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Abstract.
To each finitely presented module M over a commutative ring R

one can associate an R-ideal FittR(M), which is called the (zeroth)
Fitting ideal of M over R. This is of interest because it is always
contained in the R-annihilator AnnR(M) of M , but is often much
easier to compute. This notion has recently been generalised to that
of so-called ‘Fitting invariants’ over certain noncommutative rings;
the present author considered the case in which R is an o-order Λ
in a finite dimensional separable algebra, where o is an integrally
closed commutative noetherian complete local domain. This article
is a survey of known results and open problems in this context. In
particular, we investigate the behaviour of Fitting invariants under
direct sums. In the appendix, we present a new approach to Fitting
invariants via Morita equivalence.

§1. Introduction

Let R be a commutative unitary ring and let M be a finitely pre-
sented R-module. This means that there is an exact sequence

(1) Ra h−→ Rb −→M −→ 0,

where a and b are positive integers. In other words, the module M is
finitely generated and there is a finite number of relations between the
generators. This information is incorporated in the a×b matrix h. Note
that every finitely generated module over a noetherian ring is indeed
finitely presented.
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Suppose that a ≥ b. Then the (zeroth) Fitting ideal of M over R is
defined to be the R-ideal generated by all b× b minors of the matrix h:

FittR(M) := 〈det(H) | H ∈ Sb(h)〉R,

where Sb(h) denotes the set of all b × b submatrices of h. In the case
a < b one simply puts FittR(M) := 0. This notion was introduced by
the German mathematician Hans Fitting [Fit36] who showed that it is
in fact independent of the chosen finite presentation h. Fitting was a
student of Emmy Noether and is also famous for his contributions to
group theory.

Fitting ideals became an important tool in commutative algebra. A
key property is that the Fitting ideal of M is always contained in the
R-annihilator ideal of M , but in many cases is much easier to com-
pute. For instance, it behaves well under epimorphisms, certain exact
sequences, and direct sums of R-modules: if M and N are two finitely
presented R-modules, then one has an equality

(2) FittR(M ⊕N) = FittR(M) · FittR(N).

For a full account of the theory, we refer the reader to [Nor76].
Fitting ideals have many applications in number theory. We give

two typical examples. If L/K is a finite Galois extension of number
fields with Galois group G, then the class group clL of L has a natural
structure as a module over the group ring Z[G]. If p is a prime then the
p-part Zp ⊗Z clL of the class group is a module over the p-adic group
ring Zp[G].

Now assume that p is odd and that L/K is a CM-extension. If
G is abelian then Greither [Gre07] has computed the Fitting ideal of
the Pontryagin dual of the minus part of Zp ⊗Z clL via the equivari-
ant Tamagawa number conjecture. This gives strong evidence for a
conjecture of Brumer that asserts that certain ‘Stickelberger elements’
(constructed from values at zero of Artin L-functions attached to the
irreducible characters of G) annihilate the class group.

Fitting ideals also appear in Iwasawa theory. The formulation and
the proof of the (classical) main conjecture for totally real fields by
Wiles [Wil90] makes heavy use of the close relation between character-
istic ideals and Fitting ideals of Iwasawa modules.

Fitting ideals of arithmetic objects are also interesting in their own
right. Kurihara and Miura [KM11] showed that (away from the 2-pri-
mary part) the Fitting ideal of the minus class group of an absolutely
abelian imaginary number field coincides with the Stickelberger ideal (as
conjectured by Kurihara [Kur03]). This gives the precise arithmetical
interpretation of the latter ideal.
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As Galois groups are in general non-abelian, it is natural to ask
whether analogous invariants can be defined for modules over noncom-
mutative rings such as p-adic group rings. Grime considered several cases
in his PhD thesis [Gri02], including matrix rings over commutative rings.
We will describe an approach to noncommutative Fitting invariants over
rings that are Morita equivalent to a commutative ring in the appendix.
This is essentially a generalisation of Grime’s approach (and of [JN13,
§2]). Parker has treated the case of p-adic group rings in his PhD thesis
[Par07] under the (for applications sometimes too restrictive) hypothesis
that one can choose a = b in (1).

Now let o be an integrally closed commutative noetherian complete
local domain with field of quotients F . Let Λ be an o-order in a finite
dimensional separable algebra A over F . We will call such an order a
Fitting order over o. A standard example is that of p-adic group rings
Zp[G] where p is a prime and G is a finite group. The Iwasawa algebra
ZpJGK of a one-dimensional p-adic Lie group G is a second example.

Let Λ be an arbitrary Fitting order and let M be a finitely presented
Λ-module. In [Nic10] the present author defined the ‘maximal Fitting
invariant’ Fittmax

Λ (M) of M over Λ as an equivalence class of certain
modules over the centre of Λ using reduced norms. If Λ is commuta-
tive then the reduced norm coincides with the usual determinant and
thus this notion is compatible with that of the classical Fitting ideal.
This approach has been studied further by Johnston and the present
author in [JN13]. It has also been applied in number theory to study
the class group and other Galois modules in extensions with arbitrary
Galois groups [Nic11b, Nic13, Nic11a, BS, BMCW18, JN19] (see also
[Nic19] for a survey).

In this article we do not use the notion of ‘Nrd(Λ)-equivalence’ as in
[Nic10]. We essentially follow the alternative approach in [JN13, §3.5]
and define Fitting invariants as a genuine ideal of a certain commutative
ring I(Λ) that contains the centre of Λ and the reduced norms of every
matrix with entries in Λ. As long as we are only interested in annihilation
results, this approach has no disadvantage over the more complicated
notion of Nrd(Λ)-equivalence. The latter is only necessary when one
wishes to relate Fitting invariants to (relative) K-theory.

In order to obtain annihilators from Fittmax
Λ (M) one has to multiply

by a certain ideal in I(Λ) which we call the denominator ideal. In this
article we report on basic properties of noncommutative Fitting invari-
ants and on lower bounds for the denominator ideal. In particular, we
consider the case where Λ is a p-adic group ring. Inspired by [BG03,
Lemma 6] and recent work of Kataoka [Kat], we give a new shorter and
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simpler proof of a proposition in [Nic10] on the behaviour of Fitting in-
variants under Pontryagin duality. Finally, in section §6 we investigate
whether Fitting invariants are additive in the sense of (2) when work-
ing over noncommutative rings. We show that this property does hold
for certain classes of Fitting orders but, perhaps surprisingly, that it
does not hold for non-maximal hereditary Fitting orders over complete
discrete valuation rings.

In the appendix, we present a new approach to Fitting invariants for
unitary rings Λ which are Morita equivalent to a commutative ring. This
generalises [JN13, §2], where the case of matrix rings over commutative
rings is considered.

In many cases we will not provide rigorous proofs. Instead we try
to motivate the results and give many examples.
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Notation and conventions
All rings are assumed to have an identity element and all modules

are assumed to be left modules unless otherwise stated. If Λ is a ring,
we write Mm×n(Λ) for the set of all m × n matrices with entries in Λ.
We denote the group of invertible matrices in Mn×n(Λ) by GLn(Λ) and
let 1n ∈ GLn(Λ) be the n × n identity matrix. Moreover, we let ζ(Λ)
denote the centre of the ring Λ. We shall sometimes abuse notation by
using the symbol ⊕ to denote the direct product of rings or orders.

§2. The commutative case

The material presented in this section originates with Fitting [Fit36].
We refer the reader to [Nor76] and [Eis95, §20] for further details.

Let R be a commutative ring and let M be a finitely presented
R-module. Choose a finite presentation h as in (1) and define

FittR(M) :=

{
0 if a < b
〈det(H) | H ∈ Sb(h)〉R if a ≥ b,
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where we recall that Sb(h) denotes the set of all b× b submatrices of h.
We call FittR(M) the Fitting ideal of M over R.

Theorem 1. Let R be a commutative ring and let M be a finitely
presented R-module. Then FittR(M) is independent of the choice of h
and thus is well-defined.

The idea of the proof is as follows (for a full proof see [Nor76, §3.1]
or [Eis95, §20.2]). Since two ideals are equal if and only if they become
equal in every localisation of R, we can and do assume that R is local.
We choose b′ ∈ N minimal such that there is a surjection Rb′ � M .
Similarly, we choose a′ ∈ N minimal such that there is a finite presenta-
tion

Ra′ h′

−→ Rb′ −→M −→ 0.

It suffices to show that the Fitting ideals coming from h and h′ coincide.
We may view (1) as the truncation of a free resolution F of M . Sim-
ilarly, we may view h′ as a truncation of a minimal free resolution F ′

of M . However, as R is local, every free resolution is isomorphic to the
direct sum of F ′ and a trivial complex (see [Eis95, Theorem 20.2]). In
particular, there are invertible matrices X ∈ GLa(R) and Y ∈ GLb(R)
such that

h ◦X = Y ◦
(

h′ 0 0
0 1 0

)
,

where 1 = 1b−b′ is a (b−b′)×(b−b′) identity matrix. As det(Y ) belongs
to R×, we may assume that Y = 1. By an exercise in linear algebra that
uses the multilinearity of the determinant we may likewise assume that
X = 1. The result now follows easily.

Example 2.1. Let I = 〈r1, . . . , ra〉R be a finitely generated ideal of
R and take M = R/I. Then we have a finite presentation

Ra −→ R −→ R/I −→ 0,

where the first arrow maps the i-th standard basis vector of Ra to ri,
1 ≤ i ≤ a. Thus we have that

FittR(R/I) = I.

Remark 2.2. Let R→ S be a homomorphism of commutative rings.
As taking tensor products is a right exact functor, a finite presentation
(1) of the R-module M yields a finite presentation

Sa −→ Sb −→ S ⊗R M −→ 0
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of S ⊗R M . Fitting ideals therefore commute with base change:

FittS(S ⊗R M) = S ⊗R FittR(M).

Remark 2.3. Let M be a finitely presented R-module with a finite
presentation h as in (1). For each integer i ≥ 0 one can define ‘higher
Fitting ideals’ FittiR(M) of M that are generated by the minors of h of
size b− i. These invariants form an increasing sequence

FittR(M) = Fitt0R(M) ⊆ Fitt1R(M) ⊆ Fitt2R(M) ⊆ . . .

of R-ideals. Moreover, if M can be generated by q elements, then we
have FittqR(M) = R. See [Nor76, §3, Theorem 2] for a proof. If R is
a principal ideal domain, then the higher Fitting ideals FittiR(M) for
all i ≥ 0 determine the R-module M up to isomorphism. This can be
deduced from the structure theorem of finitely generated modules over
principal ideal domains (see [Kur03, §1.1], for instance).

Let us denote the R-annihilator ideal of M by AnnR(M). The main
interest in Fitting ideals comes from the following fact.

Theorem 2. Let R be a commutative ring and let M be a finitely
presented R-module. Then one has an inclusion

FittR(M) ⊆ AnnR(M).

Proof. Choose a finite presentation (1) of M . Let H ∈ Sb(h) be a
submatrix. As M is a homomorphic image of the cokernel of H, we may
assume that h = H and thus a = b. Let H∗ ∈ Mb×b(R) be the adjoint
matrix of H. Then H∗H = HH∗ = det(H)1b and so the result follows
from the commutative diagram

Rb H // Rb

det(H)
��

H∗

xx

// // M

det(H)

��
Rb H // Rb // // M

once one notes that the right vertical arrow is zero. Q.E.D.

Example 2.4. Let R = Z and let M be an arbitrary finitely gen-
erated Z-module. By the fundamental theorem of finitely generated
abelian groups there are unique integers f, n ≥ 0 and positive integers
1 < d1 | d2 | · · · | dn such that

M ' Zf ⊕
n⊕

i=1

Z/diZ.
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If f > 0 then clearly FittZ(M) = 0. If f = 0 we can take for h the
diagonal matrix with entries d1, . . . , dn. It follows that

FittZ(M) =

{
0 if f > 0
(
∏n

i=1 di)Z if f = 0.

Moreover, we clearly have

AnnZ(M) =

{
0 if f > 0
dnZ if f = 0.

In particular, the inclusion FittZ(M) ⊆ AnnZ(M) is proper if and only
if f = 0 and n > 1. Of course, similar observations hold for every
principal ideal domain R.

Example 2.5. Let G be a finite abelian group and let ∆G be the
kernel of the natural augmentation map Z[G]→ Z that sends each g ∈ G
to 1. It is straightforward to show that

AnnZ[G](∆G) = NGZ,

where NG :=
∑

g∈G g (see [Neu11, Satz 1.3]). By Theorem 2 we must
have

FittZ[G](∆G) = mNGZ

for some integer m. We now apply Remark 2.2 with R = Z[G] and
S = Z so that

FittZ(Z⊗Z[G] ∆G) = m|G|Z.

We have isomorphisms of abelian groups Z⊗Z[G]∆G ' ∆G/(∆G)2 ' G
so that

FittZ(Z⊗Z[G] ∆G) = |G|Z

by Example 2.4. It follows that m ∈ Z× and thus

FittZ[G](∆G) = NGZ = AnnZ[G](∆G).

We now record some basic facts about Fitting ideals.

Lemma 2.6. Let R be a commutative ring and let M1, M2, M3 be
finitely presented R-modules.

(i) If π : M1 � M2 is an epimorphism, then FittR(M1) ⊆ FittR(M2).
(ii) Fitting ideals behave well under direct sums:

FittR(M1 ⊕M3) = FittR(M1) · FittR(M3).
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(iii) If M1
ι→M2 →M3 → 0 is an exact sequence, then

FittR(M1) · FittR(M3) ⊆ FittR(M2).

Proof. We only sketch the proof. Let Ra1
h1−→ Rb1 π1−→M1 → 0 be

a finite presentation of M1. Put π2 := π ◦ π1. Then one may construct
a finite presentation

Ra2
(h1|∗)−−−−→ Rb1 π2−→M2 −→ 0

of M2 by adding more relations if necessary. This shows (i). For (iii)
we may therefore assume that ι is injective. Let h1 and h3 be finite
presentations of M1 and M3, respectively. As in the proof of the horse-
shoe lemma (see [Wei94, Lemma 2.2.8], for instance) one can construct
a finite presentation h2 of M2 of shape(

h1 g
0 h3

)
.

If M2 = M1 ⊕M3 one may additionally assume that g = 0. From this
one can deduce (ii) and (iii). Q.E.D.

Example 2.7. Let I1, . . . , In be finitely generated ideals of R. Then
it follows from Example 2.1 and Lemma 2.6(ii) that

FittR

 n⊕
j=1

R/Ij

 =

n∏
j=1

Ij .

Example 2.8. Let p be a prime and let R = ZpJT K be the power
series ring in one variable over Zp. Let M be a finitely generated torsion
R-module. Then by the structure theorem for Iwasawa modules [NSW08,
Theorem 5.3.8] there is a pseudo-isomorphism

α : M −→
s⊕

i=1

R/pmi ⊕
t⊕

j=1

R/F
nj

j ,

where s, t ≥ 0, mi, nj ≥ 1 are integers and the Fj are distinguished
irreducible polynomials. This means in particular that α becomes an
isomorphism in every localisation of R at a prime ideal of height 1. The
characteristic ideal CharR(M) of M is defined to be the R-ideal generated
by

∏s
i=1 p

mi ·
∏t

j=1 F
nj

j .
Now assume that M contains no finite non-trivial submodule (that

is α is injective). Then the projective dimension of M is at most 1 by
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[NSW08, Proposition 5.3.19(i)]. Since R is a local ring, every projective
R-module is free and so there is a short exact sequence

0 −→ Ra −→ Ra −→M −→ 0.

It follows that FittR(M) is a principal ideal. Since two principal ideals
over R are equal if and only if they become equal in every localisation of
R at a height 1 prime ideal, we have that

FittR(M) = CharR(M)

in this case (see [Kur12, Lemma 9.1], for instance).

§3. Noncommutative Fitting invariants: Basic properties

3.1. Fitting domains and Fitting orders
We now introduce the class of rings for which we intend to define

Fitting invariants. We recall that an F -algebra A over a field F is called
separable if E ⊗F A is a semisimple E-algebra for every field extension
E of F . If F is a perfect field, then every finite dimensional semisimple
F -algebra is indeed separable (as follows from [CR81, Corollary 7.6]).

Definition 3.1. Let o be an integrally closed commutative noether-
ian complete local domain with field of quotients F . Then we call o a
Fitting domain. Let A be a finite dimensional separable F -algebra and
let Λ be an o-order in A. Then Λ is called a Fitting order over o.

Remark 3.2. Let Λ be a Fitting order over the Fitting domain o.
Then Λ is noetherian and so every finitely generated Λ-module is in fact
finitely presented.

Example 3.3. Any complete discrete valuation ring o is a Fitting
domain. Conversely, any Fitting domain of Krull dimension 1 is a
complete discrete valuation ring.

Example 3.4. For any Fitting domain o and any positive integer
n, the ring Mn×n(o) is a Fitting order over o.

Example 3.5. Let p be a prime and let G be a finite group. Then
the ring of p-adic integers Zp is a Fitting domain and the group ring
Zp[G] is a Fitting order over Zp.

Example 3.6. More generally, let o be an arbitrary Fitting domain
with field of quotients F and let G be a finite group. Then an o-order Λ
in A := F [G] is a Fitting order over o if and only if |G| is invertible in
F .
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Example 3.7. Let G be a profinite group containing a finite normal
subgroup H such that G/H ' Γ, where Γ is a pro-p group isomorphic to
Zp. Note that G can be written as a semi-direct product H o Γ and is
a one-dimensional p-adic Lie group. The Iwasawa algebra of G over Zp

is defined to be
ZpJGK = lim←−Zp[G/N ],

where the inverse limit is taken over all open normal subgroups N of
G. Since any homomorphism Γ → Aut(H) must have open kernel, we
may choose a natural number n such that Γpn is central in G. We put
o := ZpJΓpn

K and F := Quot(o). Then o is non-canonically isomorphic
to the power series ring ZpJT K in one variable over Zp and is thus a
Fitting domain. If we view ZpJGK as an o-module (or indeed as a left
o[H]-module), there is a decomposition

ZpJGK =
pn−1⊕
i=0

o[H]γi,

where γ is a topological generator of Γ. This shows that ZpJGK is a
Fitting order over o in the separable F -algebra A = Q(G) := ⊕iF [H]γi.

3.2. Reduced norms and the integrality ring
Let o be a Fitting domain with field of quotients F and let A be

a finite dimensional separable F -algebra. By Wedderburn’s theorem A
decomposes into

A = A1 ⊕ · · · ⊕At,

where each Ai is isomorphic to an algebra of ni × ni matrices over a
skewfield Di. Then Fi := ζ(Ai) = ζ(Di) is a finite field extension of F
and Ai is a central simple Fi-algebra. The reduced norm map

Nrd = NrdA : A −→ ζ(A) = F1 ⊕ · · · ⊕ Ft

is defined componentwise and extends to matrix rings over A in the
obvious way (see [CR81, §7D]). If every Di is in fact a field, then the
reduced norm of x = (xi)i ∈ A is indeed given by Nrd(x) = (det(xi))i. In
general, one can always choose a (finite) field extension E of F such that
AE := E⊗F A is of this form. Then one puts NrdA(x) := NrdAE

(1⊗x)
which actually belongs to ζ(A) and is independent of the choice of E.

Now let Λ be a Fitting order in A over o. By [Rei03, Corollary 10.4]
we may choose a maximal o-order Λ′ in A containing Λ. Then Λ′ is also
a Fitting order over o and likewise decomposes into Λ′ = Λ′

1 ⊕ · · · ⊕ Λ′
t,



Noncommutative Fitting invariants 11

where Λ′
i is a maximal o-order in Ai for each i. The reduced norm

restricts to a map

Nrd : Λ′ −→ ζ(Λ′) = o1 ⊕ · · · ⊕ ot,

where oi = ζ(Λ′
i) denotes the integral closure of o in Fi. Unfortunately,

it is in general not true that the reduced norm maps Λ into its centre.

Example 3.8. Let p be an odd prime and let D2p be the dihedral
group of order 2p. We may write

D2p = 〈σ, τ | σp = τ2 = 1, τσ = σ−1τ〉.

Then Λ := Zp[D2p] is a Fitting order in A := Qp[D2p] over Zp and we
wish to compute Nrd(σ + τ). We put E := Qp(ζp), where ζp denotes a
primitive p-th root of unity, and let j ∈ Gal(E/Qp) be the unique auto-
morphism of order 2. By [CR81, Example 7.39] we have the Wedderburn
decomposition

(3) A ' A1 ⊕A2 ⊕A3,

where A1 = A2 = Qp and A3 is the twisted group algebra E ⊕ Ey with
relations y2 = 1 and yα = j(α)y, α ∈ E. Moreover, for α + βy ∈ A3

one has
Nrd(α+ βy) = NE+/Qp

(αj(α)− βj(β)),

where E+ denotes the fixed field of E under the action of j and
NE+/Qp

: E+ → Qp is the field-theoretic norm map. The isomorphism
(3) maps σ to the triple (1, 1, ζp) and τ to the triple (1,−1, y). As the
first factor in this decomposition corresponds to the central idempotent
e1 := 1

2p

∑
δ∈D2p

δ, we have

Nrd(σ + τ) = 2e1 =
1

p

∑
δ∈D2p

δ 6∈ ζ(Λ).

To overcome this problem we define a ζ(Λ)-submodule of ζ(A) by

I(Λ) := 〈Nrd(H) | H ∈Mb×b(Λ), b ∈ N〉ζ(Λ).

Note that this is in fact a commutative o-order in ζ(A) contained in
ζ(Λ′). We call I(Λ) the integrality ring of Λ. This is the smallest ring
that contains ζ(Λ) and the image of the reduced norm of all matrices
with entries in Λ.
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Example 3.9. Let ` and p be primes with p odd. Choose a max-
imal Z`-order M`(D2p) containing Z`[D2p]. Then one has (see [JN13,
Example 6] and [JN16, Proposition 6.9])

I(Z`[D2p]) =

{
ζ(Mp(D2p)) if ` = p
ζ(Z`[D2p]) if ` 6= p.

Note that the case ` 6= p follows from Proposition 4.8 below. For the
case ` = p one has to compute the reduced norms of several group
ring elements as in Example 3.8 and then show that these generate
ζ(Mp(D2p)) as a Zp-module.

Remark 3.10. The integrality ring appears in many conjectures on
the integrality of so-called Stickelberger elements. These elements lie
in the centre of the rational group ring and are constructed via integer
values of Artin L-functions attached to the irreducible characters of G,
where G is the Galois group of a finite Galois extension of number fields.
We refer the reader to [Nic19] for a survey of conjectures and results in
this context.

3.3. Noncommutative Fitting invariants
Let Λ be a Fitting order over the Fitting domain o. Let M be a

Λ-module with finite presentation

Λa h−→ Λb −→M −→ 0.

As before we let Sb(h) be the set of all b × b submatrices of h. Since
the reduced norm is a generalisation of the determinant with values in
I(Λ), it is now natural to make the following definition.

FittΛ(h) :=

{
0 if a < b
〈Nrd(H) | H ∈ Sb(h)〉I(Λ) if a ≥ b.

Unfortunately, this definition depends on h.

Example 3.11. Consider the Fitting order Λ = M2×2(Z3) over Z3

and the trivial Λ-module M = 0. We have I(Λ) = ζ(Λ) = Z3. The
identity map id : Λ → Λ is certainly a finite presentation of M and we
have FittΛ(id) = 〈Nrd(id)〉Z3 = Z3. However, the map

h : Λe1 ⊕ Λe2 −→ Λ

e1 7→
(

4 1
1 4

)
e2 7→

(
5 1
1 5

)
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is also a finite presentation of M and we have FittΛ(h) = 〈15, 24〉Z3
=

3Z3.

Remark 3.12. The ring Λ in Example 3.11 is a matrix ring over
a commutative ring. In this case one can remedy the dependence on h
via Morita equivalence. We will explain this approach in the appendix.

In order to examine the dependence on h we try to adapt the proof
of Theorem 1 in the commutative case. We still may view a finite presen-
tation of M as a truncated free resolution of M . As Λ is a semiperfect
ring (see [Lam01, Example 23.3]), every finitely generated module M
has a projective cover (see [CR81, Theorem 6.23] or [Lam01, Theorem
24.16]): there is a finitely generated projective module P0 (unique up
to isomorphism) and a surjective map π : P0 � M such that no proper
submodule of P0 is mapped onto M by π. If every projective Λ-module
is free, then P0 = Λb′ with b′ ∈ N minimal such that there is a surjection
Λb′ � M . Let P1 be a projective cover of the kernel of π. We obtain an
exact sequence

P1 −→ P0 −→M −→ 0

which we may view as the truncation of a ‘minimal projective resolution’
PM of M . This is the correct analogue of a minimal free resolution of a
module over a commutative local ring: Any free (in fact any projective)
resolution of M is isomorphic to the direct sum of PM and a trivial
complex [Nic10, Proposition 2.1]. Now let

Λa′ h′

−→ Λb′ −→M −→ 0

be a second finite presentation of M . By similar arguments as in the
commutative case one may assume that a = a′, b = b′ and that there
are matrices X ∈ GLa(Λ) and Y ∈ GLb(Λ) such that

h ◦X = Y ◦ h′.

As Nrd(Y ) belongs to I(Λ)×, we may assume in addition that Y = 1. In
contrast to the determinant, the reduced norm is not a multilinear map
so that we cannot assume that X = 1. However, assuming h ◦X = h′

as we may, we can construct a new finite presentation of M , namely

Λa ⊕ Λa (h|h′)−−−−→ Λb −→M −→ 0.

Now FittΛ((h | h′)) contains both FittΛ(h) and FittΛ(h
′). As I(Λ) is a

noetherian ring, we have shown the following (see also [Nic10, Theorem
3.2 and Definition 3.3] and [JN13, §3.5]).
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Theorem 3. Let Λ be a Fitting order and let M be a finitely gen-
erated Λ-module. Then there is a finite presentation h of M such that
FittΛ(h) contains FittΛ(h

′) for every other choice h′ of finite presenta-
tion of M .

Definition 3.13. Using the notation of Theorem 3, we put

Fittmax
Λ (M) := FittΛ(h)

and call this the maximal Fitting invariant of M over Λ.

Remark 3.14. For an axiomatic approach to noncommutative Fit-
ting invariants we refer the reader to [Kat]. A natural notion of ‘higher
noncommutative Fitting invariants’ has recently been considered by Burns
and Sano [BS].

Remark 3.15. In order to define noncommutative Fitting invari-
ants it suffices to assume that o is a commutative noetherian complete
local domain. In fact, the integral closure of o in its field of quotients is
finitely generated as an o-module by [HS06, Theorem 4.3.4] in this case,
and noncommutative Fitting invariants have been defined in this greater
generality in [Nic10].

One can prove the analogues of Lemma 2.6(i) and (iii) without any
significant changes.

Lemma 3.16. Let Λ be a Fitting order and let M1, M2, M3 be
finitely generated Λ-modules.

(i) If π : M1 � M2 is an epimorphism, then

Fittmax
Λ (M1) ⊆ Fittmax

Λ (M2).

(ii) If M1 →M2 →M3 → 0 is an exact sequence, then

Fittmax
Λ (M1) · Fittmax

Λ (M3) ⊆ Fittmax
Λ (M2).

However, the proof of Lemma 2.6(ii) only gives an inclusion

Fittmax
Λ (M1) · Fittmax

Λ (M3) ⊆ Fittmax
Λ (M1 ⊕M3)

which is a special case of Lemma 3.16(ii). We will treat the question of
whether this inclusion is actually an equality in §6 below.

It is hard to decide in general whether a given presentation gives a
maximal Fitting invariant. In this direction we have the following result.
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Proposition 3.17. Let Λ be a Fitting order and let M be a finitely
generated Λ-module. If M admits a quadratic presentation h, i.e. a finite
presentation of the form

Λa h−→ Λa −→M −→ 0,

then Fittmax
Λ (M) = FittΛ(h).

Proof. This follows from [Nic11b, Proposition 1.1 (4)]. Q.E.D.

Remark 3.18. We briefly discuss the relation of noncommutative
Fitting invariants to algebraic K-theory. This will not be used in the
following. For background on algebraic K-theory we refer the reader to
[CR87] and [Swa68].

Suppose that M admits a quadratic presentation h which is injec-
tive. Then M is torsion as an o-module and therefore defines a class
[M ] in the relative algebraic K-group K0(Λ, A) associated to the ring
homomorphism Λ ↪→ A. Moreover, the matrix h belongs to GLa(A)
and so defines a class [h] in K1(A) such that ∂([h]) = [M ], where
∂ : K1(A)→ K0(Λ, A) denotes the connecting homomorphism of relative
algebraic K-theory. The reduced norm induces a group homomorphism
Nrd : K1(A) → ζ(A)× such that Nrd([h]) = Nrd(h). Now suppose that
x ∈ K1(A) is a second pre-image of [M ]. Then [h]x−1 lies in the image
of K1(Λ) and therefore Nrd(x) = Nrd([h]) ·Nrd(y) for some y ∈ K1(Λ).
As Nrd(y) ∈ I(Λ)×, the I(Λ)-ideals generated by Nrd([h]) and Nrd(x)
coincide. In other words, for any x ∈ K1(A) such that ∂(x) = [M ] one
has

Fittmax
Λ (M) = 〈Nrd(x)〉I(Λ).

Now suppose that Fittmax
Λ (M) is generated by some ξ ∈ ζ(A)×. Then

ξNrd(x)−1 belongs to I(Λ)×, but we cannot conclude in general that
ξNrd(x)−1 lies in Nrd(K1(Λ)). The more involved notion of Nrd(Λ)-
equivalence classes in [Nic10] is designed in such a way that this conclu-
sion works.

§4. Fitting invariants and annihilation

4.1. Generalised adjoint matrices
If R is a commutative ring and M is a finitely presented R-module,

we know by Theorem 2 that FittR(M) is always contained in the
R-annihilator ideal of M . The main ingredient of the proof was the
existence of adjoint matrices. We now generalise this concept.
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Let Λ be a Fitting order. Choose n ∈ N and let H ∈ Mn×n(Λ).
Then recalling the notation of §3.2, decompose H into

H =

t∑
i=1

Hi ∈Mn×n(Λ
′) =

t⊕
i=1

Mn×n(Λ
′
i).

Let mi := ni · si ·n, where si denotes the Schur index of Di so that s2i =
[Di : Fi]. The reduced characteristic polynomial fi(X) =

∑mi

j=0 αijX
j

of Hi has coefficients in oi. Moreover, the constant term αi0 is equal to
Nrd(Hi) · (−1)mi . We put

H∗
i := (−1)mi+1 ·

mi∑
j=1

αijH
j−1
i , H∗ :=

t∑
i=1

H∗
i .

We call H∗ the generalised adjoint matrix of H.
Lemma 4.1. For every H ∈ Mn×n(Λ) we have H∗ ∈ Mn×n(Λ

′)
and H∗H = HH∗ = Nrd(H) · 1n.

Proof. The first assertion is clear by the above considerations.
Since fi(Hi) = 0, we find that

H∗
i ·Hi = Hi ·H∗

i = (−1)mi+1(−αi0) = Nrd(Hi),

as desired. Q.E.D.

Remark 4.2. Note that the above definition of H∗ differs slightly
from the definition in [Nic10, §4]. Here we follow the treatment in [JN13,
§3.6].

Remark 4.3. Let E/F be a separable field extension such that
AE := E ⊗F A splits. We may view H as an element of Mn×n(AE)
which is a finite sum of matrix rings over E. Then H∗ ∈ Mn×n(AE)
is just the sum of the adjoint matrices in each component. As such it
might have been more natural to call H∗ the ‘reduced adjoint matrix’ of
H.

Example 4.4. Let 0 ∈ Mn×n(R) where R is a commutative ring.
Then for the adjoint matrix 0∗ we have 0∗ = 1 if n = 1 and 0∗ = 0
if n > 1. Let p be a prime and let G be a finite group. Denote the
commutator subgroup of G by G′ and let E/Qp be a splitting field for
Qp[G]. Then Wedderburn’s theorem for the algebra E[G] implies that for
0 ∈M1×1(Zp[G]) we have

0∗ =
1

|G′|
∑
g∈G′

g.
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Example 4.5. Let Λ be a Fitting order and let H ∈ Mn×n(Λ).
Then for every positive integer m one has(

H 0
0 1m

)∗

=

(
H∗ 0
0 Nrd(H)1m

)
.

In view of Remark 4.3, this follows from the respective statement for
adjoint matrices over commutative rings (for a more detailed proof see
[Wat18, Theorem 1.7.8(iii)]).

4.2. Denominator ideals
We define

H(Λ) := {x ∈ ζ(Λ) | xH∗ ∈Mb×b(Λ)∀H ∈Mb×b(Λ) ∀b ∈ N}

and call H(Λ) the denominator ideal of Λ. We claim that

(4) H(Λ) · I(Λ) = H(Λ) ⊆ ζ(Λ)

and so H(Λ) is in fact an ideal in the o-order I(Λ). We follow an
argument of David Watson [Wat18, Lemma 1.10.9]. Let x ∈ H(Λ) and
H1 ∈ Mb1×b1(Λ), H2 ∈ Mb2×b2(Λ) with positive integers b1 and b2. We
have to show that xNrd(H1)H

∗
2 belongs to Mb2×b2(Λ). By Example 4.5

we may assume that b1 = b2. We now compute

xNrd(H1)H
∗
2 = xH1H

∗
1H

∗
2 = H1x(H2H1)

∗ ∈Mb2×b2(Λ).

Remark 4.6. The denominator ideal H(Λ) measures the failure of
the generalised adjoint matrices to have entries in Λ.

Remark 4.7. Let Λ′ be a maximal order containing Λ. The central
conductor of Λ′ over Λ is defined to be F(Λ) := {x ∈ ζ(Λ′) | xΛ′ ⊆ Λ}.
It is clear from Lemma 4.1 that we always have F(Λ) ⊆ H(Λ). Note that
in particular we have H(Λ′) = ζ(Λ′) for every maximal Fitting order Λ′.

We now consider the case of p-adic group rings in more detail. If p
is a prime and G is a finite group, we set

Ip(G) := I(Zp[G]), Hp(G) := H(Zp[G]).

Proposition 4.8. Let p be prime and G be a finite group. Then
we have Hp(G) = ζ(Zp[G]) if and only if p does not divide the or-
der of the commutator subgroup of G. Moreover, in this case we have
Ip(G) = ζ(Zp[G]).
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Proof. The first claim is a special case of [JN13, Proposition 4.4].
Note that Example 4.4 shows that Hp(G) = ζ(Zp[G]) is only possible
if p does not divide the order of the commutator subgroup of G. The
second claim follows easily from (4). Q.E.D.

Let Qp be a separable closure of Qp. For an irreducible character
χ : G → Qp we put Qp(χ) := Qp(χ(g) | g ∈ G). In the case of p-adic
group rings the central conductor is explicitly given by Jacobinski’s for-
mula [Jac66] (see [CR81, Theorem 27.13])

(5) Fp(G) := F(Zp[G]) =
⊕
χ

|G|
χ(1)

D−1(Qp(χ)/Qp),

where D−1(Qp(χ)/Qp) denotes the inverse different of the extension
Qp(χ) over Qp and the sum runs over all irreducible characters of G
modulo the natural action of the absolute Galois group of Qp on the
irreducible characters of G.

Example 4.9. Let p and ` be primes with p odd. We consider the
group ring Z`[D2p], where D2p denotes the dihedral group of order 2p. In
the case p = 3, one has D6 ' S3, the symmetric group on three letters.
Then we have

H`(D2p) =

{
ζ(Z`[D2p]) if p 6= `
Fp(D2p) if p = `.

In fact, the result follows from Proposition 4.8 if p 6= `. In the case
p = `, the result is established in [JN13, Example 6]. The corresponding
integrality rings have already been determined in Example 3.9.

Example 4.10. Let p be a prime and let q = `n be a prime power.
We consider the group Aff(q) = FqoF×

q of affine transformations on Fq,
the finite field with q elements. Let Mp(Aff(q)) be a maximal Zp-order
such that Zp[Aff(q)] ⊆Mp(Aff(q)) ⊆ Qp[Aff(q)]. Then by [JN16, Propo-
sition 6.7] we have

Hp(Aff(q)) =

{
ζ(Zp[Aff(q)]) if p 6= `
Fp(Aff(q)) if p = ` 6= 2;

Ip(Aff(q)) =

{
ζ(Zp[Aff(q)]) if p 6= `
ζ(Mp(Aff(q))) if p = ` 6= 2.

If p = ` = 2, then we have containments

2H2(Aff(q)) ⊆ F2(Aff(q)) ⊆ H2(Aff(q)),
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2ζ(M2(Aff(q))) ⊆ I2(Aff(q)) ⊆ ζ(M2(Aff(q))).

Note that the commutator subgroup of Aff(q) is Fq so that the case
p 6= ` again follows from Proposition 4.8. An exact formula for the
denominator ideal including the case p = ` = 2 has been determined by
David Watson [Wat18, Example 3.6.6]

Example 4.11. Let S4 be the symmetric group on 4 letters. If
p is an odd prime, then Ip(S4) = ζ(Mp(S4)) and Hp(S4) = Fp(S4).
However, if p = 2 we have

F2(S4) ( H2(S4) ( ζ(Z2[S4]);

ζ(Z2[S4]) ( I2(S4) ( ζ(M2(S4)).

This follows from [JN16, Proposition 6.8].

Remark 4.12. Even in the case of p-adic group rings, a general
formula for denominator ideals is still not available, though it would be
of significant interest for arithmetic applications. In particular, we seek
good lower bounds. This question is extensively studied in the PhD thesis
of David Watson [Wat18]. In particular, he determines the denominator
ideal Hp(G) for any (non-abelian) group G of order p3.

Now let Λ be an arbitrary Fitting order and let Λ′ be a maximal
order containing Λ. We define a variant of the central conductor by

Fζ(Λ) := {x ∈ ζ(Λ′) | xζ(Λ′) ⊆ ζ(Λ)} .

One clearly has an inclusion F(Λ) ⊆ Fζ(Λ), but this is not an equality
in general.

Example 4.13. Let D2a be the dihedral group of order 2a, where
a ≥ 3. Then one can show (see [JN13, Example 7]) that

[Fζ(Z2[D2a ]) : F(Z2[D2a ])] = 2a−2.

Remark 4.14. In the case where Λ is a p-adic group ring one has
an explicit formula for Fζ(Λ); see [JN13, Proposition 6.12].

Since the reduced characteristic polynomials have coefficients in
ζ(Λ′), one can give the following lower bound [JN13, Proposition 6.3]
for H(Λ).

Proposition 4.15. We have Fζ(Λ) ⊆ H(Λ).
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4.3. Fitting invariants and annihilation
Now a proof similar to the commutative case shows the desired an-

nihilation result (see [Nic10, Theorem 4.2] and [JN13, Theorem 3.3]).
Theorem 4. Let Λ be a Fitting order and let M be a finitely gen-

erated Λ-module. Then one has an inclusion

H(Λ) · Fittmax
Λ (M) ⊆ Annζ(Λ)(M).

Since F(Λ) is contained in H(Λ), the above inclusion also holds with
H(Λ) replaced by F(Λ). However, if one wishes to compute annihilators
using F(Λ) then the following result shows that it suffices to compute
the Fitting invariant over the maximal order (see [JN13, Corollary 6.5
and Theorem 6.7]).

Proposition 4.16. Let Λ be a Fitting order and let M be a finitely
generated Λ-module. Choose a maximal order Λ′ containing Λ. Then

F(Λ) · Fittmax
Λ (M) ⊆ F(Λ) · Fittmax

Λ′ (Λ′ ⊗Λ M) ⊆ Annζ(Λ)(M).

Example 4.17. We generalise Example 2.5. Let p be a prime and
let G be a finite group. Let ∆pG be the kernel of the natural augmentation
map augp : Zp[G] → Zp that sends each g ∈ G to 1. As |G| belongs to
Hp(G) we have by Theorem 4 that

|G| · Fittmax
Zp[G](∆pG) ⊆ AnnZp[G](∆pG) = NGZp,

where as before NG :=
∑

g∈G g. It follows that

Fittmax
Zp[G](∆pG) = m

1

|G|
NGZp

for some m ∈ Zp. Let h be a finite presentation of ∆pG such that
FittZp[G](h) = Fittmax

Zp[G](∆pG). Let augp(h) be the matrix obtained from
h by applying augp to each of the entries of h. Then augp(h) is a finite
presentation of the Zp-module

Zp ⊗Zp[G] ∆pG ' ∆pG/(∆pG)2 ' Zp ⊗Z G/G′,

where G′ denotes the commutator subgroup of G. It follows from Example
2.4 that

mZp = FittZp(augp(h)) = FittZp(Zp ⊗Zp[G] ∆pG) = |G/G′|Zp.

This implies that we may choose m = |G/G′| and thus

Fittmax
Zp[G](∆pG) =

1

|G′|
NGZp.
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As NG′ :=
∑

g∈G′ g belongs to Hp(G) by [JN13, Corollary 6.14] we find
that

Hp(G) · Fittmax
Zp[G](∆pG) = NGZp = AnnZp[G](∆pG).

Let Mp(G) be a maximal order containing Zp[G]. One can likewise show
that

Fittmax
Mp(G)(Mp(G)⊗Zp[G] ∆pG) =

1

|G′|
NGZp.

Then Proposition 4.16 implies the weaker result

F(Zp[G])·Fittmax
Mp(G)(Mp(G)⊗Zp[G]∆pG)=

|G|
|G′|

NGZp ⊆ AnnZp[G](∆pG).

§5. p-adic group rings

In this section we fix a prime p and a finite group G. The p-adic
group ring Zp[G] is a Fitting order over Zp which is of particular inter-
est in number theory. We put Λ := Zp[G] and A := Qp[G]. For any
Λ-module M we write M∨ for its Pontryagin dual HomZp

(M,Qp/Zp)
and M∗ for the linear dual HomZp

(M,Zp), each endowed with the nat-
ural contragredient action of G. We denote by ] : A → A the anti-
involution which maps each g ∈ G to its inverse. If h ∈ Ma×b(A) is a
matrix we let h] be the matrix obtained from h by applying ] to each
of its entries. Moreover, we let hT ∈ Mb×a(A) be the transpose of h.
We note that there is an isomorphism Λ∗ ' Λ, f 7→

∑
g∈G f(g)g. Under

this identification the Zp-dual of a map h ∈ Ma×b(Λ) identifies with
hT,] ∈Mb×a(Λ).

Now let C be a finite Λ-module of projective dimension at most 1.
Choose n ∈ N and a surjective map Λn � C with kernel P . Note that
P is projective. As C is finite, we have an isomorphism Qp ⊗Zp

P ' An

of A-modules. Now Swan’s theorem [CR81, Theorem (32.1)] implies
that in fact P ' Λn. In particular, we find that C has a quadratic
presentation

(6) 0 −→ Λn q−→ Λn −→ C −→ 0.

Moreover, the maximal Fitting invariant Fittmax
Λ (C) is generated by

Nrd(q) ∈ ζ(A)× by Proposition 3.17.
We also note that a Λ-module is of projective dimension at most 1 if

and only if it is a cohomologically trivial Λ-module by [AW67, Theorem
9]. The following result is very useful in computing Fitting invariants
over p-adic group rings.
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Proposition 5.1. Let Λ := Zp[G] where p is a prime and G is a
finite group.

(i) Let C be a finite Λ-module of projective dimension at most 1. Let
c ∈ ζ(A)× be a generator of Fittmax

Λ (C). Then the Pontryagin
dual C∨ is also a finite Λ-module of projective dimension at most
1 and Fittmax

Λ (C∨) is generated by c].
(ii) Suppose we are given an exact sequence of finite Λ-modules

0 −→M −→ C −→ C ′ −→M ′ −→ 0,

where C and C ′ are of projective dimension at most 1. Then we
have an equality

Fittmax
Λ (M∨)] · Fittmax

Λ (C ′) = Fittmax
Λ (M ′) · Fittmax

Λ (C).

Proof. This follows from [Nic10, Proposition 5.3]. Here we will give
a new proof of (i) which is much shorter and easier than the original
proof. The argument is inspired by [BG03, Lemma 6] and recent work
of Kataoka [Kat, §4].

As C is finite, we have HomZp
(C,Zp) = HomZp

(C,Qp) = 0. As Qp

is an injective Zp-module, we have Ext1Zp
(C,Qp) = 0 and thus the short

exact sequence Zp ↪→ Qp � Qp/Zp induces an isomorphism

C∨ ' Ext1Zp
(C,Zp).

Now choose a quadratic presentation q of C as in (6). We may assume
that c = Nrd(q). Note that Ext1Zp

(Λ,Zp) vanishes, since Λ is a projective
Zp-module. We apply Zp-duals to (6) and obtain an exact sequence

0 −→ Λn qT,]

−−→ Λn −→ Ext1Zp
(C,Zp) −→ 0.

As Nrd(qT,]) = c] we are done. Q.E.D.

Remark 5.2. Note that exact sequences of the type considered in
Proposition 5.1 naturally occur in the context of the equivariant Tama-
gawa number conjecture as formulated by Burns and Flach [BF01]. This
conjecture refines and generalises a very wide range of well known results
and conjectures relating special values of L-functions to certain natural
arithmetic invariants. It thereby vastly generalises the analytic class
number formula for number fields and the Birch and Swinnerton-Dyer
conjecture for elliptic curves (see [Fla04] for a survey).

Remark 5.3. There is also an analogue of Proposition 5.1 for Iwa-
sawa modules [Nic10, Proposition 6.3] and even for more general Fitting
orders [Kat, §4]. This has applications in the context of main conjectures
of equivariant Iwasawa theory.
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§6. Additivity of Fitting invariants

Let Λ be a Fitting order over the Fitting domain o. Let M and
N be two finitely generated Λ-modules. As already observed in Lemma
3.16(ii), one always has an inclusion

Fittmax
Λ (M) · Fittmax

Λ (N) ⊆ Fittmax
Λ (M ⊕N).

Definition 6.1. The Fitting order Λ is called Fitting-additive if

Fittmax
Λ (M) · Fittmax

Λ (N) = Fittmax
Λ (M ⊕N)

for all finitely generated Λ-modules M and N .

The following observation is clear by Lemma 2.6(ii).

Proposition 6.2. Every commutative Fitting order Λ is Fitting-
additive.

As reduced norms are defined componentwise, the following is also
immediate.

Lemma 6.3. Let Λ1 and Λ2 be Fitting orders over the Fitting do-
main o. Then Λ1 ⊕ Λ2 is Fitting-additive if and only if both Λ1 and Λ2

are Fitting-additive.

We record some cases where it is known that Λ is Fitting-additive.

Theorem 5. The Fitting order Λ is Fitting-additive in each of the
following cases.

(i) Λ is a direct product of matrix rings over commutative rings.
(ii) Λ is a maximal order and o is a complete discrete valuation ring.

Proof. This follows from [JN13, Theorem 4.6(ii)]. We will reprove
part (i) in the appendix (see Remark A.3 and Lemma A.10(ii)). Q.E.D.

Corollary 6.4. Let p be a prime and let G be a finite group. Suppose
that p does not divide the order of the commutator subgroup of G. Then
the p-adic group ring Zp[G] is Fitting-additive.

Proof. It follows from [DJ83, Corollary, p. 390] that Zp[G] is a
direct product of matrix rings over commutative rings in this case. Thus
the result follows from Theorem 5(i). Q.E.D.

Corollary 6.5. Let G be a profinite group containing a finite normal
subgroup H such that G/H ' Zp for some prime p. Suppose that p does
not divide the order of the commutator subgroup of G (which is finite).
Then the Iwasawa algebra ZpJGK is Fitting-additive.
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Proof. The Iwasawa algebra ZpJGK is again a direct product of
matrix rings over commutative rings in this case by [JN13, Proposition
4.5]. Q.E.D.

We now give an example of a Fitting order Λ which is not Fitting-
additive.

Example 6.6. Let p be a prime and consider the Zp-order

Λ :=

{(
a b
c d

)
∈M2×2(Zp) | b ≡ 0 mod p

}
.

This is a Fitting order over Zp and one has H(Λ) = I(Λ) = ζ(Λ) = Zp.
We let M and N be Λ-modules which as sets are equal to Zp/pZp and

upon which Λ acts as follows. Let λ =

(
a b
c d

)
∈ Λ. For every x ∈ Zp

we write x for its image in Zp/pZp. Then λ ·m := am and λ · n := dn

for m ∈M and n ∈ N . Using b = 0 it is easily checked that this defines
left Λ-module structures on M and N , respectively. There is a short
exact sequence

0 −→ Λ
h−→ Λ −→M ⊕N −→ 0,

where h is right multiplication by
(

0 p
1 0

)
∈ Λ. As h is a quadratic

presentation, we have that

Fittmax
Λ (M ⊕N) = Nrd(h) · Zp = pZp

by Proposition 3.17. As M ⊕ N surjects onto M , the ideal generated
by p is contained in Fittmax

Λ (M) by Lemma 3.16(i). However, the max-
imal Fitting invariant Fittmax

Λ (M) annihilates M by Theorem 4 and so
Fittmax

Λ (M) is properly contained in Zp as M 6= 0. It follows that

Fittmax
Λ (M) = pZp.

Exactly the same reasoning applies for N and therefore

Fittmax
Λ (N) = pZp.

Altogether we have that

Fittmax
Λ (M) · Fittmax

Λ (N) = p2Zp ( pZp = Fittmax
Λ (M ⊕N)

and thus Λ is not Fitting-additive.
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The order in Example 6.6 is a hereditary, but non-maximal Zp-order.
By the classification of hereditary orders over complete discrete valuation
rings [CR81, Theorem 26.28] it is clear that similar examples can be
constructed for every hereditary, non-maximal order over a complete
discrete valuation ring. Taking Theorem 5(ii) into account, we have
established the following.

Proposition 6.7. Let Λ be a Fitting order over a complete discrete
valuation ring. Suppose that Λ is hereditary. Then Λ is Fitting-additive
if and only if it is maximal.

Remark 6.8. A p-adic group ring Zp[G] is hereditary if and only
if it is maximal. We give an indirect proof of this fact. Suppose that
Zp[G] is hereditary. Then Hp(G) = ζ(Zp[G]) by [JN13, Corollary 4.2]
(this follows easily from the definitions once one observes that the centre
of a hereditary Zp-order is itself a maximal Zp-order). Now Proposition
4.8 implies that p does not divide the order of the commutator subgroup
of G. By Corollary 6.4 the group ring Zp[G] is Fitting-additive and so
by Proposition 6.7 it is maximal.

Let Λ be a Fitting order over the Fitting domain o. In view of
Example 6.6 and Proposition 6.7 one may ask whether there are hered-
itary, non-maximal orders when o is not a complete discrete valuation
ring. We now show that this is indeed not the case.

Proposition 6.9. Let Λ be a Fitting order over the Fitting domain
o. If Λ is hereditary, then o is a complete discrete valuation ring.

Proof. Suppose that Λ is a hereditary Fitting order over o in the
separable F -algebra A, where as before F denotes the quotient field of
o. Let A = A1⊕· · ·⊕At be the Wedderburn decomposition of A so that
each Ai is a central simple Fi = ζ(Ai)-algebra. Let oi be the integral
closure of o in Fi. Then we likewise have a decomposition

Λ = Λ1 ⊕ · · · ⊕ Λt,

where each Λi is a hereditary oi-order by [Har63, Proposition 2.2]. More-
over, each oi is in fact a Dedekind domain by [Har63, Theorem 2.6] and
thus has Krull dimension 1. The Fitting domain o then also has Krull
dimension 1 by [Eis95, Proposition 4.15]. However, a Fitting domain of
Krull dimension 1 is a complete discrete valuation ring. Q.E.D.

Remark 6.10. In view of Corollary 6.4 and Remark 6.8 one may
ask the following question: Is every p-adic group ring Fitting-additive?
Similarly, is the Iwasawa algebra ZpJGK of a one-dimensional p-adic Lie
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group G always Fitting-additive? In both cases one knows that

Fittmax
Λ (M) · Fittmax

Λ (N) = Fittmax
Λ (M ⊕N)

whenever at least one of the two Λ-modules M and N has projective
dimension at most 1. This follows from [Kat, Proposition 2.11].

§Appendix A. Fitting invariants and Morita equivalence
by Henri Johnston and Andreas Nickel

A.1. Preliminaries on Morita equivalence
Let Λ and R be any two unitary rings. Let RM denote the category

of left R-modules, RMΛ the category of (R,Λ)-bimodules, and so on.
For a (R,Λ)-bimodule M , we let RM and MΛ denote M considered as
a left R-module and a right Λ-module, respectively. The rings Λ and
R are said to be Morita equivalent if the categories RM and ΛM are
equivalent (this is the case if and only if the categories MR and MΛ

are equivalent). For example, if n ∈ N and Λ = Mn×n(R) then it is
well-known that Λ and R are Morita equivalent. We shall recall and use
some basic facts on Morita equivalence, and refer the reader to [CR81,
§3D], [Rei03, Chapter 4], [Lam99, Chapter 7] or [AF92, §22] for further
details.

A generator P for MR is a right R-module such that every right
R-module is an epimorphic image of ⊕i∈IP for I sufficiently large, or
equivalently, if RR is a direct summand of Pn for some n ∈ N. A
progenerator for MR is a finitely generated projective generator. A
progenerator for ΛM is defined analogously.

A (Λ, R)-progenerator is a (Λ, R)-bimodule P such that PR is a pro-
generator for MR and the canonical ring homomorphism Λ→ End(PR),
λ 7→ (p 7→ λp) is an isomorphism. In this case, ΛP is a progenera-
tor for ΛM and the canonical ring homomorphism Rop → End(ΛP ),
r 7→ (p 7→ pr) is an isomorphism. For such a P we let Q = P ∗ =
HomR(PR, RR) be the R-linear dual of P . Note that Q is an
(R,Λ)-bimodule with left action of R defined by (rq)p = r(qp) and
right action of Λ defined by (qλ)p = q(λp), where r ∈ R, q ∈ Q, p ∈ P
and λ ∈ Λ. Moreover, P ∗ = Q is in fact a (R,Λ)-progenerator.

Now suppose that Λ and R are Morita equivalent. Then by a theo-
rem of Morita (see [AF92, Theorem 22.2]) there exists a
(Λ, R)-progenerator P such that the functors

G :RM −→ ΛM, N 7→ P ⊗R N

F :ΛM −→ RM, M 7→ P ∗ ⊗Λ M
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are mutually inverse category equivalences. Moreover, the isomorphism
classes of category equivalences RM −→ ΛM are in one-one correspon-
dence with the isomorphism classes of (Λ, R)-progenerators (see [Lam99,
Theorem 18.28]); of course the same statement holds with Λ and R
swapped.

Remark A.1. If R is a ring over which all finitely generated pro-
jective modules are free (this is the case when R is a local ring, for
example) then Λ is Morita equivalent to R if and only if Λ is isomor-
phic to Mn×n(R) for some n ∈ N (see [Lam99, Corollary 18.36]). More
generally, if R = R1 ⊕ · · · ⊕ Rk is a direct product of rings and each
Ri is a ring over which all finitely generated projective modules are
free, then Λ is Morita equivalent to R if and only if Λ is isomorphic to
Mn1×n1(R1)⊕ · · · ⊕Mnk×nk

(Rk) for some n1, . . . , nk ∈ N.

A.2. Rings that are Morita equivalent to commutative
rings

We now specialise to the situation where Λ is Morita equivalent to
its centre R := ζ(Λ). As Morita equivalent rings have isomorphic centres
(see [Lam99, Corollary 18.42]), this assumption is the same as supposing
that Λ is Morita equivalent to some commutative ring. We recall the
convention that all Λ-modules are assumed to be left modules unless
stated otherwise.

Definition A.2. Let M be a finitely presented Λ-module. Then we
define the Fitting invariant of M over Λ to be the R-ideal

FittΛ(M) := FittR(F (M)) = FittR(P
∗ ⊗Λ M).

Remark A.3. Suppose that Λ is both a Fitting order and Morita
equivalent to its centre R. We claim that FittΛ(M) = Fittmax

Λ (M) for
every finitely generated Λ-module M and so the two notions of Fitting
invariant coincide in this setting. To see this, note that since Λ is a
Fitting order, [Lam01, Example 23.3 and Theorem 23.11] show that we
can write R = R1 ⊕ · · · ⊕Rk where each Ri is a commutative local ring.
Thus by Remark A.1, Λ is isomorphic to Mn1×n1(R1)⊕· · ·⊕Mnk×nk

(Rk)
for some n1, . . . , nk ∈ N. The claim now follows by applying [JN13,
Proposition 3.4] to each component.

Remark A.4. Suppose that Λ = Mn×n(R) for some n ∈ N and
some commutative ring R. In this situation, Fitting invariants over Λ
are defined in [JN13, §2] using an explicit version of the Morita equiva-
lence of Λ and R, and this definition agrees with Definition A.2. More-
over, it is trivial to extend the definition of ibid. to the situation in which
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Λ is a direct product of matrix rings over commutative rings; again both
definitions agree in this situation. However, as we shall see in Example
A.6 below, a ring that is Morita equivalent to its centre need not be iso-
morphic to a product of matrix rings over commutative rings; thus the
results presented here extend those of [JN13, §2].

Remark A.5. Suppose that M is a Λ-module that is finitely pre-
sented over both Λ and its centre R. Then of course one can consider
FittR(M), but in general this is a coarser invariant than FittΛ(M). For
example, if Λ = Mn×n(R) for some n ∈ N then FittR(M) = FittΛ(M)n

by [JN13, Theorem 2.2(viii)].

Example A.6. Let R be a Dedekind domain and let Cl(R) denote
its class group. Suppose that there exists a non-zero ideal a of R such
that the image of a in Cl(R)/Cl(R)2 is non-trivial. For example, we can
take a to be any non-principal ideal of R = Z[

√
−5]. Let

Λ =

(
R a
a−1 R

)
be the ring of all 2× 2 matrices (xij) where x11 ranges over all elements
of R, x12 ranges over all elements of a, etc. Let P = R ⊕ a and note
that this is a progenerator for MR. Then Λ ' EndR(P ) and so Λ is
Morita equivalent to R by [Lam99, Proposition 18.33]. However, [BK00,
Exercise 4.2.5] shows that Λ is not isomorphic to M2×2(R).

Proposition A.7. The Fitting invariant FittΛ(M) is well-defined.

Proof. We first note that F (M) is a finitely presented R-module
since the property of being finitely presented is preserved under equiva-
lence of module categories (see the discussion in [Lam99, §18A, p. 481],
for instance). Now let G′ and F ′ be another pair of mutually inverse
category equivalences of RM and ΛM. Then the compositions of func-
tors F ′ ◦G and F ◦G′ are mutually inverse category self-equivalences of
RM. Thus the result follows from Lemma A.8 below. Q.E.D.

Lemma A.8. Let T : RM −→ RM be any self-equivalence of
RM. If M is any R-module then AnnR(M) = AnnR(T (M)). More-
over, FittR(M) = FittR(T (M)) if we further assume that M is finitely
presented.

Proof. By [Lam99, Corollary 18.29] there exists an (R,R)- progen-
erator W such that the functor T ′ : RM −→ RM, M 7→ W ⊗R M is
naturally isomorphic to T . In particular, T (M) and T ′(M) are isomor-
phic as R-modules. Hence AnnR(T (M)) = AnnR(T

′(M)) and, if M is
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finitely presented, FittR(T (M)) = FittR(T
′(M)). Thus we can and do

assume without loss of generality that T = T ′.
Let x ∈ AnnR(M). Then

x · T (M) = x · (W ⊗R M) = W ⊗R (x ·M) = 0.

Hence AnnR(M) ⊂ AnnR(T (M)). Moreover, there exists a functor
U : RM −→ RM such that U ◦ T is naturally isomorphic to the iden-
tity functor on RM and so the same argument gives the reverse in-
clusion AnnR(T (M)) ⊂ AnnR(UT (M)) = AnnR(M). Thus we have
AnnR(M) = AnnR(T (M)).

For the second claim choose a finite presentation Ra h−→ Rb � M .
As FittR(M) is generated by the b×b minors of h, we can and do assume
that a = b. Hence we may view h as an element of Mb×b(R). Applying
T yields an endomorphism

T (h) = 1⊗ h ∈ EndR(W ⊗R Rb) ' EndR(W
b) 'Mb×b(R),

where the last isomorphism is induced by EndR(W ) ' R. Thus we have

det(T (h)) = det(1⊗ h) = det(h).

This shows FittR(M) ⊂ FittR(T (M)) and we again obtain equality by
symmetry. Q.E.D.

Example A.9. Let R be a Dedekind domain and let a be a non-zero
(fractional) ideal of R. Then a is an (R,R)-progenerator and a∗ naturally
identifies with a−1. Moreover, Lemma A.8 implies that FittR(M) =
FittR(a⊗R M) for every finitely generated R-module M .

Lemma A.10. Let M1, M2, M3 be finitely presented Λ-modules.
(i) If π : M1 � M2 is an epimorphism, then

FittΛ(M1) ⊆ FittΛ(M2).

(ii) Fitting invariants over Λ behave well under direct sums:

FittΛ(M1 ⊕M3) = FittΛ(M1) · FittΛ(M3).

(iii) If M1 →M2 →M3 → 0 is an exact sequence, then

FittΛ(M1) · FittΛ(M3) ⊆ FittΛ(M2).

Proof. The equivalence of categories F : ΛM −→ RM preserves
epimorphisms, direct sums and exact sequences by [AF92, Propositions
21.2, 21.4 and 21.5]. Thus the results follow from the corresponding
properties of Fitting ideals over R (see Lemma 2.6). Q.E.D.
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Lemma A.11. Let M be a finitely presented Λ-module. Then for
any homomorphism R → S of commutative rings, S ⊗R M is a finitely
presented S ⊗R Λ-module and

FittS⊗RΛ(S ⊗R M) = S ⊗R FittΛ(M).

Proof. The first claim follows by applying the right exact functor
S ⊗R − to a finite presentation of M . For the second claim, observe
that since P ∗ is a (R,Λ)-progenerator, it is straightforward to check
from the definitions that S ⊗R P ∗ is a (S, S ⊗R Λ)-progenerator. Thus
(S⊗R P ∗)⊗S⊗RΛ− induces an equivalence of categories S⊗RΛM→ SM
and so Definition A.2 and Remark 2.2 give

FittS⊗RΛ(S ⊗R M) = FittS((S ⊗R P ∗)⊗S⊗RΛ (S ⊗R M))

= FittS(S ⊗R (P ∗ ⊗Λ M))

= S ⊗R FittR(P
∗ ⊗Λ M)

= S ⊗R FittΛ(M).

Q.E.D.

Proposition A.12. We have FittΛ(M) ⊂ AnnR(M).

Proof. Let x ∈ FittΛ(M) = FittR(F (M)). Then x annihilates
F (M) = P ∗ ⊗Λ M by the corresponding property of Fitting ideals over
the commutative ring R. Hence x also annihilates F (M)k for every
k ∈ N. As P ∗ is in particular a progenerator for MΛ, there exists n ∈ N
such that ΛΛ is a direct summand of (P ∗)n. Hence M = Λ⊗ΛM occurs
as a direct summand of F (M)n = (P ∗)n ⊗Λ M and thus is annihilated
by x, as desired. Q.E.D.

Finally, we formulate an analogue of Example 2.1.

Proposition A.13. Let I be a two-sided ideal of Λ. Under the
identification Λ ' EndR(P ) we have I = HomR(P, a · P ) for a uniquely
determined R-ideal a. Then we have an equality

FittΛ(Λ/I) = FittR(HomR(P,R/a)).

Proof. That I is of the given form is [Rei03, Theorem 16.14(v)].
The canonical short exact sequence 0 → I → Λ → Λ/I → 0 yields a
short exact sequence

0→ P ∗ ⊗Λ I → P ∗ → P ∗ ⊗Λ Λ/I → 0.
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We claim that the image of P ∗ ⊗Λ I in P ∗ equals HomR(P, a). In fact,
the map

P ∗ ⊗Λ I = HomR(P,R)⊗Λ HomR(P, a · P ) −→ P ∗ = HomR(P,R)

is given by f⊗g 7→ f ◦g, where f ∈ HomR(P,R) and g ∈ HomR(P, a·P ).
As the image of g lies in a·P and f is R-linear, the image of f ◦g actually
lies in HomR(P, a). Thus we in fact have a map

α : P ∗ ⊗Λ I = HomR(P,R)⊗Λ HomR(P, a · P ) −→ HomR(P, a).

To show that α is surjective (and thus an isomorphism), it suffices to
show the corresponding statement after localisation at each prime ideal
p of R. However, a projective module over a local ring is free, so there
exists n ∈ N such that P ' Rn. Via this isomorphism, both the domain
and codomain of α identify naturally with ⊕n

i=1a and α becomes the
identity map. Hence α is an isomorphism.

We have shown that we have an isomorphism of R-modules

P ∗ ⊗Λ Λ/I ' HomR(P,R)/HomR(P, a) ' HomR(P,R/a),

where the last isomorphism holds by projectivity of P . The result now
follows. Q.E.D.

Example A.14. Suppose that P is free of rank n over R for some
n ∈ N. Then Λ naturally identifies with the matrix ring Mn×n(R).
Moreover, I = Mn×n(a) and so Λ/I = Mn×n(R/a). Thus we have
FittΛ(Λ/I) = an and so Proposition A.13 recovers [JN13, Theorem
2.2(ix)]. One can also view Λ/I as a module over the centre R, but
FittR(Λ/I) = an

2 is properly contained in FittΛ(Λ/I) if n > 1 (also see
Remark A.5).
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