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Abstract.

For a finite abelian p-extension K/k of totally real fields and the
cyclotomic Zp-extension K∞/K, we prove a strong version of an equi-
variant Iwasawa main conjecture by determining completely the Fitting
ideal over Zp[[Gal(K∞/k)]] of the classical Iwasawa module XK∞,S ,
which is the Galois group of the maximal pro-p abelian S-ramified ex-
tension of K∞, where S contains all ramified primes in K∞/k. To do
this, we prove a conjecture which was proposed in a previous paper by
the first and second author, concerning the minors of a relation matrix
for the second syzygy module of the trivial module Z over a suitable
group ring.

§1. Introduction

In a recent paper [2] the first two authors described the Fitting
ideals of certain Iwasawa modules in terms of ideals generated by mi-
nors of a relation matrix for a second syzygy module of Z over abelian
group rings. Moreover, in §1 (Remark to Proposition 1.5) of that paper
an explicit description of those ideals was stated, but one of the two
inclusions remained conjectural. Our aim in this paper is to prove the
conjectural inclusion as well. This means that these ideals of minors are
now completely determined.

In §1.1 of this introduction, we explain the conjecture on the ideals
of minors. Then in §1.2 we give a consequence of the conjecture (now a
theorem) in Iwasawa theory. Indeed, we are now able to state and prove
our equivariant Iwasawa main conjecture.
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1.1. A second syzygy of Z
Let G be a finite abelian group such that

G ≃ Z/n1Z⊕ . . .⊕ Z/nsZ,

where ni is a divisor of ni+1 for each i = 1,...,s−1. Suppose that σi ∈ G
is a generator of the i-th component of the above decomposition for each
i. We put R = Z[G], which is the group ring of G over Z, and consider
the R-module Z with trivial action of G. Using the method in [2] §1.2,
we obtain a free resolution

Rs(s+1)(s+2)/6 Φ3−→ Rs(s+1)/2 Φ2−→ Rs
Φ1−→ R −→ Z −→ 0

of Z. The full description of this exact sequence will be given in §2,
and we just mention here that Φ1 is defined by Φ1(xi) = σi − 1, where
(xi)1≤i≤s is the standard basis of Rs. We put Ω2 = KerΦ1, which is a
second syzygy of Z. Thus we have an exact sequence

Rs(s+1)(s+2)/6 Φ3−→ Rs(s+1)/2 −→ Ω2 −→ 0 .

We denote by M̃s the matrix which corresponds to the R-homomorphism
Φ3, and which can be written down explicitly (see §2.1).

Put c = s(s+ 1)/2.

For an integer v such that 0 ≤ v ≤ c, we define mv = Minv(M̃s) to

be the ideal of R generated by all v-minors of the matrix M̃s. We note
that mv is equal to the higher Fitting ideal Fittc−v,R(Ω

2) (concerning

the definition of Fitting ideals, see [5]). The matrix M̃s is rather sparse,
but the calculation of the relevant minors is still difficult. The entries
are elements of the form ±τi and ±νi where τi = σi − 1 ∈ R and
νi = 1+σi+ . . .+σni−1

i ∈ R (recall that ni is the order of σi in G). We
note here the important relation τiνi = 0.

We can easily see mv = 0 for any v such that s(s−1)/2+1 < v ≤ c,
using mv = Fittc−v,R(Ω

2) (see Proposition 1.5 (a) in [2]). Now we state
our main theorem in which we determine all mv.

We define H to be the ideal of R generated by τ1, . . . , τs; differently
put, H is the augmentation ideal of R. We will define the notion “ad-
missible monomial” in §2.2, and denote by nd the ideal generated by all
admissible monomials of degree d, with 0 < d ≤ s(s − 1)/2. We also
define n0 = R and n s(s−1)

2 +1
= 0. In this paper we prove the following.

Theorem 1.1. For any integer v such that 0 ≤ v ≤ s(s−1)
2 + 1, we

have

mv = Fittc−v,R(Ω
2) =

v∑
d=0

Hv−dnd .
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In particular, we have

m s(s−1)
2 +1

= H

s(s−1)/2∑
d=0

H
s(s−1)

2 −dnd = Hm s(s−1)
2

.

In [2] Proposition 1.5 (b) we proved that the left hand side is con-
tained in the right hand side of the above equality, and stated this equal-
ity as a conjecture. For s ≤ 4 we had verified the conjecture by hand,
which was already a sizable calculation for s = 4. The third author
checked it for s = 5 in [7].

In this paper we prove the converse inclusion. To do this, we exhibit
many square submatrices of M̃s which are lower triangular; so their
determinants can be evaluated at once (product of the diagonal entries),
and in this way we are able to produce all monomials in the elements
τi and νi that are required to establish the desired converse inclusion.
The arguments are entirely elementary and combinatorial, but some of
the details are a bit tricky. Even though the entire motivation for this
work comes from [2], it is not necessary to be familiar with that paper
for reading the proof of Theorem 1.1.

1.2. An equivariant main conjecture for XK∞,S

Now we state one of the consequences in Iwasawa theory, which is a
main motivation of the above theorem. Let K/k be a finite abelian ex-
tension of totally real number fields, p an odd prime, and K∞/K the cy-
clotomic Zp-extension. We consider the maximal pro-p abelian extension
M∞,S/K∞ which is unramified outside S, where S is a finite set of primes
of k containing all ramified primes in K∞/k, and hence in particular all
p-adic primes. We put XK∞,S = Gal(M∞,S/K∞). It is well-known that
this is a finitely generated torsion ΛK∞ = Zp[[Gal(K∞/k)]]-module.

The celebrated main conjecture in Iwasawa theory, which is a theo-
rem of Wiles [8], states a relationship between the characteristic ideal of
a character component of XK∞,S and the p-adic L-function of Deligne-
Ribet. Let ΘK∞/k,S be the pseudo-measure of Gal(K∞/k) in the sense
of Serre [6], corresponding to the p-adic L-function of Deligne-Ribet,
which interpolates the values LS(1−n, χ) of S-truncated L-functions for
characters χ of Gal(K/k). Suppose that IK∞ is the augmentation ideal
Ker(ΛK∞ = Zp[[Gal(K∞/k)]] −→ Zp); then we know IK∞ΘK∞/k,S ⊂
ΛK∞ (see [6]). Especially, if γ is a generator of Gal(K∞/K) ≃ Zp and
T = γ − 1 ∈ ΛK∞ , then we have TΘK∞/k,S ∈ ΛK∞ . For simplic-
ity, assume K ∩ k∞ = k where k∞ is the cyclotomic Zp-extension, put
G = Gal(K/k), Γ = Gal(K∞/K), and G = Gal(K∞/k), so G = G × Γ.
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For any character χ of G and any Zp[G]-module M , we define the χ-
component Mχ by Mχ = M ⊗Zp[G] Oχ, where Oχ = Zp[Image χ] on
which G acts via χ. If M is a Zp[[G]]-module, Mχ is an Oχ[[Γ]]-module.
We note thatMχ is a quotient ofM . We denote the image of an element
x ∈ M in Mχ by xχ. The main conjecture asserts that for each char-
acter χ of G, the characteristic ideal of an Oχ[[Γ]]-module (XK∞,S)χ is
generated by the χ-component (ΘK∞/k,S)χ of ΘK∞/k,S if χ is not the
trivial character, and by (TΘK∞/k,S)χ if χ is the trivial character.

Our goal in this paper is to establish a more refined relationship than
the main conjecture between the two sides, that is XK∞,S and ΘK∞/k,S ,
without taking the character components.

There exist several equivariant main conjectures, but they all use
modified Iwasawa modules (e.g. cohomology groups; for example, see
[1] and [4]), and there has been no equivariant theory for XK∞,S itself
before our work. The difficulty in studying XK∞,S comes from the fact
that XK∞,S does not have projective dimension ≤ 1 over ΛK∞ when p
divides the order of G.

In this paper we study the classical object XK∞,S itself, and prove
a kind of equivariant main conjecture for it. For any ring R and any
R-module M , we denote the initial Fitting ideal Fitt0,R(M) simply by
FittR(M). We will determine the Fitting ideal FittΛK∞

(XK∞,S) com-
pletely, by which we get more information than the characteristic ideals
of the character components. For example, we obtain information on
the size of the Oχ-torsion submodule of (XK∞,S)χ from our knowledge
of FittΛK∞

(XK∞,S) (see also Remark 1.4 (2) and the argument just
after Remark 1.4), but first and foremost, we get the exact relationship
between the Iwasawa module XK∞,S and the p-adic L-function ΘK∞/k,S .

In previous work [3] by the first two authors, we proved in Theorem
4.1 in [3] that

FittΛK∞
(XK∞,S) = AΘK∞/k,S

with a certain ideal A of ΛK∞ . What we do in this paper is performing
further computations on the ideal A in order to describe it completely.
We also note that the description given here is more general and explicit
than the appendix in [2].

The essential case is that K/k is a nontrivial p-extension, so we
assume it (for the general case, see [2]). We still assume that K∩k∞ = k
and put G = Gal(K/k). We change the notation slightly from the
previous subsection, and write

G ≃ Z/pn1Z⊕ . . .⊕ Z/pnsZ
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with 0 < n1 ≤ . . . ≤ ns for some s ∈ Z>0. We need the auxiliary
quadratic function

φ(α) = α(2s− α− 1)/2 (for any α ∈ Z such that 0 ≤ α ≤ s− 1).

This is an increasing function in the above range, and φ(0) = 0, φ(1) =
s− 1, φ(2) = 2s− 3,..,and φ(s− 1) = s(s− 1)/2. We define a sequence
(mv)0≤v≤s(s−1)/2 of integers as follows. We define m0 = 0, and if v
satisfies φ(α) < v ≤ φ(α+1) for some integer α ∈ Z with 0 ≤ α ≤ s−2,
then mv is defined by

mv = (s− 1)n1 + . . .+ (s− α)nα + (v − φ(α))nα+1.

In particular, mv = vn1 for 0 ≤ v ≤ s− 1, and

m s(s−1)
2

= (s− 1)n1 + (s− 2)n2 + . . .+ ns−1 .

Recall that IK∞ is the augmentation ideal of ΛK∞ = Zp[[G]], with
G = Gal(K∞/k). We define an ideal aG of ΛK∞ by

aG =

s(s−1)
2∑

v=0

pmvI
s(s−1)

2 −v
K∞

,

which is determined only by the structure of G as an abelian group. Our
equivariant main conjecture which we prove in this paper is

Theorem 1.2. Assume that the µ-invariant of k∞/k vanishes and
that S contains all ramified primes in K∞/k (as we already mentioned).
Then we have

FittΛK∞
(XK∞,S) = aGIK∞ΘK∞/k,S .

In order to understand the ideal aG, let us consider simple cases.
Suppose that G is homogeneous, that is, n1 = . . . = ns = n. Put

JK∞ = pnΛK∞ + IK∞ .

If n = 1, JK∞ coincides with the maximal ideal mK∞ of ΛK∞ . It is easy
to check that mv = nv and

aG =

s(s−1)/2∑
v=0

pnvI
s(s−1)

2 −v
K∞

= (pn, IK∞)s(s−1)/2

= J
s(s−1)/2
K∞

.

Therefore, we get
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Corollary 1.3. Assume further that n1 = . . . = ns = n. Then we
have

FittΛK∞
(XK∞,S) = J

s(s−1)/2
K∞

IK∞ΘK∞/k,S .

Also, if n = 1, we have

FittΛK∞
(XK∞,S) = m

s(s−1)/2
K∞

IK∞ΘK∞/k,S ,

where mK∞ is the maximal ideal of ΛK∞ .

Remark 1.4. (1) At some stage, there was a guess that

FittΛK∞
(XK∞,S) = IK∞ΘK∞/k,S .

Our theorem shows that this is only true for s = 1, and the bigger s
gets, the more badly it fails, because aG becomes smaller and smaller
for s→ ∞.

(2) Since the ideal aG is of finite index in ΛK∞ , its image in ΛK∞,χ

is also of finite index in ΛK∞,χ. Thus Theorem 1.2 implies the usual
main conjecture, and in fact refines it.

Theorem 1.2 also gives information on the size of the Oχ-torsion sub-
module of (XK∞,S)χ. Suppose for simplicity that we are in the situation
of Corollary 1.3, and also assume that χ is nontrivial. Then we know
that the characteristic ideal of (XK∞,S)χ is generated by (ΘK∞/k,S)χ.
This shows that

χ(IK∞)χ(JK∞)s(s−1)/2 = FittOχ[[Γ]](((XK∞,S)χ)tors)

where ((XK∞,S)χ)tors is the Oχ-torsion part. Since the left hand side
becomes fairly small if s becomes large (see also Remark 1.4 (4) below),
the above formula also shows that ((XK∞,S)χ)tors is fairly big if s is
large. In this way our Theorem 1.2 also sheds light on the torsion part
of Iwasawa modules.

(3) For an abelian CM-extension L/k which is unramified outside p
and the cyclotomic Zp-extension L∞/L, we can determine the Fitting
ideal of the Pontrjagin dual of the minus part of the p-part of the class
group of L∞, using Theorem 1.2. For the details, see [2].

(4) It appears that the (finite) quotient moduleQ(G) = IK∞/aGIK∞

can quickly become very large. Arguments from commutative algebra
and calculations show that for example in the homogeneous case with
n = 1, p = 3 and s = 5 (s = 6), the length of Q(G) is at least 1230
(13710 respectively). It also appears that in the homogeneous case with
n = 1 and any p, the length of Q(G) grows at least as fast as a positive
constant times ps for s→ ∞. We will treat this question in more detail
in future work.
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(5) The method to get Theorem 1.2 could probably be applied to
certain cohomology groups of more general p-adic representations (or
of motives) satisfying suitable properties. We will come back to this
problem in the future.

(6) We can prove the case p = 2 of Theorem 1.2 by the same method
if we can establish the usual main conjecture for each character of G,
replacing ΘK∞/k,S by 2−[k:Q]ΘK∞/k,S under the assumption that µ = 0.
And indeed, it seems that Wiles’ argument in [8] implies the usual main
conjecture even for the case p = 2 if µ = 0. This means that Theorem
1.2 should hold even for the case p = 2, which we hope to be able to
study in future work

Let us explain in which respect our equivariant main conjecture pro-
duces information that goes beyond the usual main conjecture, which
treats the characteristic ideal of the χ-component of XK∞,S for any
character χ of Gal(K/k). If we denote by Kχ the cyclic extension of k
corresponding to χ, the characteristic ideal of the χ-component is deter-
mined by XKχ,∞,S . In other words, the usual main conjecture contains
only information on XK∞,S for cyclic K/k, without even determining
it completely as a module. Our equivariant main conjecture gives more
precise information.

We will explain that our equivariant main conjecture even contains
information on objects attached to the finite extension K/k. LetMS/K
be the maximal abelian pro-p extension which is unramified outside S.
We define GS by

GS = Ker(Gal(MS/K) −→ Gal(K∞/K)),

which is a Zp[Gal(K/k)]-module. Let ResK∞/K : ΛK∞ → Zp[Gal(K/k)]
be the natural map induced by the restriction. Then, we get from The-
orem 1.2

Corollary 1.5. FittZp[Gal(K/k)](GS) = ResK∞/K(aGIK∞ΘK∞/k,S).

In fact, taking the Galois coinvariants of XK∞,S , we can apply the
argument of Corollary 4.1 in [2] to get the above corollary. Note also that
both sides of the above equation are in principle numerically computable.
Example. Take k = Q, p = 3, and Q(ℓ) the unique cubic extension of
conductor ℓ for any prime ℓ ≡ 1 (mod 3).

In general, suppose that G = Gal(K/k) = (Z/pZ)⊕2 (so s = 2) and
write

ΘK∞/k,S = α−1
NG
T

+ α0 + α1T + α2T
2 + . . .
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with α−1 ∈ Zp, and αi ∈ Zp[G] for all i ≥ 0, where NG = Σσ∈Gσ. In
this case, we have aG = mK∞ , which implies

ResK∞/K(mK∞IK∞ΘK∞/k,S) = α−1pNGZp[G] +mGIGα0,

where mG and IG are the maximal ideal and the augmentation ideal of
Zp[G], respectively.

We now take K to be the composite field of Q(7) and Q(13), so
K is the (Z/3Z)⊕2-extension of conductor 91. We denote by σ and τ
a generator of Gal(Q(7)/Q) and Gal(Q(13)/Q) respectively, and regard
σ, τ as generators of G. (Warning: Only in the present example, we use
σ, τ instead of σ1, σ2 for generators of G. Notation will change later,
and the generators of an abelian p-group will be written σ1, . . . , σs, so
σ becomes σ1 and τ becomes σ2, and we will set τi = σi − 1.) In this
concrete example, α−1 is a unit, and α0 is computed as

α0 ≡ 48+42σ+38σ2 +62τ +42στ +80σ2τ +45τ2 +44στ2 +70σ2τ2 (mod 34)

up to a unit factor. Put x = σ− 1 and y = τ − 1 (again, x, y will be τ1,
τ2, later). As a result, we can compute the right hand side of Corollary
1.5 as

(1) ResK∞/K(mK∞IK∞ΘK∞/k,S) = (27, 9x, 3y, xy2, 6x2 + x2y).

Note that this is an ideal of finite index, and that ideals of this kind do
not usually appear in Iwasawa theory.

Now we compute the left hand side of Corollary 1.5 directly. Using
PARI-GP we find that

GS ≃ Z/9Z⊕ Z/9Z⊕ Z/9Z⊕ Z/3Z,

and the actions of σ and τ are described by the matrices
1 4 −3 0
0 −2 3 0
0 −4 4 0
3 3 0 1

 ,


−2 −3 3 0
0 4 0 0
−3 3 1 0
0 0 0 1

 ,

respectively. This means that when we take generators e1, e2, e3, e4 of
GS corresponding to the above decomposition, the actions of σ and τ
are

σ(e1) = e1 + 4e2 − 3e3, τ(e1) = −2e1 − 3e2 + 3e3, . . . etc.
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We would like to thank J. Nomura for computing the actions for us.
Then some further computations show that GS has the relation matrix

7x2 − 6x 3x− 3 0
x x 0

3 + 3x 0 −x
3 + y + 3x −3 0
7xy − 3x 3y 0
6 + 3x −y 0

0 0 y
9 0 0
0 9 0
0 0 3


as a Zp[G]-module. Thus, FittZp[G](GS) is the ideal generated by all
3× 3-minors of the above matrix. We get

(2) FittZp[G](GS) = (27, 9x, 3y, xy2, 6x2 + x2y).

For example, the determinant of the submatrix obtained by picking the
4-th, 6-th and 7-th row gives 3y times a unit. In fact, −3y2 − y3 −
3xy2+18y+9xy = 3y(7+3x−xy) since we know y3 = −3y−3y2, using
(1 + y)3 − 1 = 0. In this way, we can check Corollary 1.5 numerically,
using (1) and (2). It does come out correctly, and this demonstrates
that our theorem contains rather delicate information on GS .

The authors would like to thank both referees for their careful read-
ing, and are particularly indebted to one of them for a long list of help-
ful comments and suggestions. The third author would like to thank F.
Sudo for discussions on graph theory with him. The second author and
the third author are partially supported by JSPS Core-to-core program,
“Foundation of a Global Research Cooperative Center in Mathematics
focused on Number Theory and Geometry”.

§2. The matrix M̃s and the minors

2.1. A free resolution of Z
We consider the group G and the group ring R as in §1.1. The free

resolution of Z as an R-module

Rs(s+1)(s+2)/6 Φ3−→ Rs(s+1)/2 Φ2−→ Rs
Φ1−→ R −→ Z −→ 0

constructed in [2] §1.2 from the tensor products of group rings of cyclic
groups can be described in the following way. We write (xi)1≤i≤s for
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the standard basis of Rs, (xixj)1≤i≤j≤s for a basis of Rs(s+1)/2, and

(xixjxk)1≤i≤j≤k≤s for a basis of Rs(s+1)(s+2)/6. Then Φ1 is the homo-
morphism such that Φ1(xi) = τi, and Φ2 is defined by Φ2(x

2
i ) = νixi

and Φ2(xixj) = τixj − τjxi if i < j. The homomorphism Φ3 is defined
by

Φ3(x
3
i ) = τix

2
i ,

Φ3(x
2
ixj) = τjx

2
i + νixixj if i < j,

Φ3(xix
2
j ) = τix

2
j − νjxixj if i < j,

and

Φ3(xixjxk) = τixjxk − τjxixk + τkxixj if i < j < k.

We define an s(s + 1)(s + 2)/6 by s(s + 1)/2 matrix M̃s as the matrix

corresponding to Φ3. The rows of M̃s are labeled by xixjxk, and the
columns are labeled by xℓxn. In any one row there are at most 3 nonzero
entries, so M̃s is sparse. For an example, we refer the reader to subsection
1.2 of [2], where the matrix M̃3 is written out completely (see also the

beginning of §4). We will study submatrices and minors of M̃s. As in
§1.1 we use the notation mv to denote the ideal of R generated by all
v-minors of the matrix M̃s.

2.2. Admissible polynomials

We consider monomials ν = νf11 · . . . · νfss in ν1,. . . ,νs ∈ R. We say
ν is ordered if f1 ≥ . . . ≥ fs. Also, we say it is ordered and admissible if
it is ordered and the inequalities

i∑
j=1

fj ≤
i∑

j=1

(s− j)

are satisfied for all i such that 1 ≤ i ≤ s. The right hand side equals the
quantity φ(i) introduced in subsection 1.2.

We say ν = νf11 ·. . .·νfss is admissible if it is obtained from an ordered
admissible monomial by permuting the νi. If we take s = 4, then for
example ν31ν

2
2ν3 is ordered and admissible, ν1ν

3
2ν

2
3 is admissible but not

ordered, and ν32ν
3
3 is not admissible.

Let D be the set of all doubletons in {1, 2, . . . , s}, and let ϕ : D −→
{1, 2, . . . , s} any map satisfying ϕ(D) ∈ D for allD ∈ D. We called every
such map a selector in [2]. A partial selector ψ is, by definition, a map
from a subset Dψ of D to {1, 2, . . . , s}, again satisfying the condition
ψ(D) ∈ D whenever ψ(D) is defined. We define a monomial ν(ψ) by
ν(ψ) =

∏
D∈Dψ νψ(D).
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Lemma 2.1. Suppose that ν = νf11 · . . . · νfss is admissible. Then
there is a partial selector ψ : Dψ −→ {1, 2, . . . , s} such that ν = ν(ψ).

Proof. Since ν is admissible, we can take an admissible monomial ν′

which is of degree s(s−1)/2 and which is a multiple of ν. By permuting
the νi of ν

′, we have an ordered and admissible ν′′. By [2] Proposition
1.2, we know that there is a selector ϕ such that ν′′ = ν(ϕ). This implies
that there is a selector ϕ′ satisfying ν′ = ν(ϕ′), and that there is a partial
selector ψ satisfying ν = ν(ψ). Q.E.D.

We note that our definition of “admissibility” in this paper is slightly
different from that we gave in [2], but they are equivalent by Lemma 2.1
(see page 950 in [2]).

By Proposition 1.4 in [2] and the above Lemma 2.1, we know that

if ν = νf11 · . . . · νfss is admissible, then ±ν appears as a minor of M̃s.
For an integer 0 < d ≤ s(s − 1)/2, let nd denote the ideal of R

generated by all admissible monomials in ν1, . . . , νs of degree d. We
also define n0 = R and ns(s−1)/2+1 = 0. Now we have explained all the
notation in §1.1.

§3. Proof of Theorem 1.2

In this section we prove Theorem 1.2, assuming Theorem 1.1.
Let K/k, S, ΛK∞ , XK∞,S , ΘK∞/k,S be as in §1.2. We write

ΛK∞ = Zp[G][[Gal(K∞/K)]] = Zp[G][[T ]],

where 1+T is a generator of Gal(K∞/K). Let σ1, . . . , σs be generators
of G corresponding to the decomposition G ≃

⊕s
i=1 Z/pniZ. We define

τi = σi−1, νi = N<σi> as above, and define mv to be the ideal of Zp[G]
generated by all v-minors of the matrix M̃s. We note that mv is an ideal
of Zp[G] (not of Z[G]) in this section. We define an ideal AG of ΛK∞ by

AG = (m s(s−1)
2

+1
T s−1 +m s(s−1)

2

T s + . . .+m1T
s(s+1)

2
−1 + T

s(s+1)
2 Zp[G])ΛK∞ .

Suppose that Ω2 = Ker(Φ1 : Zp[G]s −→ Zp[G]) where Φ1 is defined as
in the previous section, and regard Ω2 as a ΛK∞ -module with the trivial
action of T (Tx = 0 for all x ∈ Ω2). Then the meaning of this ideal AG
is explained by AG = FittΛK∞

(Ω2).
We proved in [3] Theorem 4.1 that

FittΛK∞
(XK∞,S) = T 1−sAGΘK∞/k,S .

Thus what we have to prove is the following
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Proposition 3.1. Theorem 1.1 implies T 1−sAG = aGIK∞ .

LetH = (τ1, . . . , τs) be the ideal of Zp[G] generated by all τi = σi−1,
andmv as defined in §1.2. We suppose that nd is an ideal of Zp[G] rather
than of Z[G], namely it is an ideal of Zp[G] generated by all admissible
ν-monomials of degree d. We first prove two lemmas.

Lemma 3.2. Let aug : Zp[G] −→ Zp be the augmentation homo-
morphism. Then for any v such that 0 ≤ v ≤ s(s− 1)/2 we have

aug(nv) = pmvZp .

Proof. If v = 0, this follows from n0 = Zp[G] and m0 = 0. We
suppose v > 0. We note that for every 1 ≤ α ≤ s,

να = 1 + (1 + τα) + . . .+ (1 + τα)
pnα−1 = pnα + ταβα

for some βα ∈ Zp[G]. Thus we have aug(να) = pnα . For ν = νa1 ·. . .·νav ,
we have aug(ν) = pcν where cν =

∑v
w=1 naw . Thus if φ(α) < v ≤

φ(α+ 1) for some α with 0 ≤ α ≤ s− 2 and

(3) ν = νs−1
1 · . . . · νs−αα ν

v−φ(α)
α+1 ,

then aug(ν) = pmv . Note that the above ν is ordered and admissible.
On the other hand, if ν is admissible and aug(ν) = pcν , it follows

from the definitions of mv and of admissibility that cν ≥ mv. Thus we
get Lemma 3.2. Q.E.D.

Lemma 3.3. We assume Theorem 1.1. Then for any integer v such
that 0 ≤ v ≤ s(s− 1)/2, we have

mv =

v∑
d=0

pmdHv−d.

Proof. By Theorem 1.1 we have

mv =

v∑
d=0

ndH
v−d.

Therefore, it is enough to prove

(4)

v∑
d=0

ndH
v−d =

v∑
d=0

pmdHv−d.

We prove this equality by induction on v. First of all, if v = 0, then
both sides are trivial and we get equality. Suppose that ν = νa1 · . . . ·νav
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is admissible. Since aug(νaw) = pnaw for any w with 1 ≤ w ≤ v as in
the last lemma, we have

(5) ν = νa1 · . . . · νav ∈
v∏

w=1

(pnawZp[G] +H) ⊂
v∑
d=0

pmdHv−d

by the argument of the proof of Lemma 3.2. Note that the second
inclusion comes from aug(nd) = pmdZp (0 ≤ d ≤ v), which is nothing
but Lemma 3.2. This shows that ν is in the right hand side of (4).
Therefore, nd is in the right hand side of (4). We have
(6)
v−1∑
d=0

ndH
v−d = H

v−1∑
d=0

ndH
v−1−d = H

v−1∑
d=0

pmdHv−1−d =

v−1∑
d=0

pmdHv−d

where we used the inductive hypothesis to get the second equality. Thus
we know that the left hand side of (4) is contained in the right hand side
of (4).

On the other hand, if we take ν as in (3), then aug(ν) = pmv and
(5) together with the equation (6) show that pmv is in the left hand side
of (4). This together with (6) implies that the converse inclusion also
holds. This completes the proof of Lemma 3.3. Q.E.D.

Now we prove Proposition 3.1. First of all, it follows from Theorem
1.1 thatm s(s−1)

2 +1
= Hm s(s−1)

2
. Thus by the definition of AG and Lemma

3.3, we have

T 1−sAG = (

s(s−1)
2∑

v=0

mvT
s(s−1)

2 +1−v +Hm s(s−1)
2

)ΛK∞

= (

s(s−1)
2∑

v=0

v∑
d=0

pmdHv−dT
s(s−1)

2 +1−v +H

s(s−1)
2∑

d=0

pmdH
s(s−1)

2 −d)ΛK∞ .

Since IK∞ is generated by H and T , we have

T 1−sAG = T

s(s−1)
2∑

d=0

pmdI
s(s−1)

2 −d
K∞

+H

s(s−1)
2∑

d=0

pmdH
s(s−1)

2 −dΛK∞

= IK∞

s(s−1)
2∑

d=0

pmdI
s(s−1)

2 −d
K∞

= IK∞aG .
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Thus we have proved Proposition 3.1 and Theorem 1.2, assuming The-
orem 1.1.

§4. Outline of the proof of Theorem 1.1

In the rest of this paper we prove Theorem 1.1. We compute the
higher Fitting ideals of Ω2, using the relation matrix of Φ3. As we
mentioned in §1.1, we only have to prove mv ⊃

∑v
d=0H

v−dnd. To show
this inclusion, for an element x of the right hand side, we construct an
explicit lower triangular submatrix of the relation matrix of Φ3, whose
determinant is ±x. Thus we may neglect the signs of entries of the
relation matrix, and think of the matrix M̃s in the following way. The
row and the column labels of M̃s are xixjxk and xℓxn, respectively,
which we denote, for simplicity, by ijk and ℓn, respectively.

In the i3 = i · i · i-row, there is only one nonzero entry τi in the
i2 = i · i-column. In the i2 · j = i · i · j-row with i ̸= j, there are only two
nonzero entries: τj in the i2 = i · i-column, and νi in the i · j-column.
In the i · j · k-row with i < j < k, there are only three nonzero entries:
τk in the i · j-column, τj in the i · k-column, and τi in the j · k-column.

Therefore, M̃s is roughly of the following form:



1·1 . . . s·s 1·2 1·3 . . . 2·3 . . . (s−1)·s

1·1·1 τ1
. . . . . .
s·s·s τs
1·1·2 τ2 ν1
. . . . . . . . . . . .
(s−1)·s·s τs−1 νs
1·2·3 τ3 τ2 τ1

. . . . . . . . .

(s−2)·(s−1)·s . . . τs−2



.

In the rest of this paper we assume s ≥ 3. Put

t =
s(s− 1)

2
+ 1.

We fix 0 ≤ v ≤ t and consider elements x ∈ Hv−dnd (with 0 ≤ d ≤ v)
of the form x = τ(x)ν(x), where τ(x) is any monomial in τ1, . . . , τs
of degree v − d and ν(x) is any admissible monomial in ν1, . . . , νs of
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degree d. Sometimes τ(x) (and ν(x)) will be called the τ -part (ν-part
respectively) of x. For the proof of Theorem 1.1, we may assume that
there is no index i such that τ(x) contains the factor τi and ν(x) contains
the factor νi, since then x would be zero.

For any such monomial x, it is our plan to exhibit a square subma-
trix M(x) of M̃s which is lower triangular and whose determinant is x.
Note that then the determinant is the product of all diagonal entries;
these entries are of the form τi or νj , and hence the size of the matrix
must equal the degree v of the given monomial x. It turns out that
the essential difficulty is to handle the case where v = t (the maximal
possible value); it will only take one paragraph at the very end of §9 to
deduce the case v < t from this.

However, handling the case v = t is an arduous task and requires a
series of intermediate steps. Let us try to outline these steps. We call
x a τ -monomial if x = τ(x) in the above notation, that is, ν(x) = 1.
Similarly, x is a ν-monomial if x = ν(x). In general, x will be a (τ, ν)-
monomial, meaning that it contains factors τi as well as νj .

We first explain our proof for τ -monomials. We consider the subma-
trix Cs of M̃s whose row labels are ijk such that i, j, k are all distinct,
and whose column labels are ℓn with ℓ ̸= n. This submatrix is in a fairly
large southeastern part of M̃s. We systematically construct lower tri-
angular submatrices of Cs, which “realize” τ -monomials x of relatively
small degree.

As a first step (§5), we will construct lower triangular submatrices
Nj,Sj = Nj,Sj (a1, ..., am), which realize τ -monomial of degree m ≤ s −
2, where j is an integer 3 ≤ j ≤ s, a1,...,am are certain integers in
{1, . . . , j−1}, and Sj is a subset of {1, . . . , s}. Two important properties
of this matrix is that (i) detNj,Sj (a1, ..., am) = τa1 · . . . τam , and (ii) the
column labels are bj for some b’s. There is one more important property
of this matrix, which we do not state here, see Proposition 5.2.

Using these submatrices in §5, we will realize in §7 an arbitrary
τ -monomial τ of degree (s − 1)(s − 2)/2 by constructing a submatrix
T (τ) of Cs (see Theorem 7.3). By the property (ii) we mentioned in the
previous paragraph, the column labels of N3,S3 ,...,Ns,Ss are all distinct.
Noting this, we construct T (τ) by combining N3,S3

,...,Ns,Ss . In this
section there are two subcases. Case I occurs when τ does not involve
every factor τ1, . . . , τs; then a fairly straightforward combination of the
submatrices Nj,Sj with Sj empty, produces the desired result. Case II
is the case that all τ1, . . . , τs divide τ . This case is much harder and we
need to make a careful choice of Ss with the help of graph theory. We
give no details here but refer the reader to §7 and in particular to the
example given there.
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Next, in §8 we are able to raise the degree to the required maximum,
namely to t, constructing a submatrix M(τ) of M̃s. Now we use subma-
trices outside Cs to construct M(τ), but the result in §7 we mentioned
above plays the most important role.

We explain our proof for a general monomial x. If x is a ν-monomial,
the conclusion was already proved in the end of §2. So we assume that
x is neither a τ -monomial nor a ν-monomial. In §6, we first slightly
modify and extend the construction of §5: here we construct a sub-
matrix N ′

j,Sj
= N ′

j,Sj
(a1, . . . , am′) of M̃s, which realizes a monomial

whose τ -part is as in §5, and whose ν-part is of the form νfj for ar-

bitrary j (as in §5) and suitable exponent f . More precisely, we get

detN ′
j,Sj

(a1, . . . , am′) = νfj τa1 · . . . τam′ .

Finally, in §9 we combine the outcome of §§6 and 8 to treat general
(τ, ν)-monomials x of degree t. To construct a submatrix M(x) which
realizes a general monomial x, we have to combine several N ′

j,Sj
with

careful choices of Sj ’s, M(τ) in §8 for some τ dividing the τ -part of x,

and several other submatrices of M̃s. This will then complete the proof
of Theorem 1.1.

§5. Small τ-monomials

In this section we deal with certain τ -monomials of relatively small
degree. For this, we consider the submatrix Cs of M̃s whose row labels
are ijk with 1 ≤ i < j < k ≤ s and whose column labels are ℓn with
1 ≤ ℓ < n ≤ s. This matrix Cs has s(s−1)(s−2)/6 rows and s(s−1)/2
columns. It occupies a large region in the south-east of the entire matrix
M̃s, which (let us recall) has format s(s+ 1)(s+ 2)/6 by s(s+ 1)/2.

Suppose that j is an integer such that 3 ≤ j ≤ s and fix it in this
section. Let S be a subset of {1, 2, . . . , j − 1}. We put m = j − 2−#S,
and assumem > 0. The subset S may be empty. We consider a sequence
of integers a1,. . . ,am. We say in this paper that an m-tuple (aµ)1≤µ≤m
is cautiously increasing if it is non-decreasing and never jumps by more
than one; namely aµ+1 − aµ = 0 or 1 for all 1 ≤ µ ≤ m − 1. Suppose
that (aµ)1≤µ≤m is cautiously increasing, 1 ≤ a1 ≤ am ≤ j − 1, and
{a1, . . . , am} ∩ S is empty. We will construct in this section a certain

submatrix Nj,S(a1, . . . , am) of Cs (and hence of M̃s), which has deter-
minant τa1 · . . . · τam .

We arrange the numbers 1, 2, . . . , j − 1 in the following order:

a1, a1 + 1, . . . , j − 1, 1, 2, . . . , a1 − 1,
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and remove the elements in S. Let us call the resulting sequence

b0, b1, . . . , bm.

Especially, b0 = a1 since a1 is not in S. Note that (bµ)1≤µ≤m de-
pends only on a1 and S. We use (bµ)1≤µ≤m for the construction of
Nj,S(a1, . . . , am), but not b0. We note that by definition if µ ̸= ρ, we
have bµ ̸= bρ.

Lemma 5.1. For any µ and ρ such that 1 ≤ µ ≤ m and µ ≤ ρ ≤ m,
we have aµ ̸= bρ.

Proof. Suppose at first that a1 < bρ ≤ am. Since a1, . . . , am are
not in S and cautiously increasing, we have b1 = a1+1, b2 = a1+2, . . . ,
bρ = a1+ρ. Since (aµ) is cautiously increasing, we have aµ ≤ a1+µ−1.
Thus we obtain

aµ ≤ a1 + µ− 1 ≤ a1 + ρ− 1 < a1 + ρ = bρ,

which implies aµ ̸= bρ.
Next, if bρ > am, it is clear that aµ ̸= bρ because aµ ≤ am < bρ.
Finally, suppose that bρ ≤ a1. Since ρ ̸= 0, we know bρ ̸= a1 and

get bρ < a1 ≤ aµ. Thus we obtain the conclusion. Q.E.D.

By Lemma 5.1 we have aµ ̸= bµ for all 1 ≤ µ ≤ m. Since aµ, bµ < j,
we know #{aµ, bµ, j} = 3 and #{bµ, j} = 2. Therefore, we can pick
a submatrix N = Nj,S(a1, . . . , am) of Cs by specifying the row labels
a1b1j, a2b2j, . . . , ambmj and the column labels b1j, b2j, . . . , bmj, in
this exact order. Then the diagonal term at position (aµbµj, bµj) is τaµ ,
since the µ-th row label is aµbµj and the µ-th column label is bµj. Thus
Nj,S(a1, ..., am) is the matrix of the form



b1j b2j ... bmj

a1b1j τa1
a2b2j τa2 0
... ...

ambmj ∗ τam

.

If µ < ρ, the (aµbµj, bρj)-entry of N is zero, since bρ ̸= bµ and bρ ̸= aµ
by Lemma 5.1. This shows that the matrix N is lower triangular, and
the product over the diagonal is τa1 · · · τam . Thus we have obtained
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Proposition 5.2. Take S ⊂ {1, 2, ..., j − 1}, and a cautiously in-
creasing sequence a1,...,am of elements in {1, 2, ..., j − 1} \ S such that
m = j−2−#S > 0. Then the matrix Nj,S(a1, ..., am) is lower triangular
and

detNj,S(a1, ..., am) =

m∏
µ=1

τaµ .

This matrix has no column labels a1j, nor kj with k ∈ S. In other
words, the column labels of Nj,S(a1, ..., am) are bj with b ∈ {1, ..., j −
1} \ (S ∪ {a1}).

Example. Take j = 10, S = {1, 7} and N10,S(3, 3, 3, 4, 4, 5). Then,
since

a1 = a2 = a3 = 3 < a4 = a5 = 4 < a6 = 5,

we find
b1 = 4, b2 = 5, b3 = 6, b4 = 8, b5 = 9, b6 = 2.

Therefore, the matrix N10,S(3, 3, 3, 4, 4, 5) is



4 · 10 5 · 10 6 · 10 8 · 10 9 · 10 2 · 10
3 · 4 · 10 τ3
3 · 5 · 10 τ3 0
3 · 6 · 10 τ3
4 · 8 · 10 τ8 τ4
4 · 9 · 10 τ9 τ4
5 · 2 · 10 τ2 τ5

.

§6. Introducing a power of νj

We construct a submatrix N ′
j,S(a1, ..., am′) of M̃s, which is a modi-

fication of Nj,S(a1, ..., am) in the previous section. Note that this is no
longer a submatrix of Cs since we will now use row labels of type bjj,
that is, with repeated numbers. The column labels we use, however,
will still be “square-free”. The point will be that the determinant of our
submatrix is a τ -monomial as in the previous section multiplied by a
power of a single element νj . This will be used later to assemble much
bigger matrices whose determinant involves powers of several νj .

Let j, S ⊂ {1, 2, ..., j−1} be as in the previous section. Suppose that
a1,...,am′ is a cautiously increasing sequence of elements in {1, 2, ..., j −
1} \ S with m′ ≤ m = j − 2−#S.

Using a1 and S, we define a sequence b0, . . . , bm as in the previ-
ous section. Recall that µ 7→ bµ is a bijection from {0, 1, . . . ,m} to
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{1, 2, . . . , j − 1} \ S. Put f = m−m′ + 1. We consider the square ma-
trix N ′ = N ′

j,S(a1, . . . , am′) of size m + 1 whose column labels are b0j,

b1j, . . . , bmj and whose row labels are b0j
2, b1j

2, . . . , bf−1j
2, a1bf j,

a2bf+1j, . . . , am′bmj, in this exact order. Note that f+m′−1 = m. We
define (a′µ)1≤µ≤m by a′µ = a1 for µ = 1, . . . , f , and a′µ = aµ−f+1 for any

µ such that f < µ ≤ m. Then N ′ has row labels b0j
2, b1j

2, . . . , bf−1j
2,

a′fbf j, a
′
f+1bf+1j, . . . , a

′
mbmj. By definition, (a′µ)1≤µ≤m is cautiously

increasing. We have
a′µ ̸= bρ

for any µ and ρ such that f ≤ µ ≤ ρ ≤ m by Lemma 5.1. Therefore,
#{a′µ, bµ, j} = 3 and N ′ is certainly a submatrix of M̃s. We see that N ′

is of the form



b0j b1j . . . bf−1j bf j bf+1j . . . bmj

b0j
2 νj

b1j
2 νj 0

. . . . . .
bf−1j

2 νj
a′f bf j τa1

a′f+1bf+1j τa2

. . . . . .
a′mbmj ∗ τam′


.

In the rows having labels b0j
2, b1j

2, . . . , bf−1j
2, there is only one

nonzero entry νj at the diagonal position because bµ ̸= j. Therefore,
the above inequality a′µ ̸= bρ implies that N ′ is lower triangular. Thus
we have obtained

Proposition 6.1. Take S ⊂ {1, 2, . . . , j − 1}, and a cautiously in-
creasing sequence a1, . . . , am′ of elements in {1, 2, . . . , j − 1} \ S with
m′ ≤ m = j − 2 − #S. Then the matrix N ′

j,S(a1, . . . , am′) is lower
triangular and

detN ′
j,S(a1, . . . , am′) = νfj

m′∏
µ=1

τaµ ,

where f = m − m′ + 1. This matrix N ′
j,S(a1, . . . , am′) has no column

labels kj with k ∈ S.

§7. Bigger τ-monomials

In this section we exhibit lower triangular submatrices whose deter-
minants are τ -monomials of much higher degree than in section 5. We
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do not quite reach the necessary maximal degree t = s(s− 1)/2+ 1 yet,
but we save some room for later, only working within the submatrix Cs
introduced earlier. The matrix T (τ) constructed in this section plays an
important role in later sections. We put

t0 =
(s− 1)(s− 2)

2
.

Let τ be a monomial of degree t0 in τ1, . . . , τs;

τ = τe11 τe22 · · · τess .

We will construct a submatrix of Cs which is lower triangular and whose
determinant is τ . We say τ is ordered if e1 ≥ . . . ≥ es is satisfied.

We may and will assume τ is ordered. Since the degree of τ is t0,
we have

(7)

s∑
i=1

ei = t0 =
(s− 1)(s− 2)

2
.

For a monomial x = τa1τa2 · · · τaq such that a1 ≤ . . . ≤ aq is satisfied,
if y = τa1 · · · τaµ and z = τaµ+1

· · · τaq for some µ with 1 ≤ µ ≤ q, we
say that x = yz is an ordered decomposition. We make the ordered
decomposition

τ = τ (3)τ (4) · · · τ (s)

such that the degree of τ (j) is j−2 for any j with 3 ≤ j ≤ s. This means
that if we write

τ = τa1τa2 · · · τat0
with a1 ≤ a2 ≤ . . . ≤ at0 , then τ

(3), . . . , τ (s) are defined by

τ (3) = τa1 , τ
(4) = τa2τa3 , . . . ,

τ (j) = τadj+1
τadj+2

· · · τadj+j−2
, . . . , τ (s) = τads+1

τads+2
· · · τat0

where dj = (j − 2)(j − 3)/2. Since τ is ordered, (adj+n)1≤n≤j−2 is
cautiously increasing for all j.

Lemma 7.1. For any j such that 3 ≤ j ≤ s − 1, τ (j) consists of
τi’s with i ≤ j − 1.

Proof. It is enough to prove

j−1∑
i=1

ei ≥ dj+1 =

j−2∑
i=1

i =
(j − 1)(j − 2)

2
.
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Since τ is ordered, it follows from (7) that

j−1∑
i=1

ei ≥ (s− 1)(s− 2)

2
· j − 1

s
=

(s− 3)(j − 1)

2
+
j − 1

s

>
(s− 3)(j − 1)

2
≥ (j − 1)(j − 2)

2
.

This completes the proof. Q.E.D.

Case I. We assume es = 0.
For any j such that 3 ≤ j ≤ s, suppose that

τ (j) = τadj+1
τadj+2

· · · τadj+j−2

as above. Then by Lemma 7.1 we have adj+1 ≤ adj+2 ≤ . . . ≤ adj+j−2 ≤
j−1 if j ≤ s−1. For j = s, since es = 0 by our assumption , τ (j) consists
of τm’s with m ≤ s− 1.

Therefore, noting that (adj+n)1≤n≤j−2 is cautiously increasing, we
can construct Nj,S(adj+1, adj+2, . . . , adj+j−2) with S = ∅ (see §5) for

any j such that 3 ≤ j ≤ s. We denote this matrix by Nj(τ
(j)).

We define

T (τ) =


N3(τ

(3))
N4(τ

(4)) 0
. . .

∗ Ns(τ
(s))


which is a submatrix of Cs.

If abj is a row label of T (τ) for some a, b < j, then it is a row label
of Nj(τ

(j)). For any j′ such that j′ > j and any k, the entry of (abj, kj′)
is zero because {k, j′} ̸⊂ {a, b, j}. This together with Proposition 5.2
shows that T (τ) is lower triangular. It is clear from Proposition 5.2 that

detT (τ) = τ (3)τ (4) · · · τ (s) = τ.

Case II. We assume es > 0. We note that this condition together with
the condition that τ is ordered implies s ≥ 5, since t0 < s if s ≤ 4.
Note that no case s > 4 was covered by the verifications done in [2]. By
Lemma 7.1 we can define Nj(τ

(j)) for any j such that 3 ≤ j ≤ s− 1 as
in Case I.

In our arguments so far, we used row labels abj with a, b < j ≤ s
to produce factors τa in the determinant. So this excludes a = s, which
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means that in order to produce factors τs, we have to resort to tricks.
The row labels used for this will be abs, with corresponding column
labels ab, and the pairs ab used for this have to be chosen with the
utmost care, to control the interference with other rows and columns
(some row labels abs have probably been used up already). We will
have to use some graph theory at this point.

We put z = (s− 2)(s− 3)/2 = ds and write

τ (s) = τaz+1
τaz+2

· · · τaz+s−2
,

where az+1, az+2, . . . , az+s−2 is cautiously increasing. By our assump-
tion, we know az+s−2 = at0 = s. Put s− ℓ = az+1 for some ℓ ∈ Z. Since
az+1, az+2, . . . , az+s−2 is cautiously increasing, we get

az+1 ≥ s− (s− 2) + 1 = 3,

which implies ℓ ≤ s− 3. Also, the inequality in the proof of Lemma 7.1
for j = s− 1 shows that

s−2∑
i=1

ei >
(s− 3)(s− 2)

2
= z,

which implies az+1 ≤ s− 2. Therefore, we have 2 ≤ ℓ ≤ s− 3.
Let m be the positive integer such that az+m = s−1 and az+m+1 =

s. Since az+m+1 = . . . = az+s−2 = s, we have

(8) es = s− 2−m .

Since az+1 = s− ℓ and az+m+1 = s, we know ℓ = az+m+1 − az+1 ≤ m,
which implies

es + 1 = s−m− 1 ≤ s− ℓ− 1 < s− ℓ .

Let j be an integer satisfying 3 ≤ j ≤ s−1. We note that τ (j) begins
with τadj+1

, namely there is an ordered decomposition τ (j) = τadj+1
τ ′

for some τ ′. Then by Proposition 5.2, adj+1j is not a column label of

Nj(τ
(j)) for any j.
For an integer k such that 3 ≤ k ≤ s− 1, we consider an undirected

graph G(k) whose vertices V (k) and edges E(k) are defined as follows:

V (k) = {1, . . . , k}, E(k) = {{adj+1j} | 3 ≤ j ≤ k} ∪ {{12}}.

By induction on k we can show that G(k) has no closed path. Therefore,
it is a tree and connected (see for example, [9] Theorem 3.1).
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We consider the graph G(k) with k = s− ℓ, namely G(s− ℓ). Using
the inequality s − ℓ > es + 1 which we showed above and the fact that
G(s− ℓ) is connected, we can take a subgraph G′ of G(s− ℓ) such that

• G′ is a tree (hence connected),
• s− ℓ is a vertex of G′,
• the set V (G′) of vertices of G′ consists of es + 1 elements, and
• the set E(G′) of edges of G′ consists of es elements.

We write
E(G′) = {{h1g1}, . . . , {hesges}}.

Example. Take s = 7 and τ = τ31 τ
2
2 τ

2
3 τ

2
4 τ

2
5 τ

2
6 τ

2
7 . The degree of τ is 15.

By the ordered decomposition of τ , we have τ (3) = τ1, τ
(4) = τ21 , τ

(5) =
τ22 τ3, τ

(6) = τ3τ
2
4 τ5, and τ

(7) = τ5τ
2
6 τ

2
7 . Therefore, ℓ = #{5, 6, 7} − 1 =

3− 1 = 2. The graph G(6) has edges

E(6) = {{12}, {13}, {14}, {25}, {36}}.

Certainly, G(6) is a tree. We consider G(5). In this case there is a unique
connected subgraph G′ of G(5), which has 3 vertices, and of which 5 is
a vertex. Namely, G′ has vertices V (G′) = {1, 2, 5} and edges

E(G′) = {{12}, {25}}.

So we can take h1 = 1, g1 = 2, h2 = 2, g2 = 5.

In what follows, some of the row and column labels become a little
complex. For better visibility, we sometimes put them between curly
brackets { }, that is, we sometimes use {abc}, {ab} instead of abc, ab for
row and column labels.

We consider a matrix Nτ,s(G
′) whose row labels are {hµgµs}1≤µ≤es

and whose column labels are {hµgµ}1≤µ≤es . Since {hµgµ} are all differ-
ent, this is a submatrix of Cs. It is a diagonal matrix τsI where I is the
identity matrix;

Nτ,s(G
′) =



h1g1 h2g2 . . . . hesges
h1g1s τs
h2g2s τs 0
. . . . . .

hesgess 0 τs

 .

Next, we set SG′ = V (G′)\{s−ℓ}. Then we have #SG′ = es+1−1 =
es. It follows from (8) that

m = s− 2− es = s− 2−#SG′ .
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Therefore, we can define Ns,SG′ (az+1, az+2, . . . , az+m), which was con-
structed in §5 for j = s and S = SG′ . We put

Ns,G′(τ (s)) = Ns,SG′ (az+1, az+2, . . . , az+m).

Lemma 7.2. (i) For any µ such that 1 ≤ µ ≤ es, {hµgµ} does not

appear in the column labels of N3(τ
(3)), N4(τ

(4)), . . . , Ns−1(τ
(s−1)),

Ns,G′(τ (s)).
(ii) For any µ such that 1 ≤ µ ≤ es, {hµgµs} does not appear in the

row labels of N3(τ
(3)), N4(τ

(4)), . . . , Ns−1(τ
(s−1)), Ns,G′(τ (s)).

(iii) For any µ such that 1 ≤ µ ≤ es, neither {hµs} nor {gµs}
appears in the column labels of N3(τ

(3)), N4(τ
(4)), . . . , Ns−1(τ

(s−1)),
Ns,G′(τ (s)).

Proof. (i) By Proposition 5.2 and the definition of G(s − ℓ), no
edge of G(s − ℓ) appears in the column labels of N3(τ

(3)), N4(τ
(4)),

. . . , Ns−1(τ
(s−1)). Since hµ, gµ ≤ s − ℓ < s and the column labels

of Ns,G′(τ (s)) are of the form {bs}, {hµgµ} is not a column label of

Ns,G′(τ (s)). Thus we get the conclusion.

(ii) Since the row labels of Nj(τ
(j)) are of the form {abj}, {hµgµs}

cannot appear in the row labels of Nj(τ
(j)) for any j < s. Suppose that

{aρbρs} is a row label of Ns,G′(τ (s)). Then by the definition of bρ, it is
not in SG′ ∪ {s− ℓ}. Therefore, we have

(9) bρ ̸∈ {hµ, gµ | µ = 1, 2, . . . , es}.

Thus we get {hµ, gµ, s} ̸= {aρ, bρ, s}, which implies (ii).

(iii) Since the column labels of Nj(τ
(j)) are of the form {bj}, neither

{hµs} nor {gµs} appears in the column labels of Nj(τ
(j)) for any j < s.

For a column label {bρs} of Ns,G′(τ (s)), by (9) we have hµ ̸= bρ and
gµ ̸= bρ for any µ such that 1 ≤ µ ≤ es. Thus neither {hµs} nor {gµs}
appears in the column labels of Ns,G′(τ (s)). Q.E.D.

By Lemma 7.2 (i) and (ii), we can define T (τ) by

T (τ) =



Nτ,s(G
′)

N3(τ
(3)) 0

N4(τ
(4))

. . .

Ns−1(τ
(s−1))∗ Ns,G′ (τ (s))


,

which is a submatrix of Cs. It follows from Lemma 7.2 (iii) that there
is only one nonzero entry in a hµgµs-row of the matrix T (τ). For j′ > j,
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the (abj, kj′)-entry with a, b < j is zero. Therefore, using Proposition
5.2, we know that T (τ) is lower triangular.

Combining Cases I and II, we get

Theorem 7.3. For any τ which is a monomial in τ1, . . . , τs of degree
t0 = (s− 1)(s− 2)/2, we can construct a submatrix T (τ) of Cs, which is
lower triangular and whose determinant is τ . For the case τ is ordered,
an explicit construction of T (τ) is given above.

Example. Consider τ = τ31 τ
2
2 τ

2
3 τ

2
4 τ

2
5 τ

2
6 τ

2
7 for s = 7 as above. Then

T (τ) is described as



1·2 2·5 2·3 2·4 3·4 3·5 4·5 1·5 4·6 5·6 1·6 2·6 6·7 3· 7 4·7
1·2·7 τ7
2·5·7 τ7
1·2·3 τ3 τ1 0
1·2·4 τ4 τ1
1·3·4 τ1
2·3·5 τ3 τ5 τ2
2·4·5 τ4 τ5 τ2
3·1·5 τ1 τ3
3·4·6 τ6 τ3
4·5·6 τ6 τ5 τ4
4·1·6 τ1 τ4
5·2·6 τ6 τ2 τ5
5·6·7 τ7 τ5
6·3·7 τ3 τ6
6·4·7 τ7 τ4 τ6



§8. The final step for τ-monomials

So far we have obtained τ -monomials of degree t0 = (s−1)(s−2)/2.
In a final round we now consider a monomial in τ1, . . . , τs of degree t.
Recall that

t =
s(s− 1)

2
+ 1 = t0 + s ,

and that t is the final degree required in Theorem 1.1. We will construct
a submatrix M(τ) of M̃s of size t, which is lower triangular and whose
determinant is τ .

As in the previous section, we may assume

τ = τe11 τe22 · · · τess
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is ordered, namely e1 ≥ . . . ≥ es. Note that we are assuming Σsi=1ei = t.
We define r to be the positive integer such that er > 0 and er+1 = 0 if
es = 0. If es > 0, we define r = s. We put

τ ′ = τe1−1
1 τe2−1

2 · · · τer−1
r ,

which is also ordered.
At first we assume es = 0. Then r < s holds. We take the or-

dered decomposition τ ′ = τ(1)τ(2) such that τ(1), τ(2) are monomials
of degree t0, s− r, respectively.

We define a diagonal matrix Ar by

Ar =



1 · 1 2 · 2 . . . . r · r
1 · 1 · 1 τ1
2 · 2 · 2 τ2 0

r · r · r 0 τr


which is a submatrix of M̃s.

Suppose that τ(2) = τ
a
(2)
1
τ
a
(2)
2

· · · τ
a
(2)
s−r

. Let us now define a diagonal

matrix Br+1,s(τ(2)) = Br+1,s(a
(2)
1 , . . . , a

(2)
s−r) by

Br+1,s(τ(2)) =



(r + 1)2 (r + 2)2 . . . s2

a
(2)
1 · (r + 1)2 τ

a
(2)
1

a
(2)
2 · (r + 2)2 τ

a
(2)
2

0

a
(2)
s−r · s2 0 τ

a
(2)
s−r


where we wrote j2 for j · j. We note that a

(2)
n with 1 ≤ n ≤ s − r

satisfies a
(2)
n < r + 1, which implies that Br+1,s(τ(2)) is a submatrix of

M̃s. Clearly, the determinant of Br+1,s(τ(2)) is τ(2).
We now have

τ = τ1 · · · τrτ(1)τ(2)

with deg τ(1) = t0 and deg τ(2) = s − r. We also note that τ(1) is
ordered. Therefore, as we explained in §7, we can construct a lower
triangular matrix T (τ(1)) with detT (τ(1)) = τ(1). We define M(τ) by

M(τ) =

 Ar C1 C2

C3 T (τ(1)) C4

C5 ∗ Br+1,s(τ(2))

 .
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Since the rows of Ar, T (τ(1)), Br+1,s(τ(2)) are all distinct and the
columns of these three matrices are also all distinct,M(τ) is a submatrix

of M̃s. Since {i2} does not appear in the column labels of T (τ(1)) for
any i with 1 ≤ i ≤ s, we know C1 = 0. If 1 ≤ i ≤ r, {i2} does not appear
in the column labels of Br+1,s(τ(2)), which implies C2 = 0. Also, no
row label of the form {i2j} appears among the row labels of T (τ(1))
for any i, j with 1 ≤ i, j ≤ s, which implies C3 = 0 and C4 = 0. If
1 ≤ i ≤ r, no row label of the form {i2j} appears among the row labels
of Br+1,s(τ(2)). This shows that C5 = 0. It follows that M(τ) is lower
triangular, and

detM(τ) = detAr detT (τ(1)) detBr+1,s(τ(2))

= τ1 · · · τrτ(1)τ(2) = τ .

Next, we assume es > 0. In this case, we have r = s, and the degree
of τ ′ = τe1−1

1 · · · τes−1
s is t0, Therefore, by the method of §7 we can

construct a lower triangular matrix T (τ ′) with detT (τ ′) = τ ′.
We let As be the matrix Ar defined above with r = s, and define

M(τ) by

M(τ) =

(
As C1

C2 T (τ ′)

)
,

which is a submatrix of M̃s. By the same method as in the case es = 0,
we can show that C1 = 0, C2 = 0, and M(τ) is lower triangular. Also,
we have

detM(τ) = τ1 · · · τsτ ′ = τ.

For any monomial τ in τ1, . . . , τs of degree t without assuming it is
ordered, it is clear by symmetry that we can construct a submatrix of
M̃s, which is lower triangular, and whose determinant is τ . Thus we
obtain

Proposition 8.1. For any τ which is a monomial in τ1, . . . , τs of

degree t = s(s−1)
2 + 1, we can construct a submatrix M(τ) of M̃s, which

is lower triangular, and whose determinant is τ . Above, we gave an
explicit method of constructing M(τ), assuming τ is ordered.

§9. Synthesis: General (τ, ν)-monomials

We now assemble our previous constructions, as the final step of
the proof of Theorem 1.1. We now work on monomials x in τ1, . . . , τs
and ν1, . . . , νs of degree t = s(s−1)

2 + 1. Every such monomial x factors
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uniquely as x = τ(x)ν(x) where τ(x) is a product of factors τi and ν(x)
is a product of factors νj . We call τ(x) and ν(x) the τ -part and the
ν-part of x, respectively. Recall that τiνi = 0 for all i with 1 ≤ i ≤ s.
As said earlier, the case of monomials of degree less than t will be dealt
with at the very end.

For a ν-monomial ν = νf11 ν
f2
2 · · · νfss , we call ν anti-ordered admis-

sible if f1 ≤ . . . ≤ fs and

s∑
j=i

fj ≤
s+1−i∑
j=1

(s− j)

for all 1 ≤ i ≤ s. Clearly, a monomial which is anti-ordered admissible
is admissible.

It is our goal to construct, for every x of degree t such that ν(x)

is admissible, a lower triangular submatrix of M̃s whose determinant is
x. To achieve our goal, we may assume that both τ(x) and ν(x) are
nontrivial, because the cases ν(x) = 1, τ(x) = 1 were already proved
in Proposition 8.1 and in Proposition 1.4 in [2] (see also the end of §2),
respectively. Also, by symmetry and τiνi = 0, we may assume

x = τe11 τe22 · · · τerr νfgg ν
fg+1

g+1 · · · νfss
with 1 ≤ r < g ≤ s. By symmetry we may also assume

(10)
e1 ≥ e2 ≥ . . . ≥ er > 0 , 0 < fg ≤ fg+1 ≤ . . . ≤ fs ,

and ν(x) = ν
fg
g ν

fg+1

g+1 · · · νfss is anti-ordered admissible.

Assuming this, we will construct a submatrixM(x) of M̃s, which is lower
triangular, and whose determinant is x.

For ν = ν(x) = ν
fg
g ν

fg+1

g+1 · · · νfss , the existence of a partial selector
for ν implies the following lemma.

Lemma 9.1. The ν-part of x can be written as

ν = ν(x) = ν(g)ν(g+1) · · · ν(s)

such that for all j satisfying g ≤ j ≤ s,

deg ν(j) ≤ j − 1

and

ν(j) = νaj1νaj2 · · · νajrj ν
f ′
j

j

for some non-negative integer rj ∈ Z≥0 and positive integer f ′j ∈ Z>0,
and some (ajk)1≤k≤rj such that g ≤ aj1 < aj2 < . . . < ajrj < j.
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Proof. By Lemma 2.1, there is a partial selector ψ : Dψ −→ {g, g+
1, . . . , s} corresponding to ν. If it is needed, since g ≥ 2, we can change
ψ to ψ′ such that ν(ψ′) = ν(ψ) = ν and that for any j such that
g ≤ j ≤ s, there is i with 1 ≤ i < j, {i, j} ∈ Dψ′ , and ψ′({i, j}) = j. In
fact, if for some j there is no i satisfying the above, then since fj > 0 and
{i, j} ∈ Dψ for some i with ψ({i, j}) = j, we can take ψ′ obtained from ψ
by removing {i, j} from Dψ and adding {1, j} ∈ Dψ′ with ψ′({1, j}) = j.

For any j with g ≤ j ≤ s, we define

ν(j) =

j−1∏
i=1

{i,j}∈Dψ′

νψ′({i,j}).

Then ν(j) satisfies the conditions in Lemma 9.1, in particular we have
deg ν(j) ≤ j − 1 and f ′j > 0. Q.E.D.

Example. Consider ν = ν2ν
4
3ν

4
4ν

4
5ν

4
6ν

4
7 for s = 7. This ν is admissible.

For this ν, we can decompose

ν(2) = ν2, ν
(3) = ν23 , ν

(4) = ν34 , ν
(5) = ν45 , ν

(6) = ν3ν
4
6 , ν

(7) = ν3ν4ν
4
7 .

We decompose ν as in Lemma 9.1, and put

mj = j − 1− deg ν(j)

for all j such that g ≤ j ≤ s. Noting f ′j > 0 in Lemma 9.1, we have

deg ν(j) > 0, which implies

0 ≤ mj ≤ j − 2.

We put
τ = τ(x) = τe11 τe22 · · · τerr .

Then we get

s∑
j=g

mj =

s∑
j=g

(j − 1)− deg ν =

s∑
j=g

(j − 1)− (
s(s− 1)

2
+ 1− deg τ)

= deg τ − (
(g − 1)(g − 2)

2
+ 1) .

Therefore, we can write down the ordered decomposition

τ = τ (g−1)τ (g)τ (g+1) · · · τ (s)
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such that deg τ (g−1) = (g−1)(g−2)
2 + 1 and

deg τ (j) = mj

for any j such that g ≤ j ≤ s.
For each j with g ≤ j ≤ s, we take τ (j), ν(j) as above, in particular

ν(j) as in Lemma 9.1;

ν(j) = νaj1νaj2 · · · νajrj ν
f ′
j

j .

We write

τ (j) = τnj1τnj2 · · · τnjmj
with nj1 ≤ . . . ≤ njmj .

We define Sj by

Sj = {aj1, . . . , ajrj},

which is a set of rj elements. By definition, we have

mj + f ′j − 1 = j − 1− deg ν(j) + f ′j − 1

= j − 1− (f ′j + rj) + f ′j − 1

= j − 2−#Sj .

Therefore, mj ≤ j− 2−#Sj , and we can consider N ′
j,Sj

(nj1, . . . , njmj ),

which is defined in §6. It is lower triangular and

detN ′
j,Sj (nj1, . . . , njmj ) = ν

f ′
j

j τnj1τnj2 · · · τnjmj

by Proposition 6.1 and f ′j = (j − 2−#Sj)−mj + 1.

To the matrix N ′
j,Sj

(nj1, . . . , njmj ), we now add rows labeled {a2jµj}
and also columns labeled {ajµj} for 1 ≤ µ ≤ rj as follows:



aj1j . . . ajrj j

a2j1j νaj1
. . . . . . 0
a2jrj j νajrj

N ′
j,Sj

(nj1, . . . , njmj )∗


.

First of all, the labels {aj1j}, . . . , {ajrj j} do not appear among the col-

umn labels of N ′
j,Sj

(nj1, ..., njmj ), and the labels {a2j1j}, . . . , {a2jrj j} do
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not appear among the row labels of N ′
j,Sj

(nj1, ..., njmj ). Therefore, the

above matrix is a submatrix of M̃s. We call this matrix Mj(ν
(j), τ (j)).

In the rows with index {a2jij} the only nonzero entry sits at the
diagonal position. This together with the fact that N ′

j,Sj
(nj1, . . . , njmj )

is lower triangular implies that Mj(ν
(j), τ (j)) is also lower triangular.

We have

detMj(ν
(j), τ (j)) = νaj1νaj2 · · · νajrj ν

f ′
j

j τnj1τnj2 · · · τnjmj
= ν(j)τ (j) .

Since τ (g−1) is of degree (g−1)(g−2)
2 + 1 and ordered, by Proposi-

tion 8.1 we can build a lower triangular matrix M(τ (g−1)) of degree
(g−1)(g−2)

2 +1, whose row labels are of the form {abc} with a, b, c ≤ g−1,
and whose column labels are of the form {bc} with b, c ≤ g − 1.

For x as in (10) we define M(x) by

M(x) =


M(τ (g−1))

Mg(ν
(g), τ (g)) 0

. . .
. . .∗ Ms(ν

(s), τ (s))

 .

Suppose that {abc} is a row label of M(τ (g−1)). Then as we explained,
since a, b, c ≤ g − 1, we have j ̸∈ {a, b, c} for any j such that g ≤ j ≤ s.
This shows that the column labels of M(x) are all distinct, and so

are the row labels. Thus M(x) is a submatrix of M̃s. Also, for any
row label {abc} of M(τ (g−1)) we have {n, j} ̸⊂ {a, b, c} for any j such
that g ≤ j ≤ s and any n, and so M(x) is lower triangular. By the
construction of M(x), we get

detM(x) = detM(τ (g−1))

s∏
j=g

detMj(ν
(j), τ (j))

= τ (g−1)
s∏
j=g

ν(j)τ (j) = τν = x .

Thus we finally obtain the following theorem.

Theorem 9.2. Let x be a monomial in τ1, . . . , τs and ν1,. . . ,νs
of degree t = s(s−1)

2 + 1 satisfying the condition (10). Then we can

construct a submatrix M(x) of M̃s, which is lower triangular, and whose
determinant is x.
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By symmetry this theorem implies that any monomial x in τ1, . . . , τs
and ν1,. . . ,νs of degree t such that the ν-part of x is admissible, we can
construct a submatrix M(x) of M̃s, which is lower triangular, and whose
determinant is x. Thus we have proved that

mt ⊃
t∑

d=0

Ht−dnd .

To finish the proof, we now discuss the case where the monomial x
has degree v < t. Let τ(x) and ν(x) be the τ -part and the ν-part of x
respectively as usual. Let d be the degree of ν(x). Then d ≤ v ≤ t−1 =
s(s−1)/2. Let e = v−d be the degree of τ(x), so e+d = v. First let us
note that the case e = 0 need not be considered for the following reason.
If e = 0, then x is a ν-monomial, and admissible. It was already shown
in Proposition 1.4 of [2] and Lemma 2.1 that all admissible ν-monomials

can be obtained as minors of M̃s (see the end of §2). Hence we may
assume that e > 0, so the τ -part of x contains a factor τi, say. We then
define x̃ = τ t−vi · x. This is then of degree t. (Note that x̃ will not be
zero since the ν-part of x has no factor νi, otherwise we would already
have x = 0.) By Theorem 9.2 and the remark following it, there is a

lower triangular t × t submatrix of M̃s whose determinant (= product
over the diagonal) is x̃. Since x is a monomial of degree v dividing x̃, we
can extract a v× v matrix M(x) from M(x̃) such that det(M(x)) = x,
simply by deleting rows and columns corresponding to factors τi that
sit on the diagonal of M(x̃) and that appear in x̃ but not in x. This
means that we have established the inclusion mv ⊃

∑v
d=0H

v−dnd for
any v ≤ t, and this completes at last the proof of Theorem 1.1.
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