, to all good reduction primes p, an injectivity theorem which was
proven in our earlier paper [14] only for good ordinary primes.

0 Introduction

The aim of this paper is to introduce some analytic quantities §,, and to
describe its role in the arithmetic of elliptic curves. In general, for an alge-
braic variety defined over the field of rational numbers Q, the maps given
by reduction modulo primes ¢ provide perhaps the first elementary attempt
to understand rational points of the variety. In particular, for an elliptic
curve E over Q, and for any prime ¢ of good reduction for FE, we write
re : E(Q) — E(Fy) for the reduction modulo ¢ map. Let E(Q)os denote
the torsion subgroup of E, and E[m] the subgroup of m-torsion points for
any positive integer m. Then it is well-known that, for all primes [ { m of
good reduction, r; induces an injective homomorphism

E(Q)[m] < E(Fr).

These maps for several £’s give enough information on the torsion subgroup
E(Q)tors- In the present paper, we go further, and study the whole Mordell-
Weil group E(Q) using the maps ry’s for various good reduction primes I.
For distinct good reduction primes £1,...,¢,, put n = £1 - ... - £,., and denote
by 7, the map

m : B(Q) — @D E(F),

ln



whose ¢-component is rp. For a prime number p, we write

mp: BQ®Z/p— PEF)RZ/p
ln

for 7, modulo p, which is a homomorphism of finite dimensional Jf,-vector
spaces. In the following, we always work with prime numbers ¢ such that
E(F¢)®7 /p ~ 7 /p and their squarefree products n (for the precise setting,
see §1.1).

We fix an odd prime number p at which F has good reduction. In §1.2
we introduce an analytic quantity d,, € F,, which is defined explicitly using
modular symbols (see (3)), and which is numerically computable. The aim
of the paper is to prove theorems and formulate conjectures asserting that
0n € Fp controls the homomorphism 7, ,. One of our main results is Theorem
2.1 which asserts the following. Assume that p is a prime such that (i) p
does not divide the product of the Tamagawa factors at the primes of bad
reduction for E, (ii) the action of the Galois group on the p-power torsion
points E[p™] is surjective, and (iii) p satisfies some mild conditions in the
beginning of §2.2. Then §,, # 0 implies that r, , is injective.

For simplicity, we assume for the rest of this Introduction that both E(Q)
and the Tate-Shafarevich group III(E/ Q) have no element of order p. Note
that if p is big enough, this condition is satisfied if we admit the conjecture
that III(E/ Q) is finite. We define v(n) to be the number of primes dividing
n. Following the terminology of our previous paper [14], we say that n is
d-minimal for p if 4, # 0 and d4 = 0 for every proper divisor d of n. We
conjecture that such J-minimal n always exist. We can always find such n
in numerical examples.

Conjecture 0.1. Assume that n is 0-minimal for p. Then ry ), is bijective,
so that
rank £(Q) = v(n).

Conjecture 0.1 predicts a connection of the rank E(Q) with these analytic
quantities ¢, in a form very different from the conjecture of Birch and
Swinnerton-Dyer . An important aspect of our conjecture is that a single n
gives the rank of E(Q). For a more general form of this conjecture on the
Selmer group, see Conjecture 1.7 in §1.4.

Next we take general n which is not necessarily d-minimal and which
satisfies v(n) = rank £(Q), and consider a question whether 7y, , is bijective



or not. We note that the answer to this question gives information on the
rational points on E.

Conjecture 0.2. Let n be such that v(n) = rank E(Q). Then ry, is bijec-
tive if and only if 6, # 0.

We urge the reader to look at the numerical examples in §1 to understand
the phenomenon on the bijectivity of 7,,. We prove in this paper the “if”
part of this conjecture. Actually, it follows from the injectivity theorem
(Theorem 2.1) because the source and the target of 7,, have the same
dimension. A remarkable point of this conjecture is the observation that the
converse should also hold. Thus Conjecture 0.2 asserts that &, completely
controls the bijectivity of 7, ;.

Concerning the converse, we remark here the following. We can also
formulate in §3 some analogous statement for ideal class groups, and prove
the “if” part (Theorem 3.1). However, the converse (the “only if” part) does
not hold in this case. Also the analogous statement to Conjecture 0.1 does
not hold in the class group setting.

We extend 7, to the classical Selmer group Sel(Q, E[p]) and a certain
Selmer group Selz»(Q, E[p]) to get maps TTSL% and ri ;. We study these maps
and make conjectures in §1.3.

We expect that the system (dy,), should determine not only the Mordell-
Weil rank, but also the structure of Selmer groups. A conjecture on the
structure of III(E/Q) is given in Conjecture 2.4 in §2. When p is a good
ordinary prime, this conjecture was studied in our previous papers [14], [13],
and proved in [13] Theorem B under several assumptions.

Our injectivity theorem (Theorem 2.1) gives information on the structure
of III(E/ Q). We will give some numerical examples in §2.3 for which we
can determine the structures of their Tate-Shafarevich groups.

We state several conjectures in §1. The numerical examples in §1 would
be helpful to understand the subject of this paper. We restrict ourselves to
[Fp-vector spaces in §1, but we develop in §2 a theory for Z /p™-modules.
We study in §3 the class groups for CM-fields in order to compare them
with the theory in §1. In §4 we give proofs of theorems stated in §2.2,
especially Theorems 2.1 and 2.3. The key tool of the proof is the Euler
systems of Gauss sum type. To construct the Euler systems, we study
Iwasawa theory for elliptic curves with supersingular reduction at p. We
work on the equivariant Iwasawa theory (see Theorem 4.3), and get a result



on the annihilation of Selmer groups (see Theorem 4.7). We give an explicit
construction of an equivariant p-adic L-function from modular symbols in
§4.2. The strategy of the proof of Theorem 2.1 is the same as that in our
previous paper [14]. In this sense this paper is a sequel of [14].

The author would like to thank John Coates for his hospitality when
the author stayed in Cambridge where the author developed the subject in
this paper and gave talks on this subject in 2012 and 2019, for his interest
in the theory of this paper, and for his careful reading of this manuscript
and giving the author many comments. The author thanks the organizers,
N. Fakhruddin, E. Ghate, A. Nair, C.S Rajan and S. Varma of the Interna-
tional Colloquium on Arithmetic Geometry held in 2020 at Tata Institute
for inviting him and for organizing a very pleasant conference. The author
also thanks D. Prasad who gave the author his preprint [21] with S. Shekhar
during the conference. We determine the structure of the Tate-Shafarevich
group in Example 4 in §2.3 for a curve treated in [21].

1 Reduction maps and Conjectures

1.1 Setting and a problem

We suppose that E is an elliptic curve over Q with no complex multiplication
(for simplicity). We denote by N the conductor of E.

In the following, we fiz an odd prime number p such that p is a good
reduction prime (p 1 N), and the action of the Galois group on the group
E[p] of p-torsion points Gal(Q/Q) — Aut E[p] is surjective. Consider the
set

P={¢|£=1 (modp), 1N, and E(Fy,) ®Z /pZ ~ 7 |pZ}.

We know that P is an infinite set using Chebotarev density theorem (see
[13] §5.8).

We denote by N the set of squarefree products of primes in P. We
suppose that 1 is also in N. For n € P we write v(n) for the number of
primes dividing n.

Let r¢ and ry, = @1 : E(Q) — @y, E(Fe) be as in Introduction for
n € N. We consider ry, which is r, mod p and since we fixed p, we write
simply 7, for it;

m:BQez/pz— PEF)L/pz~ (Z/pz)"™ . (1)
ln



In this paper we show that this fundamental map is controlled by some
analytic quantities d,, which we introduce in the next subsection.

Before we proceed, we give some numerical examples. We take n € N
such that rank £(Q) = v(n). Then our assumption implies E(Q)[p] = 0, so
rp in (1) is the map between two [Fp-vector spaces with the same dimension
v(n). In this situation we ask whether r, is bijective or not.

Example 1. Let E be a curve y? + y = 23 + 2 which is of conductor 91.
Take p = 3. Then

P = {19,37,43,61,73,103,127, 163, 181, 229, 271, 337, 349, 367, 397, 409, 439, 499, ...}.

For this curve we know that E(Q) is free of rank 1 and is generated by the
point P = (0,0).

Take several £ € P. Since the order of P = (0,0) in E(F,) can be easily
computed, it is easy to check whether r, is bijective or zero by checking
whether r,(P) generates F(F)/p. Here is a table

¢ |19 37 43 61 73 103 127 163 181 229 271 337
re | bij bij bij bij bij bij  bij zero bij  bij  bij  bij

¢ | 349 367 397 409 439 499

T bij bij Z€ero bij Zero  zero

Example 2. We consider E : y? + 2y +y = 2° + 22 — 152 + 16. In this
case the Mordell-Weil group E(Q) is free of rank 2 and is generated by two
points P = (2,—2) and Q = (—4,7). Take p = 3. Then P can be computed
as

P = {13,61,103,109, 127,139, 163, 211, 229, 271, 283, 313, 349, 367,433, ...}.

We consider
rn: E(Q)/p — E(Fe,)/p ® E(Fe,)/p

fornzﬁl-ége./\/'.

L 61 103 109 127 139 163 211 229 271 283 313 349

T1axe | bij notbij bij  bij notbij bij bij notbij bij bij bij not bij

L 103 109 127 139 163 211 229 271 283 313 349 367

Teixe | bij notbij bij  bij  bij  bij not bij mnotbij bij notbij bij  bij




We will see later that, surprisingly, just one analytic quantity ¢,, which
will be defined in the next subsection determines completely whether r,, is
bijective or not.

1.2 analytic quantities ¢,

Let fg(z) be the cusp form of weight 2 corresponding to the elliptic curve
E. We consider the modular symbol

a a/n
%)= Re(2ri [ fo()d)/0h € Q

for a, n € 7 where Qf, = fE(R) wg is the Néron period (if the Néron lattice is
nonrectangular, it is the minimal positive real number in the Néron lattice,
and if the lattice is rectangular, it is twice of the the minimal positive real
number in the Néron lattice, cf. [17] (1.1)). For n € N and a € Z, since we
assumed that the Galois representation E[p| is irreducible, we have [a/n] €
Zp, namely its denominator is prime to p (see Stevens [27] §3). Therefore
one can consider [] mod p € Fp.

Let £ be a prime in P. Fixing a generator g, of F,', we define logy , by
logg, :F ~7Z/({—1)Z — Fy (2)

where the first map is defined by fixing the generator gy and the second map
is the natural homomorphism 7 /(¢ —1)Z — Z /D7 = Fp.
Writing [2] for [%] mod p, we define
" a
on = Z [E](Hbgw(a» €Fp. (3)
a=1 Ln
(a,n)=1

This appears as a coefficient of the modular element 0g,,, \+ € Zp[Gal(Q(1n)*/ Q)]
of Mazur and Tate [17] (see §4.5). We stress here that d,, can be easily com-
puted numerically when E and n are given.

We give here a fundamental conjecture (cf. Conjecture 1 on page 320 in

[14]). We denote the Tamagawa factor of E by Tam(E) = Ilppaq(E(Qy) :
E(Qy).

Conjecture 1.1. Assume that p is prime to Tam(E). Then there exists
n € N such that 6, # 0 in Fp.



As we mentioned, the numerical computation of é,, is easy. For two
examples in the previous subsection, the values of §,, are as follows.

Example 1. For 32 +y = 23 + z, taking p = 3, we have

¢ 119 37 43 61 73 103 127 163 181 229 271 337
| 2 1 1 2 1 1 2 0 2 2 1 1

¢ | 349 367 397 409 439 499
O | 2 1 0 2 0 0

Example 2. For y? + 2y +y = 2® + 22 — 152 + 16, taking p = 3, we have

l 61 103 109 127 139 163 211 229 271 283 313 349
d13xe | 1 0 1 1 0 2 1 0 2 2 2 0

14 103 109 127 139 163 211 229 271 283 313 349 367
O61x¢ 1 0 1 1 2 1 0 0 2 0 1 1

1.3 Conjectures on r, and 6,

Comparing the tables in Subsections 1.1 and 1.2, we are led to the following
conjecture.

Conjecture 1.2. Suppose that p does not divide #11(E/ Q) Tam(E) where
III(E/ Q) is the Tate-Shafarevich group. For anyn € N such that rank E(Q) =

v(n),

r BQ)/p — @ EF) @ Z/p7 is bijective <= b, #0
£n

holds.

Let Sel(Q, E[p]) be the Selmer group over Q with respect to E[p|. So we
have an exact sequence

0 — E(Q)/pE(Q) — Sel(Q, Elp]) — HL(E/Q)[p] — 0

where III(E/ Q)[p] is the subgroup of III(E/ Q) consisting of elements that
are annihilated by p. For a prime £ € P and z € Sel(Q, E[p]), the image
of x in HY(Qy, E[p]) is in E(Q,)/pE(Q,) which is naturally isomorphic to



E(F¢)/pE(F¢) since £ is a good reduction prime and is prime to p. Thus 7,
can be naturally extended to

ot Sel@ Elp)) — D EF) @z /pz =~ (2 /p2)"™ . (4)
Ln

for each n € NV.
Conjecture 1.2 is a special case of the following conjecture.

Conjecture 1.3. Suppose that p does not divide Tam(E). For anyn € N
such that dimg, Sel(Q, Elp]) = v(n),

rSel . Sel(Q, E[p]) — @E(F@) ®7Z/p7 is bijective <= 0, #0
Ln

holds.

If p does not divide the order of III(E/Q), the natural map E(Q)/p ~
Sel(Q, E[p]) is bijective, so Conjecture 1.3 clearly implies Conjecture 1.2.

We will prove Theorem 2.1 in §2.2, by which we can show that the right
hand side implies the left hand side in Conjecture 1.3 (under some mild
assumptions in the beginning of §2.2).

Remark 1.4. We can make analogous statement for ideal class groups. But
this statement does not hold in general. We will explain the phenomena in
§3.

Remark 1.5. One can extend the homomorphism 7‘261 to a certain subgroup
Selzn (Q, Elp]) of HY(Q, Elp).

We use the terminology of Mazur and Rubin in their theory of Koly-
vagin systems [16]. For any prime ¢, we regard E(Q,)/p as a subgroup of
H(Qy, E[p]) by the Kummer map. We define H/.(Qy, E[p]) to be the kernel
of the natural map H(Q, E[p]) — HY(Q.(1e), E[p]) where Qq(uy) is the
cyclotomic field of ¢-th roots of unity over Q,.

For any n € N, we define Selz» (Q, E[p]) to be the subgroup of H(Q, E[p])
consisting of elements whose image in H'(Qy, E[p]) is in E(Q,)/p for any
prime £ that does not divide n. We consider a natural map

r7" : Selen (Q, Elp)) — €D H'(Qe, Elp™)/H, (Qe, E[p™) ~ @D E(Fe) /p

Ln Ln



Since the diagram

T,Sel

Sel(Q, Elp]) Dy, E(Fe)/p

! 5

]_—n

Selzn (Qv E[p]) rn_> @ﬂn ' (Qév E[pm])/Htlr(@Ev E[p])
is commutative, r7 " is an extension of r5¢'. We denote the kernel of ;7" by
Selr(n)(Q, E[p™]), which is a finite dimensional F)-vector space.

Sakamoto constructed in [25] a theory on Kolyvagin systems of rank 0.
For a basis k of the space of Kolyvagin systems of rank 0 which is of rank
1, one can define d,(k) by the method in [25]. Sakamoto proved in [25]
Theorem 5.8 that

Fitty, (Selr(n) (Q, Ep])) = (9n(x)).

Equivalently, this means that

Sel gy (Q, Blp]) = 0 <= 6,(x) 0. (5)

We note that d,(x) in [25] is defined algebraically and has no relation with
elements with analytic origin. A relation between d,, and 0, (k) would be
useful to prove Conjecture 1.3.

Suppose that we can show that d,, = ud,(x) for some u € F,’. Then the
above assumption together with (5) and the next proposition implies that
the left hand side of Conjecture 1.3 implies the right hand side of Conjecture
1.3.

Proposition 1.6. Suppose that r3¢ : Sel(Q, E[p]) — D E(Fe) ®Z/pZ
is bijective. Then we have Selr(,(Q, E[p]) = 0.

This proposition will be proved in §4.1.
We will prove in §3 that 6, # 0 implies Selr(,)(Q, E[p]) = 0 for n
satisfying certain conditions (see Theorem 2.3).

1.4 Conjectures on the Selmer group Sel(Q, E[p])

In the previous subsection we proposed conjectures on the map r,. In this
subsection we propose a conjecture on the structure of the Selmer group

Sel(Q, E[p]).



For general n € N which may not satisfy dimg, Sel(Q, E[p]) = v(n), we
prove in Theorem 2.1 that if 6,, # 0 in Fp, then 7, is injective (under some
mild assumptions in the beginning of §2.2). Therefore, if §,, # 0, we have

dimg, Sel(Q, E[p]) < v(n).

Suppose that n € N'. As we mentioned in §0, we say that n is §-minimal
if 04 = 0 for all divisors d of n such that 1 < d < n and d,, # 0. We propose
the following conjecture (see also Conjecture 2 on page 322 in [14]).

Conjecture 1.7. Suppose that p does not divide Tam(E). If n € N is
§-minimal, then 3 is bijective. In particular,

Sel(Q, Elp]) ~ (z /p7)"™.

Suppose that both n and n’ are §-minimal. Then Conjecture 1.7 also
asserts that v(n) = v(n'). This conjecture asserts that a single n which is
d-minimal determines the Selmer rank.

Suppose that there is m € N such that d,, # 0 (the existence of such
m is conjectured in Conjecture 1.1). Then, rEfl is injective by Theorem 2.1.
Therefore, there exists a divisor n of m such that r5¢! is bijective. Then for
any proper divisor d of n, rsel is not injective since v(d) < dimg, Sel(Q, E[p]).
This implies that Selr(4)(Q, E[p]) # 0. By the consideration in Remark 1.5,
we can expect 64 = 0. This shows that n is -minimal. In this way, one can

expect to find d-minimal n € N' among divisors of m.

2 Main theorem

2.1 Setting and notation for 7 /p™ 7Z-modules

In the previous section we considered only [Fj-vector spaces. In this section
we study more general theory for 7 /p"-modules with m € 7.

We assume that the action Gal(Q/Q) — Aut E[p™] ~ GLy(Z,) on p-
power torsion points E[p>°] is surjective. We fix a positive integer m > 0.
We define

P = {¢[£=1 (mod p™), L1 N, and E(F)) @7 /p" 7~ 7 /p" L}.
Thus P coincides with P in the previous section, and

p=pL 5p2 5pB) 5

10



The set P(™ is an infinite set, which can be checked by using Chebotarev
density theorem (see [13] §5.8).

We define N(™) to be the set of squarefree products of primes in P,
Again, we suppose 1 € (™).

Next we define several subgroups of H!(F, E[p™]) for a number field F.
For a positive integer n, we define

Selpn (F, E[p™]) = Ker(H' (F, E[p"]) — @ H' (Fo, Ep"™)) /(E(F,)®Z /p™))

vin

where we regard E(F,)®Z /p™ as a subgroup of H!(F,, E[p™]) by the Kum-
mer map as usual. If n =1, we just write Sel(F, E[p™]) for Selz (F, E[p™)),
which is the classical Selmer group. If p divides n, we also use the notation
HL,(F,E[p™)) for Selz-(F, E[p™]). We note that H]l__npN(F,E[pm]) coin-
cides with the étale cohomology group H),(Spec Op[1/npN], E[p™]) where
N is the conductor of E.

We define Selzn(F, E[p*]), Selgn(F,T,(E)) similarly, using the local
conditions E(F,) ® Q,/Zp and E(F,) ® Z,, respectively. For n = 1, we
also write Sel(F, E[p>]) for Selz (F, E[p™]), and sometimes denote it by
Sel(E/F). If p divides n, Hx,(F,T,(E)) means Selzn (F, Ty(E)).

For F = Q, as in the case m = 1, following Mazur and Rubin [16], we
define H}.(Qy, E[p™]) to be the kernel of the natural map H'(Q,, E[p™]) —
HY(Qy(1e), E[p™]) where Qy(u¢) is the cyclotomic field of /-th roots of unity
over Q,. For positive integers n, k such that n is prime to p and k is prime
to np, we define Sel z(,yx(Q, E[p™]) by

Sely(nyr (Q, Ep"™]) = Ker(Selru (Q, Elp™])) — €D H'(Q, E[p™))/Hyp(Qp, E[P™)-
ln

If k =1, we just write Selz(,)(Q, E[p™]) for Selr,: (F, E[p™]).
For any prime £ € P, we have E(Q,)/p™ ~ E(F¢)/p™ ~ 7 /p™. The
local cohomology group H'(Q,, E[p™]) is free of rank 2 and decomposed into

HY(Qy, B[p™]) = E(Fo)/p™ © Hyp(Qe, Ep™),

so we have
HY(Qq, E[p™)/H},(Qp, E[p™]) =~ E(Fe) /p™.
For n € N(™) as in the previous section, we have a natural homomor-
phism

rSSel(Q, Ep™]) — D E(F) @z /p" z~ (z /p" )",
£n

11



which can be extended to
ry": Selen (Q, E[p™]) — @D H'(Qp, E[p™))/H}(Qp, E[p™]) ~ €D E(Fe) /0™
Ln

ln
(6)

2.2 Injectivity theorems

Put a, = p+ 1 — #E(F,) as usual. From this subsection throughout this
paper, we assume that if I/ has good ordinary reduction at p, then a, # 1
(mod p) (not anomalous), and that if £ has supersingular reduction at p,
then a, = 0. The latter is always satisfied if p > 5. Also, we assume that
the p-invariant for the cyclotomic Zy-extension vanishes if p is ordinary, and
that u™ = 0, or = = 0 if p is supersingular (for the precise definition of
the latter, see the definition just before Lemma 4.1 below). The condition
on the p-invariants are conjectured by Greenberg to hold true always. We
assume the conditions on the p-invariants though there is a possibility to
remove them by using a recent result of Kataoka [5].
For n € N™ | we can define 6, € F, since n is in .

Theorem 2.1. Suppose that m is a positive integer, and n € N™ satisfies
0n # 0 in Fp. Then the natural map

Tsel : Sel(Q, E[p™]) — @E(Fé)/pm ~(z/p™ Z>V(n)
£n

1s injective. In particular, we have
vank B(Q) + dimg, TI(E/ Q)[p] < v(n)

where I(E/Q)[p] is the subgroup of I(E/ Q) consisting of elements that
are annihilated by p.

Remark 2.2. This theorem was proved in our previous paper [14] in the
ordinary case, so in this paper we prove this theorem in the supersingular
case.

In §4.5 we will give the definition of the admissibility for numbers in
N (for the definition, see also [14] §3.3 and [13] §7.10). For such n, we

can show a stronger result.

12



Theorem 2.3. Suppose further that n is admissible. If 6, # 0 in Fp,, we

have H}(n) (Q, E[p™]) =0. In other words,
. Hp(Q B™) — @D EF)/p" = (2 /p" 7))
ln

18 1njective.

2.3 Structure of Tate-Shafarevich groups and some numeri-
cal examples

Theorem 2.1 is useful to determine the structure of the Tate-Shafarevich
group of E. We denote by II(E/Q)[p*>] the p-primary component of the
Tate-Shafarevich group II(E/ Q).

Example 3. We take E to be
y? + 2y = 2® — 2% — 22959594440z — 1339036978455744

with conductor N = 152330 (Cremona label 152330l1). We know E(Q) =0
and Tam(E/Q) = 2. Take p = 3. Then a3 = 0 (so 3 is a supersingular
prime), the Galois action on E[3%] is surjective, and the both cyclotomic
pt-invariants vanish. Therefore, all the conditions in the beginning of §2.2
are satisfied and we can apply Theorem 2.1.

In this case since N is squarefree, we know by the main theorem of
X. Wan in [28] that the Iwasawa main conjecture for p = 3 holds true
for E. Therefore, it follows from L(E,1)/Qg = 162 that the 3-component
IMI(E/Q)[3°°] of the Tate-Shafarevich group has order 81 (while the Birch
and Swinnerton-Dyer conjecture asserts that the whole III(E/ Q) has order
81). Thus there are two possibilities for the structure of ILI(E/Q)[3°°] as
an abelian group, namely (7 /37)%* and (7 /9 7)%.

Taking p = 3 and computing P, we have

P = {13,31,61,127, ..}

We can easily compute d13x¢ and d31x¢ to get the following table.

V4 31 61 127 14 61 127
disxe | 10 2 ds1xe | 1 0

Applying n = 13 x 31 for example, we get from d13x31 # 0 and Theorem
2.1 that
dimp, II(E/Q)[3] < v(13 x 31) =2,

13



which implies that dimg, III(E/Q)[3] = 2 and
HI(E/Q)B3®|~Z/9Z®Z/9Z.

Thus we also have III(E/Q) ~ Z /9Z® 7 /97 if we admit the Birch and

Swinnerton-Dyer conjecture.

Example 4. We take E to be
E % +y=a® —17034726259173z — 27061436852750306309.

This is the curve studied by Prasad and Shekhar in [21] Example 2. The
conductor is N = 423801 (Cremona label 423801cil). Take p = 5. Then
the action on E[5°] is surjective, 5 is good ordinary with a5 = 4, and the
cyclotomic p-invariant is 0, so all the conditions in the beginning of §2.2 are
satisfied and one can apply Theorem 2.1. For this curve, we know E(Q) =0
and Tam(F/ Q) = 16.

We know a1 = aq; = 2 and aj9; = —18 for this curve (ay is the coefficient
of the modular form corresponding to F), and

P ={11,41,191,..}.

We compute d11x41 to get d11x41 = —1628692 = 3 # 0 in [F).

In order to see that the main conjecture for (F, p) holds, we cannot apply
the main theorem by Skinner and Urban in [26] because N = 423801 =
32 .7%2.31% is a perfect square. Instead, we can use the main theorem in
C.-H. Kim, M. Kim and H.-S. Sun in [7]. In fact, using Corollary 1.2 in [7]
and 011x41 # 0, we know that the main conjecture for (E,p) holds true.

Since L(FE,1)/Qg = 10000, the main conjecture implies that the 5-
component of III(E/ Q) has order 625 = 5.

It follows from Theorem 2.1 and 611x41 # 0 that dimp, III(E/Q)[5] < 2.
This implies that

HI(E/Q)[5>*] ~ Z /25 Z® Z [25 7.

If we admit the Birch and Swinnerton-Dyer conjecture, we have ILI(E/ Q) ~
Z/257.®7/257.

For general FE over QQ, concerning the structure of the Tate-Shafarevich
group II(E/Q), we have the following conjecture (see Theorem B in [13]).

To state the conjecture, we have to define 5,(Lm) that is é, mod p™ for any

14



n e N For any ¢ € P(™), logI(FT) 'F, ~7/(—1)Z — 7 /p™ is naturally
defined by using the fixed generator g, of F,, and [a/n]™ is defined as [a/n]
mod p™. Then as in (3) we define sim) by

n

a m m
DRSS [E](m)(Hlog]%Z)(a))GZ/p Z. (7)
(@m=1 "

Let III(E/ Q)[p™] be the kernel of the multiplication by p™ on ILII(E/ Q).

Conjecture 2.4. Suppose that p does not divide Tam(E/Q), and rank E(Q) =
r. For any integers m > 0 and i > 0, we define I, ; to be the ideal of 7, /p™ 7.
generated by all 5£Lm) with n € N such that v(n) = r +1i. Then for any

even 1 > 0 we have
Fitt; 7 /pm LI(E/ Q)[p™] = Im,i
where Fitt; 7, /,m HI(E/ Q)[p™] is the i-th higher Fitting ideal of ILI(E/ Q)[p™].

We have to restrict ¢ to even numbers > 0 in Conjecture 2.4. In fact,
for odd ¢ the above equality in Conjecture 2.4 does not hold. But Con-
jecture 2.4 is enough to determine the structure of III(E/Q)[p™]. Assume
that III(E/Q)[p*>] is finite. Then, by the existence of the Cassels-Tate
pairing, IIT(E/ Q)[p>°] is isomorphic to A @ A for some finite abelian group
A, and III(E/ Q)[p™] is isomorphic to (7 /p* 7)92 & ... © (Z /p*s 7)®? with
some ki,....ks such that m > k1 > ... > ks. Then by the definition of the
higher Fitting ideal, Fittg 4 /,m III(E/Q)[p™] is generated by p2lkitoths)
Fitty 5 /,m HI(E/ Q)[p™] is generated by p2katoths) Fitty 5 /,m II(E/Q)[p™]
is generated by p2(kst-tks) otc. So taking m sufficiently large such that
LI(E/ Q)[p™] = II(E/Q)[p"] and Fitt,, ,n II(E/ Q)[p™) # 0, we can
determine the structure of the Tate-Shafarevich group HI(E/Q)[p*>] from
Conjecture 2.4.

We proved Conjecture 2.4 in Theorem B in [13] under several (strong)
conditions including the finiteness of III(E/Q)[p>°] and the ordinary condi-
tion on p.

There are several new works on this conjecture, but we do not explain
them in this paper.

3 Analogous results for ideal class groups

Concerning Conjectures 1.2, 1.3 in §1.3, “the left hand side <= the right
hand side” can be proved under some mild assumptions, as we explained in

15



§2. So the problem is to show the converse.

In this section we first state Theorem 3.1 for ideal class groups, which
corresponds to Theorem 2.1 for the Selmer group. For ideal class groups,
we see that “the converse” of the analogy of the above conjectures does not
hold.

Since the unramified cohomology H}-(Qg, E[p]) is E(Qy)/p and the map

r¢l can be regarded as r>¢! : Sel(Q, E[p]) — D H}-(Qg, Elp]), its dual is

D H' Q. Elp])/H} Q. Elp]) — Hom(Sel(Q, Efp]). 2 /pZ).  (8)

Ln

Conjecture 1.3 studies the bijectivity of this map.

For a number field K and the Galois module 1, consisting of p-th roots
of unity, H'(Ky,p1p) = K ® Z/pZ and H}(Ky,pp) = Ex, ® Z/pZ for
a finite prime ¢ of K where Ef, is the unit group of K,. Therefore,
Hl(Kg,up)/H}(Kg,up) ~ 7 /p7Z where the isomorphism is defined by the
normalized additive valuation of K.

Let Ck be the ideal class group of K. For a squarefree product n of
finite primes of K, the analogous map of (8) is

@Z/pZ—>CK/P 9)
Lin

where e = (0,...,1,...0) (the element whose L-component is 1 and other
components are zero) goes to the class of £ in Ck /p.

Let k be a totally real field and K be a CM-field such that [K : k] = 2.
Theorem 3.1 we will prove below can be generalized to more general abelian
extension K /k, but here we restrict ourselves to this simple setting [K : k] =
2.

We assume that p is an odd prime and that K does not contain a prim-
itive p-th root of unity. For a finite prime ¢ of k such that N(¢) = 1 (mod
p), we define ny € Z~o by p™||N(¢) —1. We say /¢ is suitable if k£ has a cyclic
extension k(¢)/k of degree p™ such that k(¢)/k is unramified outside ¢ and
totally ramified at £. If £ = Q, all prime numbers are suitable. We define a
set P of finite primes of k by

P ={¢| N() =1 (mod p), £splits in K, and ¢ is suitable}.

By Chebotarev density theorem one knows that P is infinite (see §3 in
[12]). We define N the set of squarefree products of primes in P. For
each ¢ we take a cyclic extension k(¢)/k of degree p™ such that k(¢)/k is
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unramified outside ¢ and totally ramified at ¢, and define k(n) to be the
composite field of all k(¢) for ¢ dividing n.

Suppose that n € N'®/. We consider the composite field Kk(n) of K and
k(n). For o € Gal(Kk(n)/k), we consider the partial zeta function

G(s,0)= > N~
( Kk(:)/k V=0
where o runs over all integral ideals of & whose Artin symbol is o. This
function has a meromorphic continuation to the whole complex plane. Since
Lp is not in Kk(n) by our assumption, we know that (0, 0) € Z, by Deligne
and Ribet [2], and Pi. Cassou Nogues [1].
For ¢ € P we define log by

logf : Gal(Kk(n)/k) — Gal(k(¢)/k) ~ Fro ©Zp ~ L /v 7
— Z/pZ =TFp,

fixing a generator of IFJXV(Z)' We denote by x the quadratic character of
Gal(Kk(n)/k) defined by

X : Gal(Kk(n)/k) — Gal(K/k) = {£1}.

We define 6¢ for n € N by

= > X(0)(0,0)(JJlogf (0)) € Fy.

o€Gal(Kk(n)/k) tn

We denote by (Cx ®Zp)~ the subgroup of Cx ®7,, consisting of elements
on which the complex conjugation acts as —1.

The following theorem is the analogous result corresponding to the in-
jectivity theorem for the Selmer group (Theorem 2.1 in §2). We can prove
this theorem using Euler systems of Gauss sum type in our paper [12] (see
also [23] when k£ = Q) by the same method as the proof of Theorem 2.1 in
§4.6.

Theorem 3.1. Suppose that 6¢ # 0 for some n € N. Then (Cx ® Zp)~
1s generated by primes of K dividing n. In other words, the homomorphism
(9) is surjective after taking the minus components.

We consider the simplest example. Suppose that £k = Q and K is an
imaginary quadratic field. Let xx : (Z/dZ)* — {%1} be the Dirichlet
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character corresponding to K. For a cyclotomic field Q(un,)/Q and a € Z
with 0 < @ < m and (a,m) = 1, it is well-known that ((0,0,) = § — 2

where 0, € Gal(Q(um)/ Q) ~ (Z /mZ)* corresonds to a mod m. Therefore,
6 has a simple form which is similar to and simpler than (3) in §1.2;

dn

o a
== > xx(a)_([Jlogy,(a) € Fy (10)
(a,(zli)lzl b

where logp, is as in §1.2. So the numerical computation of 6¢ is very easy
in this case.

Example 5. Take K = Q(v/—23) over £k = Q and p = 3. We know
Cxk~7/37,50 (Ck®7Z/37)” =Ck ®7/37Z = Cgk. By definition,

—23
P = {]|0=1 (mod 3), (=) =1}
= {13,31,73,127,139, 151, 163, 193, 211, 223, ...}
For ¢ = 13, 31, 73, 127, 139, 193, by computations using (10) we have
(551 # 0. Also for £ = 151, 163, 211, 223, we have §; = 0. For ¢ such that

d¢ # 0, we know by Theorem 3.1 that a prime above ¢ generates Ck. In the
terminology of quadratic forms, this means that

222 + xy + 3> =4

has an integer solution. This can be also checked easily for the above ¢’s.

The analogy of Conjecture 1.3 for class groups can be formulated as
follows. Suppose that (Cx ® Z,)~ is generated by exactly m elements.
Then for n € N such that v(n) = m, the analogous claim for class groups
is

(Ck ® Zp)~ is generated by primes of K above n <= ot £ 0.

However, this equivalence does not hold. For example, consider Example
5, namely K = Q(1/—23). Then the above equivalence claims that

222 + 2y + 3y? = ¢ has an integer soultion <= 5?1 #0

for any ¢ € P with p = 3. But the left hand side does not imply the
right hand side, in general. For example, for ¢ = 151, 163, we have 551 =0
but a prime above ¢ generates Cx because 2x? + zy + 3y?> = ¢ has an
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integer solution. (In fact, for £ = 151, (z,y) = (4, —7) is a solution, and for
¢ =163, (xz,y) = (8,—5) is a solution.) Thus the analogy for class groups
corresponding to Conjecture 1.3 does not hold.

For ¢ = 211, 223, we have 5;1 = 0 and primes above ¢ are principal since
211 =22 4+ 23 3% and 223 = 42 + 23 - 3%

Next we consider the analogy of Conjecture 1.7. By computation we
know ¢t;.017 # 0. Since 6%, = 654, = 0, we know that 151 x 211 is
“s°_minimal”. But dimp, Cr = 1 # 2 = v(151 x 211). This shows that
the analogy for class groups corresponding to Conjecture 1.7 does not hold.
A single n which is §%-minimal does not determine the p-rank of the class
group.

An essential difference between the Galois representations 7,(E) and
Zp(1) is that the former is self-dual.

4 Proofs of statements

4.1 Proof of Proposition 1.6

We first prove Proposition 1.6. We use the notation Selz»(Q, E[p]) in Re-
mark 1.5. We define Selr, (Q, E[p]) to be the kernel of

rol: Sel(Q, E[p]) — €D E(F0)/p-

£n

Then by the global duality theorem, the sequence

0 — Selr(y(Q, Elp]) — Selm(Q, Elp]) > @ H'(Qy, Elp))/H},(Qq, Elp))
£n

— Selz()(Q, Elp])” — Selx, (Q, E[p])” — 0

is exact where M"Y means Hom(M,F,) for an [F,-vector space M.
Suppose that r5¢ is bijective. Then the surjectivity of 75! implies
the surjectivity of « in the above exact sequence. Therefore, we have
Selrm)(Q, E[p]) = Selr, (Q, E[p]) by the above exact sequence. The in-
jectivity of ¥ means Selz, (Q, E[p]) = 0, so we have Selr(,)(Q, E[p]) = 0.

4.2 Construction of equivariant p-adic L-functions in the su-
persingular case

In the next 4 subsections §§4.2, 4.3, 4.4, 4.5, we assume a, = 0, so F
has supersingular reduction at p. In this subsection we construct a certain
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equivariant p-adic L-function explicitly from modular symbols, following the

argument in our previous work [14] §2.1 where the ordinary case is treated.
For any m € Z~q we denote by ., the group of m-th roots of unity, and

put Gp, = (Q(im)/ Q) We consider the real part of the modular element

m

000um) = [%]aa € Q[Gn] (11)

where [a/m] is the modular symbol defined in §1.2 and o, is the automor-
phism in Gal(Q(u.m,)/ Q) characterized by 04(¢) = ¢™ for ¢ € p, (cf. [17]).

We first construct signed p-adic L-functions Hli(oo by the method in §1
in [15]. Suppose that n is a squarefree positive integer which is prime to
pN where N is the conductor of E. From our assumption that the action
on E[p] is surjective, we know GQ(ani) is in Z,[G,,pi] for any i € Z>o (see
[27]). We decompose Gi+1 = A x I'; where A is cyclic of order p — 1 and
I'; is cyclic of order p*. We take a generator v of Gal(Q(gtnp~)/ Q(tnp)) and
write

ZP[ani“] = ZplGnpl[T'i] = Zp[Grp][[T1]/wi

where 1+ T corresponds to the image of v in I'; and w; = (1—|—T)pi —1. Define
®; by ®; = w;/w;—1 which is a cyclotomic polynomial. So w; = ®;w;_1.
Suppose that ¢ > 2, and denote by

. ZP[ani'*‘l] — ZP[ani]
the natural projection. We also write
v Zp[ani—l] — Zp[ani]

for the norm homomorphism which is defined by o + )7 where for o €
Gppi-1, T runs over elements in G, which projects to o. Then using the
formula in (1.3) (4) in [17] we have

m(0qeu, 1)) = V0, i 1))- (12)

This shows that g, , ) is divisible by ®;_;. Applying the same argument
np

to 9@(;1";,1-71)7 GQ(MHPFS),...repeatedly, we know that HQ(unpi 1) 1s divisible by
(I)z'—l . (I’Z'_g Ca (I)l if 4 is evel, and (I)z'—l . (Di_g T ‘I)g if 7 is odd. Put

of = I @, o= [ @

2<5<4, 2|j 1<5<i, 25
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When i is even, we write g, y = @; hi(T) for some hi(T) € Zp|Gypi+1].

npitl
Put wii =T cbli Then we have w; = @;” wj . Therefore, the equation
QQ(ani‘Fl) = cDZ_h,(T) determines h;(T) in Zp|G,pi+1]/w;". The relation (12)
implies that ((—1)%hi(T))i:even is a projective system and defines an ele-
ment in liin Zp|Gpit1]/wi = Zp[[Grpe=]] where Gppoo = liin G,pi- We put

i+2 X
06(“71;000) = ((=1) 2 hi(T))izeven € lgnZP[an"+1]/wi+ = Zpl[Grp=]]-

When ¢ is odd, we can write g, ..,) = @; hi(T) for some h;(T) €
41

it

Zp|Gpi+1]/w; . The same method as above using (12) shows that ((—1) 2 7i(T))i.0dd
is a projective system, so we define

pi+1

i1

2 hi(T))i:0da Ghinzp[aniHVW; = Zp|[Gnp=]]-

These two elements (96( are Pollack’s p-adic L-functions in [20], and

Hnpoe)
Od(uww) log™ iﬁ&éf(unpw) log™ gives p-adic L-functions of Amice -Vélu
and Vishik.

For a real abelian field K with conductor m, we define 8 to be the image
of Og(y,,) under the natural restriction map Z,[Gm] — Zp[Gal(K/Q)]. Let
Ko /K be the cyclotomic Z,-extension. We define Qli(oo € Zp[[Gal(Koo/ Q)]]
to be the image of 96(%1@) under the natural restriction map Z,[[Grnp<]] —
Zy[[Gal(Ko/ Q)]]-

Consider 0600 € Zp[[Gal(Qy / Q)] = Z,[[T]]. By u* we denote the u-
invariant of 9600. Therefore, u= = 0 means that p does not divide 0600,
respectively.

Lemma 4.1. Suppose that K/ Q is a finite abelian extension with conductor
n which is prime to p. Let my : Z,[[Gal(Ko/ Q)]] = Zp[Gal(K/ Q)] be the
natural projection map. Then we have

m0(05 ) = (0p + 0, )0k, mo(05_) = (p—1)bk,
where oy is the Frobenius automorphism of p in Gal(K/ Q).

Proof. This follows from the construction of Gfi{w. For a finite abelian ex-
tension L/K, we denote by 71, the natural projection Z,[Gal(L/ Q)] —
Zp|Gal(K/Q)] and by vy, g the norm homomorphism 7,[Gal(K/Q)] —
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Zp|Gal(L/ Q)], which sends o € Gal(K/Q) to ) 7 where 7 runs over ele-
ments in Gal(L/ Q) projecting to . Using (1.3) (1), (4) in [17], we have

TQu,5)/ Q) (P2(T)) = T, )/ Qun) Oatu, 5)/ ®1)

= TQUunp)/ Qe (TOQpnp)) = (90 + 5 )b

which implies the first formula. The second formula follows from

TQ(,2)/ Q) (P1T)) = T, 21/ Qan) (O, 1))

TQptnp)/ Qtir) VQttnp)/ (1) (00 (12n)))
= (p— Dg(un)

where we used (1.3) (4) in [17]. O

Next we modify Hé(unpoo)’ following the argument in our previous work in
§2.1 [14]. We assume that n is squarefree positive integer with (n, Np) = 1.
For any d and n such that d | n, we define m, 4 : Zp[[Gnp=]] = Zp[[Gap>]]
to be the natural projection. Let ¢ be a prime not dividing npN. By (1.3)
(1) in [17] we have

Wné,n(eé(“nepoo)) = (W — 0y — Uzl)eé(uww) (13)
where oy € Gy~ is the Frobenius automorphism. We put
0 = (10085 ) € ZollGap<]]
0%
and
fg(unpoo) = Z Vn,d(aéc,n) € Zp[[anf’oH (14)

dln

where v, g : Zp[[Gape]] = Zp[[Gnp<]] is the norm map defined similarly as
vy Kk in the proof of Lemma 4.1.
Put Py(z) = 22 — apx + L.

Lemma 4.2. Suppose that ¢ is a prime not dividing npN. Then we have
ﬂ-n&n (gg(unlpoo)) - (_azlpe(a-g))ga:(,unpoo)

where oy € Gppos 15 the Frobenius automorphism.
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Proof. This can be proved by the same method as (7) on page 325 (where we
wrote P)(z) for Py(z)). We give here the computation for the convenience
of readers. First of all, we note that

—o, ' = (=0 ' Pulor) — (ag — o0 — 0, 1)) /(£ = 1) (15)

which can be verified very easily. We have

) = Tt vnta0) + X )

dn dn
= (=) vna(e,) + > vnamaa(0g, )
din dln
= (=1 wvnal=o;"ar,) + Y vmallar—or— oy )ag,)
din din
= (=0, "Pu(00)) > vnalag,)
dn

= (=07 ' Pi00)E5,, 00
where we used (13) to get the third line and (15) to get the fourth line. [J

Suppose that K is a real abelian field with conductor n. We define
§Ii<oo € Zp[[Gal(Ks/Q)]] to be the image of %‘fwwm) under the natural
restriction map. Thus we have constructed an equivariant p-adic L-function
flig,o from modular symbols explicitly.

As in §3, for a prime ¢ in P, we define ny € Z~o by p™||{ — 1. We write
Q(¢) the unique subfield of Q(u¢) such that [Q(¢) : Q] = p™. For any n € N,
we define Q(n) to be the composite field of all Q(¢) for ¢ dividing n. The
conductor of Q(n) is n and we consider Hé(n)m, and Q&mw below.

4.3 Annihilation results in the supersingular case

In this subsection we still assume a, = 0.

We first consider *-local conditions to define 4-Selmer groups, which
was first defined by Kobayashi [9]. Suppose that k/ Q,, is a finite unramified
extension, koo/k the cyclotomic Z,-extension, and k; the i-th layer. We
define E*(k;) (resp. E~(k;)) to be the module consisting of elements x €
E(k;) such that Tr; j11(x) € E(k;) for any even (resp. odd) j with 0 < j <4
where Tr; j11 : E(k;) = E(kj41) is the trace map (see [9] Definition 2.1 and
[4] Definition 2.2).
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Suppose that K/ Q is a finite abelian p-extension which is unramified at
p, and that n € Z~q is squarefree integer which is prime to pN. As in the
previous subsection K; denotes the i-th layer of the cyclotomic Z,-extension
K /K. We define

Sel%, (E/K;) = Ker(Selz» (K;, E[p™]) — @ HY(K;,, E[p™)/E*(K;,)2Q, / Zp)
vlp

and
Selz, (E/Koo) = lim Sel %, (E/K;).
(2

Therefore, the local conditions for Selj;n(E /K ) are relaxed for primes
above n, E*(Ky,) ® Q, / Zp for primes v above p, and E(Kx ) ® Q, / Zy
which is zero otherwise. When n = 1, we simply write Sel®(E/K,) for
Sel%, (B/Koo).-

Put Ak, = 7Z,[[Gal(Ks/Q)]]. Let n be a positive integer which is
prime to pN and a multiple of the conductor of K/Q. We denote by
Sel%, (E/Ks)" the Pontrjagin dual of SelZ, (E/Ku). By a celebrated ar-
gument by Kato [6] and Kobayashi [9], it is known that Sel}n (E/Kw) is
a torsion Ax__-module. We also know by Kataoka [4] Theorem 5.8 that
the projective dimension of Sel%, (E/K.)" is < 1 over Ag_. Consider the
Fitting ideal of the +-Selmer groups (for the definition of Fitting ideal, see
19)).

Theorem 4.3. Suppose that K/ Q is a finite abelian p-extension with con-
ductor n that is prime to pN. We also assume that E satisfies a, = 0 and
pt =0 (resp. p= =0). Then we have £ € Fitta,_ (Selfn(E/Kox)Y)
(resp. & € Fittp,  (Selzn(E/Kx)Y)).

Proof. This can be proved by the same method as Theorem 6 (1) in our
previous paper [14]. We have an exact sequence

0 — SelFn(E/Koo) — Hpupn (Koo, E[p™]) — €D H' (Kou®Qy, E[p™])/Le — 0
LpN

where Ly = @, E(Koo,w)®Q, / Zp = 0if £ divides N, and Ly, = @, B (Koo,0)®
Q, / Zp. The surjectivity of the third map follows from [4] Proposition 5.6.
We also note that H}_.np ~ (Koo, E[p°°]) is isomorphic to the étale cohomology
group H}y(Spec O, [1/npN], E[p™]).

Put G = Gal(K/Q) and regard it as a subgroup of Gal(K/Q). For
a subgroup H of G, let F' be the fixed subfield of K by H. Then taking
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the H-invariant part of the above exact sequence and comparing it with the
same exact sequence for F,, we have an isomorphism

Sel%, (E/Fs) — Selx, (F/Koo). (16)

Put X?Eoo = Sel5,.(E/Kx)" and leﬁoo = Sel%,(E/Fx)" in this proof.
Note that n is not necessarily the conductor of F'/ Q.
By [4] Proposition 5.6, we have an exact sequence

0 — Sel*(E/Fs) — Selz.(E/F) — ) H' (Fo, E[p™]) — 0.

v|n

Let T, = T,(E) be the Tate module. For a prime v of Fi, dividing n we con-
sider the maximal unramified extension Fi , nr and I'y = Gal(Foo v nr/ Foo,w)
which is isomorphic to [], p Zg since n is prime to p. Since primes dividing
n are good reduction primes, the inertia group of v acts trivially on 7}, and
we regard T}, as a I',-module. Taking the dual of the above exact sequence,
we have an exact sequence

0— PT)' — X5 — Sel*(E/F)” — 0. (17)

vln

Since (T;,)'v is Z,-torsion free and Sel™(E/F..)Y has no non-trivial finite
submodule by Kitajima and Otsuki [8] Theorem 1.3, X;EOO also has no non-
trivial finite submodule (this fact also follows from the projective dimension
of X?,EOO <1 by Kataoka [4] Theorem 5.8).

Let ¢ be any character of G. For any Z,[G]-module M we denote by
My the y-quotient My = M @y (q) Oy where Oy = Z,[Image 9] on which
G acts via v,

Lemma 4.4. For any character ¢ of G, (Xfig,o)zb has no non-trivial finite
submodule.

Proof. Let H be the kernel of ¥, and F' the subfield of K corresponding
to H. So 1 is a faithful character of G/H = Gal(F/ Q) which is a cyclic
p-group. We use the notation X?,EOO above.

By the above isomorphism (16) we have

(Xic v = (X5 )

where X?EOO = Seljin(E /Ks)V. Note that n is not necessarily the conductor

of F/Q.
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We first assume H # G. Let F’ be the subfield of F such that [F : F'| =
p- Put Np/pr = Xscqai(r/r)0, which we regard as an element of 7,[G/H].
Then Oy = Zp|G/H]/(Np/pr). Let o be a generator of Gal(F/F"). Then

o — 1 induces a homomorphism
o1 (X} )y = X7/ (Npypr) — X

This homomorphism is injective because H'(Gal(F/F’ ),Xio) = 0. Also,
since Xﬁfm has no non-trivial finite submodule as we saw before Lemma 4.4,
the above injective homomorphism shows that (X??m)w also has no non-
trivial finite submodule.

In the case H = G, v has to be the trivial character and (Xli(oo)¢ o~

<X5 ) which has no non-trivial finite submodule as we explained before
Lemma 4.4. [

Put Ay = Ak ®7,1q) Op =~ Oy[[Gal(K/K)]] for a character ¢ of G.
We write ¥k : Ak, — Ay for the ring homomorphism induced by .

Lemma 4.5. We have ¢k __ (fli{oo) € FittAm((X[jEN)w) for any character
of G.

Proof. Let H be the kernel of ¢ as above, F' the subfield corresponding to
H, mg /r. * Ak, — Ap, the restriction map, and Yr,_ : Ap, — Ay
the ring homomorphism induced by 1. We denote by u(1)) the product of
primes dividing n, that are unramified in F'. Then Lemma 4.2 implies that

Vi (€5.) = Vi (ks (§55)) = Ve ([ (=07 ' Peloe)br (€.)-
Lu(tp)
The construction of the p-adic L-function £, in (14) shows that ¢z, (52500) =
VE, (Oio), so we get
Vi (ic) = Ve ([ (o7 " Pulon)r (OF,). (18)
Clu(t))

On the other hand, by the isomorphism (16) we have (X?Eoo)w = (Xio)w.
Lemma 4.4 implies that

Fitta,, (Xj )w) = Fitta, (Xf)y) = chara, (X5 )w) (19)

where the right hand side means the characteristic ideal.
We take 1-quotients of the exact sequence (17). If a rational prime
¢ dividing n is ramified in F, (@vw(Tp)F”)w is finite. If ¢ divides u(¢),
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namely ¢ is unramified in F', then charAw((@vw(Tp)F”)w) = (Yr. (Pi(or)))
where Py(z) is the polynomial defined just before Lemma 4.2 in the previous
subsection.

By an argument due to Kato and Kobayashi we know that g (92500) is
in charp w((Seli(E /Fx)Y)y), which we will explain briefly in the following.
Put HY (Fa ) = liinHl(Fi,v,Tp(E)) for a prime v of F, above p. Let
H] (Fx,) C H'(Fx,) be the exact annihilator of E*(Fu,) ® Q,/Zy C
HY(Fy ., E[p™]) with respect to the Tate pairing, Sely(E/Fx) the kernel of
Se=(E/ Fie) = @y B (Frc) © Qy | Zys Hyy(Fuc) = lim Hb, (F, Ty(E)).
Then by definitions and global duality theorem we have an exact sequence

1
HY, (Foo) —5 @D H (Fooyw) /HA (Foow) — Sel(E/Fuo)¥ — Selo(E/Fa)” — 0.
vlp

(20)

There exists Kato’s zeta element zp _ € Hlfp(Foo) and Coleman homomor-

phisms

Col* : DH" (Foow) /HL(Faow) — Ay,
vlp

which are bijective in our setting (see Kataoka [4] Theorem 4.26) such that
Col*(locy(2r,.)) = 91?00 by Kataoka [4] Theorem 6.9. Let M be the cokernel
of locy, in (20). Then, putting Z to be the submodule generated by zr,_, we
have an exact sequence

(Y (Fao)/Z)y — Ay (br (0F) — My — 0.

Since wFoo(Qio) # 0, the first map is injective. Therefore, by (20) and the
above exact sequence we have

chary, (Selo(E/Fso)")y chary, My
= chary,, (Selo(E/Foo)v)¢(charAw (Hxp (Foo)/Z)y)  r., (92500)
C chary,, Sel*(E/Fx)".

Applying Theorem 12.5 (4) in Kato [6] for the modular form fg twisted
by % where fg is the modular form corresponding to E, we know that
charp ,(H}, (Fxo)/Z)y C chary, (Selg(E/Fx)Y ). Therefore, using the above
inclusion, we have

¥r,. (05 ) € chary, Sel* (E/Fi)". (21)

It follows from (17), (18), (19), (21) that ¢k (&) € Fitta, (Xi_)y). O
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We go back to the proof of Theorem 4.3. Suppose that u™ = 0. Then
there is a coefficient of 9600 € Ag_ = Zp[[T]] which is not divisible by p.
Then by the construction of Hli{m and (1.3) (1) in [17], there is a coefficient of
0% € Ak, = Zp[G][[T]] which is not divisible by p. Thus for any character
1 of G, the p-invariant of ¢p,_ (0?00) is zero. Therefore, the p-invariant of
(HY,(Fx)/Z)y is zero. By Kato [6] Theorem 12.5 (4) the p-invariant of
(Selg(E/Fs)Y)y is also zero, which implies the vanishing of the p-invariant
of (Sel*(E/Fs)V)y. Therefore, applying Lemma 4.1 in [10] for example, we
obtain 5}00 € Fitta, (X;goo) from Lemma 4.5.

The same proof works in the case 4~ = 0. This completes the proof of
Theorem 4.3. O

Remark 4.6. (1) It is conjectured that Fitty, (Selin (E/Ky)Y) is gener-
ated by fii(oo. The main conjecture for Q. / Q, namely char(Sel*(E/ Q.,)Y) =
(9600), implies this conjecture.

(2) We cannot apply Theorem 1.5 in Kataoka [4] to show Theorem 4.3 be-
cause he assumes E(Qy)[p] = 0 for primes dividing the conductor n of K/Q
in Theorem 1.5 (a) in [4].

Theorem 4.3 implies the following.

Theorem 4.7. Let K be as in Theorem 4.5.

(1) If p* =0 (resp. = =0), then 0 (resp. O ) annihilates Sel* (E/K;)¥
(resp. Sel™ (E/K;)V) for any i > 0.

(2) Suppose that ut =0 or u= = 0. Then Ok annihilates Sel(E/K)V.
Proof. (1) This can be proved by the same method as Theorem 8 in our
previous paper [14] which treats the ordinary case. We prove the state-
ment for +. The statement for — can be proved by the same method. If
pt = 0, then by Theorem 4.3, & annihilates Sel™ (E/Ky)". We can
show that 0};00 annihilates Sel™ (E/K )" by induction on [K : Q]. In fact,
9;00 is in Anny,,_ Sel*(E/Ku)Y for any subfield F C K by induction on
[K : Q], which implies VKOO/FOC(QFOO) € Anny, Sel™(E/Ky)Y. By the
construction of 5}00, we know that f}gm — (9;;00 is a linear combination of
(VKoo) Fw(@}m)) rck where F' runs over all subfields of K with FF C K. It
follows from £ € Anny,._ Sel*(E/Ky)" that

9;}00 € Amny,_ Sel™(E/Ku)".

Since E(K)[p] = 0, the natural map Sel*(E/K;) — Sel*(E/K.) is
injective. So the dual of this map is surjective. Therefore, 0}00 annihilates
Selt(E/K;)V.
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(2) Using Lemma 4.1, we know that the image of 9;?00 in 7,[Gal(K/ Q)]
is ufi for some unit v € 7,[Gal(K/Q)]*. Therefore, the injectivity of
Sel(E/K) — Sel*(E/Ky) and 03 € Anny,_ Sel*(E/Ky)" imply 0k €
Sel(E/K)Y. O

4.4 Euler systems of Gauss sum type in the supersingular
case

We continue to assume a, = 0 in this subsection. We also assume pt=0
by which we mean pu™ = 0 or 4~ = 0. In this and the next subsections
we prove several statements on the objects with £, which mean that if we
assume pu = 0, then the statements on the objects with + hold, and if we
assume u~ = 0, then the statements on the objects with — hold.

In this subsection we construct Euler systems of Gauss sum type in the
case ap = 0. Concerning the ordinary case, see our previous papers [14] §3
and [13] §§6, 7.

We defined the set P of prime numbers for m € Z- in the beginning
of §2.1. For any number field F', we define

P (F) = {¢ € P™ | ¢ splits completely in F}.
If /is in P(m)(F) and v is a prime of F' above £, we have
HY(F,, E[p™)/(B(F,)QL [p™) =~ E(F,)[p™](-1) = E(Fo)[p™|(~-1) =~ Z /p™

For any £ € P we define

Hi(F) = D H' (F, E™)/(E(F) @ Z /™) ~ D E(F)p™](-1). (22)

vl|l v|l

The notation HZ(F) comes from the second local cohomology with support
(cf. Milne [18] II §1). For a finite abelian extension F/Q we put Rp =
7 /p"[Gal(F/ Q)]. For £ € PU™(F) we fix a prime v of F' above ¢ and a
generator t, € E(F,)[p™](—1) ~ Z /p™, and take an element t; p € H7(F)
whose v component is t, and whose other components are zero. Then H3(F)
is a free Rp-module of rank 1 with basis t,. When F/ C F and £ € P(™)(F),
we always take the prime v of F' below v and define ¢,/ such that the
image of tg p in HZ(F') is top.

Let K/ Q be a finite abelian p-extension which is unramified at p, and K;
the i-th layer of the cyclotomic Zy-extension K, /K. For a p-adic prime v of
K; with i € Z~o, Ei(Km) is defined in the previous subsection. For i = 0,
namely for Ko = K, we define E*(Ky,) = E(Ko,). Note that for a prime
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v of K; with ¢ > 0, E(Ky,) C Ei(Kw). As in the previous subsection, we
define Sel* (E/K;) to be the kernel of the natural map from H},(K;, E[p™])
to D, HY (K, E[p™))/(E*(K;y) ® Q, / Zp) for any i > 0. When i = 0,
Sel*(E/K) = Sel(E/K) by definition.

For any m > 0 we define Lfv’m to be the inverse image of E¥(K;,) ®
Q, / Zp under E(K;,)/p™ — E(K;,) ® Q, / Zp, and define Sel*(K;, E[p™])
by

Sel™ (K, E[p™]) = Kex(Sel(K;, E[p™]) — €D H' (Kiv, Ep™)/ L, ,0)-
vlp

Since E(Q)[p] = 0, we get E(K;)[p] = 0, which implies that Sel® (K, E[p™])
coincides with the kernel of the multiplication by p™ on Sel*(E/K;).

Put T, = T,(E). Let H}(K;.,T,) C HY(K;,,Tp) be the exact anni-
hilator of E*(K;,) ® Q, /Zy in H'(K;,, E[p™]) with respect to the Tate
pairing. We define H>  to be the image of H}(K;,,T,) under the map

i,0,m
HY(K;, Ty) — H' (K, E[p™]). So H,, C H'(K;,, E[p™]) is the exact
annihilator of L7::|,:’U,m in H'(K;,, E[p™]). We define Hz, (K;, E[p™]) by

Hy, (K, Blp™)) = Ker(Hp, (K, Elp™]) — @ H' (Ko, EP™)/Hf,

z,v,m)‘
vlp

For any squarefree positive integer n which is prime to p, we also define
Hy (K, E[p™]) = Ker(Hpu (Ki, Ep™]) — €@ H' (Kiw, E[p™))/HY, ,0)-
vlp

Note that for ¢ = 0, we know Liv’m = FE(K,)®Z/p™, so H}E(K’ E[p™)) =
Selzn (K, E[p™]).
By global duality theorem (see [16] Theorem 2.3.4) we get

Lemma 4.8. The sequence

0 — HE, (K, Elp™) — Hy (Ki, Elp™]) — @D () — Se=(K, E[p™])"
£n

15 exact.

We will define an element g;° € Selz« (K, E[p™]).
As in the proof of Theorem 4.3 (see (20)) we put HY, (Koo ) = liin Hyo (K, Ty(E)),

H! (Koo) = lim H' (K0, Ty(E)), and Hi (Koo,w) = lim Hi (K, Ty(E)).
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Then Kato’s zeta element zx_ goes to 0[3200 by the homomorphism

Col* oloc, : Hiy(Koo) — @D H (Koow) /HL (Kaow) — Ak,
vlp
as we mentioned in the proof of Theorem 4.3. Since 9;2 is a non-zero

divisor and HY,(K«) is Zpy-torsion free, the above mapwH}_-p(Koo) —
D.» H! (K )/HL (Ko ) is injective, which implies that liin H]l_—i(Ki, T,(E)) =

0. Also, since Sel* (E/Ky)" is a free Z,-module of finite rank by our as-
sumption u*t = 0 as we explained in the proof of Theorem 4.3, we have
lim Hy, (K;, E[p™]) = 0. Therefore, we can take i > 0 such that the core-
%

striction map Hz, (K;, E[p™]) = H, (K, E[p™]) is the zero map.

For a prime £ € PU(K;), we will define g;° € Sel (K, E[p™]) using the
method of Lemma 6.9 in [13]. By Lemma 4.8 we have an exact sequence
0 — Hb, (0 Elp™) — Hby (5 Bp™]) 25 M) 2 Sel* (K, Ep™))”
where we named the third map and the fourth map 9, and \,.
Lemma 4.9. We take K; such that H}i(Ki,E[pm]) — H}i(K,E[pm]) is
the zero map. Suppose that two elements g, ¢’ in H]l__,Z (K;, E[p™]) satisfy

ke

9i(g) = 9e(g'). Then we have Corg, /i (g) = Corg,/k(g") where Corg, / :
H]l_.i(Ki,E[pm]) — H]l_.i(K,E[pm]) = Selz (K, E[p™]) is the corestriction
map.
Proof. In fact, g — ¢ is in the kernel of 9, so in Hjl_-i (K;, E[p™]). Therefore,
Corg, k(g — ¢') = 0, which implies Corg, /i (g9) = Corg, /x(g')- O

We define u+ € Zy[Gal(K/ Q)] by uy = op+0, ' and u_ = (p—1). They
are units in Z,[Gal(/K/ Q)] and we regard them as units in 7, [Gal(K;/ Q)] =
Zp|Gal(K/Q)][Gal(K,;/K)]. Since

Ae((us) 0% _ter,) = (ux) 0% Ne(tek,) =0

in Sel*(K;, E[p™])" by Theorem 4.7 (1), there is §;° € HJI_.i(KZ-, E[p™]) such

that 8@(9}) = (ui)*lﬁim tr, i, by the above exact sequence. We define
i = Corr,(G7) € Hyy (K, E[p™]) = Sel e (K, E[p™)).  (23)

Then gétK does not depend on the choice of g} IS Hjlre (K;, E[p™]) by Lemma
’ +

4.9. When no confusion arises, we write gét for gEEK.
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For any finite abelian p-extension K/ Q which is unramified at p, we take
minimal ¢ such that Hlfi (K;, E[p™]) — HJl’i (K, E[p™]) is the zero map, and
define the subset P (K) of P (K) by P (K)' = P"™(K).
Proposition 4.10. Suppose that K/ Q is a finite abelian p-extension which

is unramified at p, and that £ € P (K)'.
(1) For gZK € Selr¢ (K, E[p™]) we have

0@(92[;() = Oktor € Hi(K) = Rpto

where 9y is the natural map Sel (K, E[p™]) — H2(K).
(2) For any subfield F C K we can define g7 € Selz(F, E[p™]) using F;
similarly. Then denoting the conductor of Kand F by nx and ng, we have

COYK/F(QZK) = ( H (ar — oy — 0;1))92:F
r|(nk /nF)

where r runs over primes which are ramified in K and unramified in F, and
oy 1s the Frobenius automorphism.

Proof. (1) By definition we have

009y ) = (ux) 05 _to = (us) ' mr i (Oro ok

Therefore, Proposition 4.10 (1) follows from Lemma 4.1.
(2) Suppose that H}_-i(Ki,E[pm]) — HJI-} (K, E[p™]) is the zero map. First
of all, since E(F;)[p] = 0, the restriction maps H (Fj, E[p™]) — Hz, (K;, E[p™])
with 7 =4, 0 are both injective. So the corestriction map H}_-i (Fi, E[p™]) —
Hz, (F, E[p™]) is also the zero map, and we can define gZF as CorFi/F@ZFi),
using g;tFi such that 86@2&&) = (ui)*lﬁfwt&Fi.

We write §fKi for g;t which was used as Corg,, K(g;f) = g¢,x When we
defined g/ g. Since

MTKeo/Foo (eli(oo) = ( H (ar — o — ‘7;1))9}%00
rl(nk/nr)
by (1.3) (1) in [17], we have
0u(Core,yr, (Gr k) = 0[] (ar —0v =07 )i p)-
rl(nk /nr)

It follows from Lemma 4.9 applying to F;/F with two elements Corg, /5, ( ggtKi)

and ([, /np) (ar—ar—ar_l))gfﬂ_ that we get the conclusion of Proposition
4.10 (2). 0
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Proposition 4.10 (2) means that (g, r)rck forms an Euler system. We
have to note that this is a finite family unlike usual Euler systems, and
several arguments in [24] cannot be applied.

4.5 Kolyvagin derivatives and systems of Gauss sum type in
the supersingular case

In this subsection we first construct Kolyvagin derivatives by a standard
method.

Let n be an integer in V™) and consider the abelian p-extension Q(n)/ Q
which was defined in the end of §4.2. For Q(n) and ¢ € P(™(Q(n))’, we
constructed gZQ(n) € Selr¢(K, E[p™]) in Proposition 4.10.

For a prime r € P(™), we put G, = Gal(Q(r)/ Q). We defined n, € Z-o
in the end of §4.2, which can be regarded as p™ = [Q(r) : Q]. For n € N'(™),
we define G,, = Gal(Q(n)/ Q). Recall that we fixed a generator g, of F) for
each prime r € P when we defined log in (2). We take a generator 7, of
G, ~ F, corresponding to the generator g, of F, and define

N, = fZ)il 7'72' €z[G:], D,= f:(n)il 2'7'7? € Z[G:],

Ny, = Hr|n Ny € Z[gn]a D, = Hr|n D, € Z[gn]
as usual.

Lemma 4.11. For n € N we have

DnQZ:Q(n) € Sel ¢ (Q(n), E[pm])gn‘

Proof. For any r dividing n, since 7 is a good reduction prime, r is unramified
in Q(E[p™]). The action of the Frobenius automorphism o, on E[p™] is of

the form < > since E(F,)[p™] ~ 7 /p™ and the determinant is r = 1

1 =

0 1

(mod p™). Thus a, = 2 (mod p™). Therefore, o, — 1 divides a, — o, — o}
in 7 /p™[Gal(Q(n/r)/ Q)]. Using this divisibility and a well-known formula
D, (1, — 1) = p"™ — N,, we have

Dngg(@(n) € Sel}'ﬁ (Q(n)v E[pm])gn

by the argument of Lemma 2.1 in Rubin [22]. O
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Lemma 4.12. Suppose that p does not divide Tam(FE), and nl € N,
Then the natural homomorphism

Sel 2t (Q, E[p™)) — Sel zue (Q(n), E[p™])%
1s bijective.

Proof. This can be proved by the same method as Lemma 2 on page 338 in
our previous paper [14]. This lemma follows from the commutative diagram

0 —  Selpe(QERP™) —  Hhuw(@QERPT) — @y HHQ)

|

0 — Selpae(Qn), Ep™))%  — Hiwoon (Q), EP™))9  — @yn HE Q)"

In fact, H%(Q, E[p™]) = 0 implies the bijectivity of the middle vertical ar-
row. For £ | N, our assumption p { Tam(E) implies that H2(Q) — HZ(Q(n))
is injective (see Greenberg [3] §3). For ¢ = p, the Pontrjagin dual of
Hp(Q) — Hp(Q(n)) is D, B(Q(n)y)/p™ — E(Q,)/p™. Since a, = 0,
E(Q(n)y)/p™ is E’(m@(n)v)/pm where E is the formal group associated to
E and mgy), is the maximal ideal of the ring of integers of Q(n),. Since

Q(n)y/ Q, is unramified, the norm map E(mQ(n)v) — E(p7,) is surjective.
Thus the right vertical arrow is injective, which implies that the left vertical
arrow is bijective. O

Recall that we defined 5™ € 7 /p™ in (7). By definition, 5™ mod p is
.

Proposition 4.13. There exists a unique element f@ffé € Selz.(Q, E[p™])

whose image in Sel rne(Q(n), E[p™]) is Dngzk(@(n). We have

el p) = (=1)"5t0g

where Oy : Selpne(Q, E[p™]) — HZ(Q) = (Z /p™)teg is the natural map.

Proof. The existence of /aig follows from Lemmas 4.11 and 4.12.

Suppose that n = ry - ... - r,. Using D,(7, — 1) = p" — N,, (1.3) (1) in
[17], and the fact that o, — 1 divides a, — o, — 0, !, we can show by induction
on v(n) that fg,) can be written as

t
Ogwm) = c[[ (7 — 1) mod (™, (1, — 1%, ..., (7, — 1)?) (24)
=1
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for some ¢ € 7 /p™ (see [11] Lemma 4.4). We regard fg,) as a polynomial

in 7,,...,7,, and take of both sides of the above formula. Then

Try Tri

> 1o, (@) = 60 €z /p™
a=1

ln

we get

(am)=1

since gy, is the image of fg(,,) in (11) under the natural restriction map.
We take D, of (24) to get

Dybgmy = (—1)""N60™ € 7 /p™(Gy]

using D, (7, — 1) = p" — N,.. Therefore, the above equation together with
the commutative diagram

Selrne(Q, Ep™]) % HAQ)~7Z/p™

| | ™

Sel e (Q(n), Ep™) 25 H2(Q(n)) = Z /p™(Gn]

shows that the image of &=, in HZ(Q(n)) is (—1)”(”)Nn(5£m)tg7(@(n). Since
the right vertical arrow which is the multiplication by N, is injective, this
implies the conclusion. O

As in [14], if n € N has a factorization m = 7y - ... - r; such that
rig1 € PU(Q(ry-...-my)) forall i = 1,...,t — 1, we say m is admissible (we do
not impose the condition r; < ... < r). By the same method as Proposition
7.15 in [13] and Proposition 6.13 in [12], we get the following.

Proposition 4.14. Ifn € N is admissible, the Kolyvagin derivative /*iig
in Proposition 4.13 is in Sel z (Q, [p™]) (this group is defined in §2.1).

Remark 4.15. (1) It is very certain and conjectured that the assump-
tion of the admissibility is not needed. More precisely, we conjecture the
existence of an element rn ¢ € Selz (Q, [p™]) which satisfy Oy(kne) =
(—1 )”(”)&m)tg,(@ for any nt € N

(2) The Kolyvagin system of Gauss sum type is a system of elements in
Sel ]_-(n)z((@, E[p™]). These k¢ satisfy interesting properties, but we do not
study them in this paper because we do not use them here (see 4 properties
in Proposition 2 on page 341 in [14] and Proposition 7.16 in [13]).
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4.6 Proof of injectivity theorems

We first prove Theorem 2.1. If E has ordinary reduction at p, this was
proved in Corollary 2 on page 342 in [14]. So we consider the case a, = 0.
We use Proposition 5.16 in our previous paper [13], which holds in our
setting without changing the proof in [13]. Let P(™)(Q(n))’ = P (Q(n);)
be the set of primes defined before Proposition 4.10 for K = Q(n). Let x be
any element in Sel(Q, E[p™])". We take y € H}.,,v (Q, E[p™])" whose image
under the natural map is . Then by Proposition 5.16 in [13] we can take ¢ €
plm) (Q(n))" such that \(t, Q) =y where \} : Hg Q) — H}:npN(Q7E[pm])v
is the dual of the natural map H ]_.npN (Q, E[p™]) — HY(Fe, E[p™]) = E(F¢)/p™
of étale cohomology groups. Let

Aot HF(Q) — Selza (Q, Ep™))Y

denote the dual of the natural map 3¢ : Sel(Q, E[p™]) — E(F,)/p™. Then
Me(te,0) = . By Lemma 4.8 we have an exact sequence

Selyne (Q, E[p™]) =87 P H:(Q Y sel(@, Ep™)Y (25)

riné

where we named the maps 0,y and A,y which consist of the natural maps
O : Selzne (Q, E[p™]) — H2(Q) and A, : H2(Q) — Sel(Q, E[p™])Y for r | n,
respectively. Since fiie satisfies 8@(%&73) = (—1)”(")57([”)1547@ by Proposition
4.13, the above exact sequence gives

(1" M5 No(teg) + Y Ar(De(kE,)) = 0.

rln

Suppose that 57(1171) = 0, # 0 (mod p). Then 6,(1m) is a unit. The above
equation and A\(t;g) = « imply

z = (=1 E) TS N (9l ,)

rln

This shows that

= (A) : HHQ) — Sel(Q, E[p™])"

rin

is surjective. Taking the dual, we obtain that 75 : Sel(Q, E[p™]) —
@r‘n E(F,)/p™ is injective.
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Next we prove Theorem 2.3. If p is a good ordinary prime, we assume
that the cyclotomic p-invariant is zero. If p is a good supersingular prime,
we assume that u™ = 0 or u~ = 0. Suppose that n is admissible.

For any z € Selz»(Q, E[p™])V, we can take £ € P (Q(n))" such that
Me(te,p) = x by Proposition 5.16 in [13] and the above argument in the
proof of Theorem 2.1. By Proposition 2 in §3.4 in [14] (ordinary case)
and by Propositions 4.13, 4.14 (supersingular case), there is an element
Kne € Sel]_-(n)e(Q,E[pm]) such that Op(kne) = uégm)t&@ with some unit
u € (Z/p™)*. Instead of the exact sequence (25), we use a sequence

el (@ Elp™) "8 @A 8 Selp (@ ER™)Y (26)

rinf

which is exact by global duality theorem ([16] Theorem 2.3.4). Since n is
admissible, k¢ is in Sel]_.(n)e(Q,E[pm]). Therefore, the argument in the
proof of Theorem 2.1 implies that if §,, # 0 in F,,

An = (0) : D HHQ) — Selr(Q, E[p™)”

rln

is surjective. Therefore, taking the daul, we get the injectivity of the homo-
morphism

Selzn (Q, Ep™]) — ED E(F,)/p" = B H" Q. E[p™)/H}\ (Qu, E[p™)).

rln rln

Thus we obtain Selr,,)(Q, E[p™]) = 0.
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