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Abstract.
Jannsen established several spectral sequences for (global and

local) Iwasawa modules over (not necessarily commutative) Iwasawa
algebras (mainly of p-adic Lie groups) over Zp, which are very useful
for determining certain properties of such modules in arithmetic ap-
plications. Slight generalizations of said results are also obtained by
Nekovář (for abelian groups and more general coefficient rings), by
Venjakob (for products of not necessarily abelian groups, but with Zp-
coefficients), and by Lim-Sharifi. Unfortunately, some of Jannsen’s
spectral sequences for families of representations as coefficients for
(local) Iwasawa cohomology are still missing. We explain and follow
the philosophy that all these spectral sequences are consequences or
analogues of local cohomology and duality à la Grothendieck (and
Tate for duality groups).
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§1. Introduction

Let O be a complete discrete valuation ring with uniformizing ele-
ment π and finite residue field. Consider the ring of formal power series
R = O[[X1, . . . , Xt]] in t variables, which is a complete regular local ring
of dimension d = t + 1 with maximal ideal m. While our results hold
under more general assumptions, this is the case we are most interested
in.

First, there is Matlis duality: Denote with E an injective hull of
R/m as an R-module. Then T = HomR(−, E) induces a contravariant
involutive equivalence between Noetherian and Artinian R-modules akin
to Pontryagin duality.

Second, there is local duality: If RRRΓm denotes the right derivation of
M lim−→k

HomR(R/mk, M) in the derived category of R-modules,
then

RRRΓm
∼= [−d] ◦ T ◦RRRHomR(−, R)

on finitely generated R-modules.
Third, there is Koszul duality: The complex RRRΓm can be com-

puted by means of Koszul complexes K• which are self-dual: K• =
HomR(K•, R)[d].

Finally, there is Tate duality: Let G be a pro-p duality group of
dimension s. Then for finite p-torsion G-modules A we have

Hi(G, HomZ(A, I)) ∼= Hs−i(G, A)∗

for a dualizing module I. Here −∗ denotes the abstract dual

(−)∗ = HomZ(−,Q/Z).

Consider ΛR(G) = lim←−U
R[G/U ] where U runs through the open

normal subgroups of G for a topological group G. It is well known
that ΛR(Zs

p) ∼= R[[Y1, . . . , Ys]] and R ∼= ΛO(Zr
p). The maximal ideal of

ΛR(Zs
p) is then generated by the regular sequence

(π, X1, . . . , Xt, Y1, . . . , Ys)

and no matter how we split up this regular sequence into two, they
will remain regular. The Koszul complex then gives rise to a number of
interesting spectral sequences and these should (at least morally) recover
the spectral sequences

(1) TorZp
n (Dm(M∨),Qp/Zp) =⇒ Extn+m

ΛZp (G)(M, ΛZp
(G))∨
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and

(2) lim−→
k

Dn(TorZp
m (Zp/pk, M)∨) =⇒ Extn+m

ΛZp (G)(M, ΛZp
(G))∨,

which show up in Jannsen’s proof of [Jan89, 2.1 and 2.2]. The functors
Dn stem from Tate’s spectral sequence and are a corner stone in the
theory of duality groups. In contrast to the abstract dual −∗ above, −∨

denotes the Pontryagin dual Homcts(−,R/Z).
This article is structured as follows: After briefly fixing a few con-

ventions, we lay the ring theoretic groundwork in section 3, including
a discussion of local cohomology. Afterwards, we compare Matlis with
Pontryagin duality in section 4 and observe a relation between Tate
cohomology and local cohomology in section 5. We will then show in
section 6 that aforementioned spectral sequences (and many more) are
consequences of the four duality principles laid out above. This also
allows us to generalize Jannsen’s spectral sequences to more general co-
efficients. For example, generalisations of eq. (1) and eq. (2) are subjects
of proposition 6.6 and of proposition 6.10 respectively. While another
spectral sequence for Iwasawa adjoints has already been generalized to
more general coefficients (cf. theorem 8.1), the generalizations of the
aforementioned spectral sequences are missing in the literature. We can
even generalize an explicit calculation of Iwasawa adjoints (cf. [Jan89,
corollary 2.6], [NSW08, (5.4.14)]) in theorem 6.15.

Furthermore, we generalize Venjakob’s result on local duality for
Iwasawa algebras ([Ven02, theorem 5.6]) to more general coefficients
(cf. theorem 7.2). As an application we determine the torsion submodule
of local Iwasawa cohomology generalizing a result of Perrin-Riou in the
case R = Zp in theorem 8.2.

§2. Conventions

A ring will always be unitary and associative, but not necessarily
commutative. If not explicitly stated otherwise, “module” means left-
module, “Noetherien” means left-Noetherien etc.

We will furthermore use the language of derived categories. If AAA
is an abelian category, we denote with DDD(AAA) the derived category of
unbounded complexes, with DDD+(AAA) the derived category of complexes
bounded below, with DDD−(AAA) the derived category of complexes bounded
above and with DDDb(AAA) the derived category of bounded complexes.

As we simultaneously have to deal with left- and right-exact func-
tors, both covariant and contravariant, recovering spectral sequences
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from isomorphisms in the derived category is a bit of a hassle regard-
ing the indices. Suppose that AAA has enough injectives and projec-
tives and that M is a (suitably bounded) complex of objects of AAA.
Then for a covariant functor F : AAA AAA we set RRRF (M) = F (Q) and
LLLF (M) = F (P ) with Q a complex of injective objects, quasi-isomorphic
to M and P a complex of projectives, quasi-isomorphic to M . If F is
contravariant, we set LLLF (M) = F (Q) and RRRF (M) = F (P ). For indices,
this implies the following: Assume that M is concentrated in degree
zero. Then for F covariant, RRRF (M) has non-vanishing cohomology at
most in non-negative degrees and LLLF (M) at most in non-positive de-
grees. For F contravariant, it’s exactly the other way around. We set
LLLqF (M) = Hq(LLLF (M)) and RRRqF (M) = Hq(RRRF (M)). Note that with
these conventions

• RRRp(−)G(M) = Hp(G, A)
• LLLq(−⊗N)(M) = Tor−q(M, N)
• RRRp Hom(−, N)(M) = Extp(M, N)
• LLLq(lim−→U

(−U )∗)(M) = lim−→U
H−q(U, M)∗

If F : AAA AAA is exact, then F maps quasi-isomorphic complexes
to quasi-isomorphic complexes. Its derivation RRRF (or LLLF ) is then given
by simply applying F and we will make no distinction between F and
RRRF : DDD(AAA) DDD(AAA) in this case.

For every integer d ∈ Z we have a shift operator [d], so that for
complexes C and n ∈ Z the following holds:

([d](C))n = Cn+d.

We will at times write C[d] instead of [d](C). Note that although we
occasionally cite [Wei94], we deviate from Weibel’s conventions in this
regard: Our [d] is Weibel’s [−d]. We furthermore set Hom(C•, D•) to be
the complex with entries Hom(C•, D•)i =

⊕
n∈Z Hom(Ck, Dk+i). Sign

conventions won’t matter in this paper.
If R is Noetherian, the category of finitely generated R-modules

fff.ggg.-R-ModModMod is abelian. Its inclusion into the category of all R-modules
induces equivalences DDD∗(fff.ggg.-R-ModModMod) ∼= DDD∗

c(R-ModModMod) for ∗ ∈ {+, b} where
subscript “c” means complexes with finitely generated cohomology. (The
letter “c” actually stands for “coherent”, which for Noetherian rings
amounts to finitely generated.)
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§3. A few facts on R-modules

3.1. Noncommutative rings
Let R be a ring. The intersection of all maximal left ideals coincides

with the intersection of all maximal right ideals and is called the Jacob-
son radical of R and is hence a two-sided ideal, denoted by J(R). For
every r ∈ J(R) the element 1−r then has both a left and a right inverse
and the following form of Nakayama’s lemma holds, cf. e. g. [Lam91,
(4.22)].

Lemma 3.1 (Azumaya-Krull-Nakayama). Let M ∈ R-ModModMod be a
finitely generated R-module. If J(R)M = M, then M = 0.

Recall that a ring is called local if it has a unique maximal left-ideal.
This unique left ideal is then also the ring’s unique maximal right-ideal
and the group of two-sided units is the complement of this maximal
ideal.

The following is well known and gives rise to the notion of “finitely
presented” (or “compact”) objects in arbitrary categories.

Lemma 3.2. Let R be a ring and M an R-module. Then

HomR(M,−)

commutes with all direct limits if and only if M is finitely presented.

If R is Noetherien, this isomorphism extends to higher Ext-groups.

Proposition 3.3. Let R be a Noetherian ring, M a finitely gener-
ated R-module, and (Ni)i a direct system of R-modules. Then

Extq
R(M, lim−→

i

Ni) ∼= lim−→
i

Extq
R(M, Ni).

Proof. As R is Noetherian, there exists a resolution of M by finitely
generated projective R-Modules. As furthermore lim−→ commutes with
homology, lemma 3.2 yields the result. Q.E.D.

Remark 3.4. Recall the following subtleties: Let R, S, T be rings,
N a S-R-bimodule and P a S-T -bimodule. Then HomS(N, P ) has the
natural structure of an R-T -bimodule via (rf)(n) = f(nr) and (ft)(n) =
f(n)t.

Furthermore let M be a R-left-module. Then canonically

HomR(M, HomS(N, P )) = HomS(N ⊗R M, P )

as T -right-modules.
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Lemma 3.5. If P is an R-R-bimodule that is flat as an R-right-
module and Q an injective R-left-module, then HomR(P, Q) is again an
injective R-left-module.

Proof. HomR(−, HomR(P, Q)) = HomR(−, Q)◦(P⊗R−) is a com-
position of exact functors and hence exact. Q.E.D.

Lemma 3.6. Let N be an R-R-bimodule and M an R-left-module.
Then

TorR
q (N, M) = 0

if and only if
Extq

R(M, HomR(N, Q)) = 0
for all injective R-left-modules Q.

Proof. The isomorphism of functors

HomR(−, Q) ◦ (N ⊗R −) ∼= HomR(−, HomR(N, Q))

yields an isomorphism

HomR(−, Q) ◦ (N ⊗L
R −) ∼= RRRHomR(−, HomR(N, Q))

in the derived category, which in turn yields

HomR(TorR
q (N, M), Q) ∼= Extq

R(M, HomR(N, Q))

for all q. As the category of R-left-modules has sufficiently many injec-
tives, this shows the proposition. Q.E.D.

Definition 3.7. Let R be a ring. A sequence (r1, . . . , rd) of central
elements in R is called regular, if for each i the residue class of ri+1 in
R/(r1, . . . , ri) is not a zero-divisor.

Definition 3.8. For a regular sequence r = (r1, . . . , rd) we denote
by r(k) the sequence (rk

1 , . . . , rk
d), which is again regular (cf. e. g. [Mat86,

theorem 16.1]). If I is an ideal generated by a regular sequence r, we
will by abuse of notation refer to the ideal generated by r(k) as I(k).
Note that I(k) actually depends on the chosen regular sequence, which
is either going to be clear from the context or arbitrary as long as chosen
consistently.

Proposition 3.9. Let R be a ring and (r1, . . . , rk, s1, . . . , sl) such
a regular sequence that the sequence (s1, . . . , sl) is itself regular. Let
I = (ri)i and J = (si)i be the ideals generated by the first and second
part of the regular sequence. Then for all q ≥ 1

TorR
q (R/I, R/J) = 0
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and
lim←−

n

TorR
q (R/In, R/Jn) = 0.

Proof. Let us first show that TorR
1 (R/I, R/J) = 0 and then reduce

to this case by induction on l. Consider the exact sequence of R-modules

0 J R R/J 0

and apply TorR
• (R/I,−). As R is flat,

TorR
1 (R/I, R/J) = ker

(
R/I ⊗R J R/I

)
= I ∩ J

IJ
.

We argue by induction on l that this is zero: For l = 1, x ∈ I ∩ J
implies x = λs1 = s1λ ∈ I, so λ = 0 in R/I, so λ ∈ I and hence
x ∈ IJ . Denote with J ′ the ideal generated by s1, . . . , sl−1. By induction
I ∩ J ′ = IJ ′. Let x ∈ I ∩ J = I ∩ (J ′ + slR), so x = a + slb with a ∈ J ′

and b ∈ R. Clearly slb = 0 in R/(I + J ′), so b ∈ I + J ′ by regularity of
the sequence and hence

I∩J = I∩(J ′+slR) = I∩(J ′+sl(I+J ′)) = I∩(J ′+slI) = I∩J ′+I∩slI

as slI ⊆ I. Now I ∩ J ′ + I ∩ slI = IJ ′ + slI = I(J ′ + slR) = IJ , and
this was to be shown.

We now argue by induction on l that TorR
q (R/I, R/J) = 0 for all

q > 0. For l = 1 we have the free resolution

0 R
s1 R R/J 0

hence TorR
q (R/I, R/J) = 0 for q > 1 and for q = 1 by what we saw

above. Let J ′ be again the ideal generated by s1, . . . , sl−1. By induction
we can assume that all TorR

q (R/I, R/J ′) vanish. Consider the sequence

0 R/J ′ sl R/J ′ R/J 0,

which is exact as the subsequence (s1, . . . , sl) is regular. Applying
TorR

• (R/I,−) shows that TorR
q (R/I, R/J) = 0 for q > 1 by induction

hypothesis — and by what we saw above also for q = 1.
Let m′ = max{k, l}. Clearly Im′m ⊆ I(m) ⊆ Im and the same is

true for J , hence the natural map

TorR
q (R/Im′m, R/Jm′m) TorR

q (R/Im, R/Jm)

factors through TorR
q (R/I(m), R/J (m)), which is zero. Q.E.D.
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3.2. The Koszul Complex
We recall a couple of well-known facts about the Koszul complex

(cf. e. g. [Wei94, section 4.5]).

Definition 3.10. Denote by

K•(x) = 0 R
x

R 0

the chain complex (i. e., the degree decreases to the right) concentrated
in degrees one and zero for a ring R and a central element x ∈ Z(R).
For central elements x1, . . . , xd the complex

K•(x1, . . . , xd) = K•(x1)⊗ · · · ⊗K•(xd)

is called the Koszul complex attached to x1, . . . , xd. We will also con-
sider the cochain complex K•(x1, . . . , xd) with entries Kp(x1, . . . , xd) =
K−p(x1, . . . , xd).

Remark 3.11. While this definition is certainly elegant, a more down
to earth description is given as follows: Kp(x1, . . . , xd) is the free R-
module generated by the symbols ei1 ∧ · · · ∧ eip

with i1 < · · · < ip with
differential

d(ei1 ∧ · · · ∧ eip) =
p∑

k=1
(−1)k+1xik

ei1 ∧ · · · ∧ êik
∧ · · · ∧ eip .

This description emphasizes the importance of using central elements
(xi)i.

Remark 3.12. The importance of the Koszul complex for our pur-
poses stems from the following fact: If x1, . . . , xd is a regular sequence,
then K•(x1, . . . , xd) is a free resolution of R/(x1, . . . , xd), cf. e. g. [Wei94,
corollary 4.5.5].

Proposition 3.13. The complex K• = K•(x1, . . . , xd) is isomor-
phic to the complex

0 HomR(K0, R) . . . HomR(Kd, R) 0,

where HomR(K0, R) is in degree d and HomR(Kd, R) in degree zero.
Analogously

K• ∼= HomR(K•, R)[d].
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Proof. We have to describe isomorphisms Kp
∼= HomR(Kd−p, R)

such that all diagrams

Kp Kp−1

HomR(Kd−p, R) HomR(Kd−p+1, R)

d

∼= ∼=

d∗

commute. Consider the map

ei1 ∧ · · · ∧ eip

(
ej1 ∧ · · · ∧ ejd−p

sgn(σ)
)

where sgn(σ) is the sign of the permutation σ(1) = i1, . . . , σ(p) =
ip, σ(p + 1) = j1, . . . , σ(d) = jd−p, i. e., in the exterior algebra

∧d
Rd

we have

ei1 ∧ · · · ∧ eip
∧ ej1 ∧ · · · ∧ ejd−p

= sgn(σ)e1 ∧ · · · ∧ ed.

(Note that sgn(σ) = 0 if σ is not bijective.) It is then easy to verify that
the diagram above does indeed commute: Identifying R with

∧d
Rd, all

but at most one summand vanishes in the ensuing calculation and the
difference in sign is precisely the difference in the permutations. Q.E.D.

Proposition 3.14. Let R be a ring and x1, . . . , xd a regular se-
quence of central elements in R. Then in the bounded derived category
of R-modules

[d] ◦RRRHomR(R/(x1, . . . , xn),−) ∼= R/(x1, . . . , xn)⊗LLL
R −.

Proof. Denote with K• the Koszul (chain) complex K•(x1, . . . , xd)
(concentrated in degrees d, d−1, . . . , 0) and with K• the Koszul (cochain)
complex (concentrated in degrees −d,−d + 1, . . . , 0).

As x1, . . . , xd form a regular sequence, K• is a free resolution of
R/(x1, . . . , xn) and hence allows us to calculate the derived functors as
follows.

RRRHomR(R/(x1, . . . , xn), M)[d] = HomR(K•, M)[d]
∼= HomR(K•[−d], R)⊗R M

∼= K• ⊗R M

= R/(x1, . . . , xd)⊗LLL
R M,

with the crucial isomorphisms being due to the fact that K• is a complex
of free modules and proposition 3.13. It is clear that these isomorphisms
are functorial in M . Q.E.D.
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Corollary 3.15. Let R be a commutative ring, x1, . . . , xd a regular
sequence in R and T = HomR(−, Q) with Q injective. Then

RRRHomR(R/(x1, . . . , xd),−) ◦ T = T ◦ [d] ◦RRRHomR(R/(x1, . . . , xd),−)

on the derived category of R-modules.

Proof. The functor T is exact and

HomR(R/(x1, . . . , xd),−) ◦ T = T ◦ (R/(x1, . . . , xd)⊗R −)

by adjointness. Hence also

RRRHomR(R/(x1, . . . , xd),−) ◦ T = T ◦ (R/(x1, . . . , xd)⊗LLL
R −).

By proposition 3.14, this is just T ◦ [d] ◦ RRRHomR(R/(x1, . . . , xd),−).
Q.E.D.

Corollary 3.16. Let R be a commutative ring and x1, . . . , xd a
regular sequence in R. Let further M be an R-module. Then

Extd−p
R (R/(x1, . . . , xd), M) = TorR

p (R/(x1, . . . , xd), M).

Proof. This is just proposition 3.14, taking extra care of the indices:

Extd−p
R (R/(x1, . . . , xd), M) = RRRd−p HomR(R/(x1, . . . , xd), M)

= H−p RRRHomR(R/(x1, . . . , xd)[−d], M)

= H−p(R/(x1, . . . , xd)⊗LLL
R M)

= TorR
p (R/(x1, . . . , xd), M).

Q.E.D.

3.3. Local Cohomology
Definition 3.17. Let R be a ring and J = (Jn)n∈N a decreasing

sequence of two-sided ideals. (The classical example is to take a two-
sided ideal J and set J = (Jn)n.) For an R-left-module M set

ΓJ(M) = {m ∈M | Jnm = 0 for some n}.

It is clear that ΓJ is a left-exact functor with values in R-Mod-Mod-Mod.
Denote its right-derived functor in the derived category DDD+(R-Mod-Mod-Mod) by
RRRΓJ .
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Remark 3.18. ΓJ = lim−→n
HomR(R/Jn,−), so

RRRΓJ = lim−→
n

RRRHomR(R/Jn,−)

and
RRRqΓJ = lim−→

n

Extq
R(R/Jn,−).

Remark 3.19. Let I be an ideal generated by a regular sequence in
a ring R. Then by cofinality of the systems

Γ(In)n
= Γ(I(n))n

.

Lemma 3.20. Let AAA,BBB be abelian categories, with additive functors
L : AAA BBB left adjoint to R : BBB AAA. If L is exact, R preserves
injective objects.

Proof. This is well known, cf. e. g. [Wei94, proposition 2.3.10].
Q.E.D.

Remark 3.21. Let ϕ : R S be a homomorphism between uni-
tary rings. Let J be decreasing sequence of two-sided ideals in R and
denote with JS the induced sequence of two-sided ideals in S. If ϕ(R)
lies in the centre of S, then ΓJ ◦ resϕ = resϕ ◦ ΓJS . If furthermore
injective S-modules are also injective as R-modules, e. g., if S is a flat
R-module via lemma 3.20, then RRRΓJ ◦ resϕ = resϕ ◦RRRΓJS . Local coho-
mology is thus independent of the base ring for flat extensions and we
will omit resϕ and the distinction between JS and J in the future. Note
especially that if R is complete, then R[[G]] = R[G]∧ is a flat R-module.

Proposition 3.22. Let R be a Noetherian local ring with maximal
ideal m and finite residue field. Let M be a finitely generated R-module.
Then Γm(M) is the maximal finite submodule of M .

Proof. Denote with T the maximal finite submodule of M (which
exists as M is Noetherian). By Nakayama there exists a k ∈ N with
mkT = 0 and hence T ⊆ Γm(M). Conversely R/mk is a finite ring for
each k, hence Rm is a finite module for each m ∈ Γm(M) and is thus
contained in T . Q.E.D.

Proposition 3.23. If R is a Noetherian ring and J a decreasing
sequence of ideals, then RRRΓJ and RRRqΓJ commute with direct limits.

Proof. This is just proposition 3.3, as for Noetherian rings, direct
limits of injective modules are again injective. Q.E.D.
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Definition 3.24. For I and J decreasing sequences of two-sided
ideals of a ring R set (I + J)n = In + Jn.

Remark 3.25. If I and J are two-sided ideals of a ring R, then
generally I + J 6= I + J . But as these two families are cofinal, ΓI+J =
ΓI+J .

Remark 3.26. Clearly ΓI+J = ΓI ◦ ΓJ , but regrettably

RRRΓI+J = RRRΓIRRRΓJ

is in general false if the families I and J are not sufficiently indepen-
dent from one another: For R = Z, I = J = (niZ)i any descending
sequence of non-trivial ideals and M = Q/Z, the five-term-sequence in
cohomology would start as follows:

0 lim−→i,j
Ext1

Z(Z/ni, Hom(Z/nj ,Q/Z)) lim−→i
Ext1

Z(Z/ni,Q/Z)

. . .

But clearly Ext1
Z(Z/ni,Q/Z) = 0 and

Ext1
Z(Z/ni, Hom(Z/nj ,Q/Z)) = Ext1

Z(Z/ni,Z/nj) = Z/(ni, nj),

hence
lim−→
i,j

Ext1
Z(Z/ni, Hom(Z/nj ,Q/Z)) = lim−→

i

Z/ni,

so the sequence above cannot possibly be exact.
This argument of course generalizes: Were RRRΓI+J = RRRΓIRRRΓJ , then

[CE56, chapter XV, theorem 5.12] implied that

lim−→
i

Extp
R(R/Ii, lim−→

j

HomR(R/Jj , Q)) = 0

for all p > 0 and Q injective, i. e., if the isomorphism in the derived cat-
egory holds, then because RRRΓJ mapped injective objects to ΓI -acyclics.
Using lemma 3.6, a sufficient criterion for that to happen is that the
transition maps eventually factor through Extp

R(R/Ĩi, HomR(R/J̃j , Q))
for some Ĩi, J̃j with TorR

p (R/Ĩi, R/J̃j) = 0 for all p > 0 and this criterion
appears to be close to optimal. The following proposition is a simple
application of this principle.

Proposition 3.27. Let R be a commutative ring and

(r1, . . . , rk, s1, . . . , sl)
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such a regular sequence, that (s1, . . . , sl) is itself again regular. Then for
the ideals I = (ri)i and J = (si)i we have

RRRΓI+J = RRRΓIRRRΓJ = RRRΓJRRRΓI .

Proof. The transition maps in the system

lim−→
i

Extp
R(R/Ii, lim−→

j

HomR(R/Jj , Q)) = lim−→
i,j

Extp
R(R/Ii, HomR(R/Jj , Q))

eventually factor through Extp
R(R/I(n), HomR(R/J (n), Q)). But this

vanishes by lemma 3.6 and proposition 3.9 for p ≥ 1. As TorR
• (−,−) is

symmetrical for commutative rings, the same argument also applies for
RRRΓJRRRΓI . Q.E.D.

§4. (Avoiding) Matlis Duality

First recall Pontryagin duality.

Theorem 4.1 (Pontryagin duality, e. g. [NSW08, (1.1.11)]). The
functor Π = Homcts(−,R/Z) induces a contravariant auto-equivalence
on the category of locally compact Hausdorff abelian groups and in-
terchanges compact with discrete groups. The isomorphism A
Π(Π(A)) is given by a (ϕ ϕ(a)).

If G is pro-p, then Π(G) = Homcts(G,Qp/Zp). If D is a discrete
torsion group or a topologically finitely generated profinite group, then
Π(D) = HomZ(D,Q/Z).

We will write −∨ for Π if it is notationally more convenient.

Matlis duality is commonly stated as follows:

Theorem 4.2 (Matlis duality, [BH93, theorem 3.2.13]). Let R be a
complete Noetherian commutative local ring with maximal ideal m and E
a fixed injective hull of the R-module R/m. Then HomR(−, E) induces
an equivalence between the finitely generated modules and the Artinian
modules with inverse HomR(−, E).

Example 4.3. If R is a discrete valuation ring, then Q(R)/R is an
injective hull of its residue field.

Matlis duality – using an abstract dualizing module instead of a
topological one – behaves very nicely in relation to local cohomology. In
applications however the Matlis module E is cumbersome and in general
not particularly easy to construct.

Example 4.4. Consider the rings R = Zp, S1 = Zp[π] and S2 =
Zp[[T ]] with π a uniformizer of Qp(√p). Clearly the homomorphisms
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R Si are local and flat and their respective residue fields agree.
But while ER = Qp/Zp, ES1

∼= Qp/Z⊕2
p as an abelian group. Further-

more, ES2
∼=
⊕

N Qp/Zp as an abelian group by proposition 4.8.

The best we can hope for in general is the following.

Proposition 4.5 ([Stacks, Tag 08Z5]). Let R S be a flat and
local homomorphism between Noetherian local rings with respective max-
imal ideals m and M. Assume that R/mn ∼= S/Mn for all n. Then an
injective hull of S/M as an S-module is also an injective hull of R/m
as an R-module.

Starting with pro-p local rings, Matlis modules are however inti-
mately connected with Pontryagin duality.

Lemma 4.6. Let R be a pro-p local ring with maximal ideal m. Then
there exists an isomorphism of R-modules R/m ∼= HomZp

(R/m,Qp/Zp).

Proof. As R/m is finite and hence a commutative field, both objects
are isomorphic as abelian groups. As vector spaces of the same finite
dimension over R/m they are hence isomorphic as R/m-modules and
thus as R-modules. Q.E.D.

Lemma 4.7. Let R be a pro-p local ring with maximal ideal m
and M a finitely presented or a discrete R-module. Then Π(M) =
HomR(M, Π(R)).

Proof. Let first M = lim−→i
Mi be an arbitrary direct limit of finitely

presented R-modules. Then by lemma 3.2

HomR(lim−→
i

Mi, Π(R)) = lim←−
i

HomR(Mi, lim−→
k

Π(R/mk))

= lim←−
i

lim−→
k

HomR(Mi, HomZp(R/mk,Qp/Zp))

= lim←−
i

lim−→
k

HomZp
(Mi/m

k,Qp/Zp)

= lim←−
i

Π(Mi).

If M itself is finitely presented, this shows the proposition. If M is
discrete, we can take the Mi to be discrete and finitely presented (i. e.,
finite). The projective limit of their duals exists in the category of com-
pact R-modules and it follows that lim←−i

Π(Mi) = Π(M). Q.E.D.

Proposition 4.8. Let R be a Noetherian pro-p local ring with max-
imal ideal m. Then Π(R) = Homcts(R,Qp/Zp) is an injective hull of
R/m as an R-module.
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Proof. Π(R) is injective as an abstract R-module: By Baer’s cri-
terion it suffices to show that HomR(R, Π(R)) HomR(I, Π(R)) is
surjective for every (left-)ideal I of R. By lemma 4.7, this is equivalent
to the surjectivity of Π(R) Π(I), which is clear.

In lieu of lemma 4.6 it hence suffices to show that

HomZp
(R/m,Qp/Zp) ⊆ Homcts(R,Qp/Zp)

is an essential extension, so take

H ≤ Homcts(R,Qp/Zp)

an R-submodule and 0 6= f ∈ H. Then by continuity, f descends to

f : R/mk+1 Qp/Zp

with k minimal. It follows that there exists an element r ∈ mk with
f(r) 6= 0. rf : R Qp/Zp is consequentially also not zero, lies in H
but now descends to

rf : R/m Qp/Zp,

i. e., H ∩HomZp
(R/m,Qp/Zp) 6= 0. Q.E.D.

Corollary 4.9. Let R be a commutative pro-p Noetherian commu-
tative local ring. Then if M is finitely generated or Artinian, Matlis and
Pontryagin duality agree.

Proof. Immediate from lemma 4.7 and proposition 4.8. Q.E.D.

Proposition 4.10. Let R satisfy Matlis duality via

T = HomR(−, E).

Let I be a decreasing family of ideals generated by regular sequences of
length d. Then

RRRΓI = lim−→
n

T ◦ [d] ◦RRRHom(R/In,−) ◦ T

on DDD+
c (R-ModModMod).

Proof. By corollary 3.15 it follows that

RRRΓI = lim−→
n

RRRHom(R/In,−) ◦ T ◦ T = lim−→
n

T ◦ [d] ◦RRRHom(R/In,−) ◦ T.

Q.E.D.
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§5. Tate Duality and Local Cohomology

Remark 5.1. Working in the derived category makes a number of
subtleties more explicit than working only with cohomology groups. As-
sume that R is a complete local commutative Noetherian ring with finite
residue field of characteristic p and G an analytic pro-p group. Then ev-
ery Λ = R[[G]]-module has a natural topology via the filtration of aug-
mentation ideals of Λ. It is furthermore obvious to consider the following
two categories:

• C(Λ), the category of compact Λ-modules (with continuous G-
action),

• D(Λ), the category of discrete Λ-modules (with continuous G-
action).

Pontryagin duality then induces equivalences between C(Λ) and D(Λ◦),
where −◦ denotes the opposite ring. It is furthermore well-known that
both categories are abelian, that C(Λ) has exact projective limits and
enough projectives and analogously that D(Λ) has exact direct limits
and enough injectives, cf. e. g. [RZ00, chapter 5]. It is important to
note that the notion of continuous Λ-homomorphisms and abstract ones
often coincides: If M is finitely generated with the quotient topology and
N is either compact or discrete, every Λ-homomorphism M N is
continuous, cf. [Lim12, lemma 3.1.4].

In what follows we want to compare Tate cohomology, i. e. LLLD as
defined below, with other cohomology theories such as local cohomology.
Now Tate cohomology is defined on the category of discrete G-modules
and we hence have a contravariant functor

LLLD : DDD+(D(Λ)) DDD−(Λ◦-ModModMod)

Local cohomology on the other hand is defined on DDD+(Λ-ModModMod) or any
subcategory that contains sufficiently many acyclic (e. g. injective) mod-
ules. This is not necessarily satisfied for DDD−(C(Λ)). A statement such
as

LLLD ◦Π = [d] ◦RRRΓI

without further context hence does not make much sense: The implica-
tion would be that this would be an isomorphism of functors defined on
DDDb(C(Λ)), but RRRΓI doesn’t exist on DDDb(C(Λ)).

Definition 5.2. Let G be a profinite group and A a discrete G-
module. Denote with D the functor

D : A lim−→
U

(AU )∗
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where N∗ = HomZ(N,Q/Z), the limit runs over the open normal sub-
groups of G with the dual of the corestriction being the transition maps
(cf. [NSW08, II.5 and III.4]). D is right exact and contravariant and
D(A) has a continuous action of G from the right. Denote its left deriva-
tion in the derived category of discrete G-modules by

LLLD : DDD+(D(Ẑ[[G]])) DDD−(Ẑ[[G]]◦-ModModMod)

(where −◦ denotes the opposite ring), so

Di(A) = LLL−iD(A) = lim−→
U

Hi(U, A)∗.

If G is a profinite group, R a profinite ring and A a discrete R[[G]]-
module, then D(A) is again an R[[G]]-module, so

LLLD : DDD+(D(R[[G]])) DDD−(R[[G]]◦-ModModMod),

where D(R[[G]]) denotes the category of discrete R[[G]]-modules. Fur-
thermore, we can of course also look at the functor

LLLD : DDD+(R[[G]]-ModModMod) DDD−(R[[G]]◦-ModModMod).

Naturally, these functors don’t necessarily coincide.

Proposition 5.3. Let R be such a profinite ring, that the structure
morphism Ẑ R gives it the structure of a finitely presented flat Ẑ-
module. Let G be a profinite group such that R[[G]] is a Noetherian local
ring with finite residue field. (This is the case if G is a p-adic analytic
group and R is the valuation ring of a finite extension over Zp.)

Then an injective discrete R[[G]]-module is an injective discrete G-
module.

Proof. By lemma 3.20 it suffices to show that ?: D(R[[G]])
D(Ẑ[[G]]) has an exact left adjoint. It is clear that

M R[[G]]⊗Ẑ[[G]] M

is an algebraic exact left adjoint, so it remains to show that R⊗Ẑ M =
R[[G]]⊗Ẑ[[G]] M is a discrete R[[G]]-module. Now M is the direct limit
of finite modules, hence so is R⊗Ẑ M . But for a finite R[[G]]-module N

this is clear as then mkMi = 0 for some k with m the maximal ideal of
R[[G]] by Nakayama. Q.E.D.
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Corollary 5.4. The following diagram commutes if R is a finitely
presented flat Ẑ-module with R[[G]] Noetherian and local with finite
residue field:

DDD+(D(R[[G]])) DDD+(D(Ẑ[[G]]))

DDD−(R[[G]]◦-ModModMod) DDD−(Ẑ[[G]]◦-ModModMod)

LLLD

?

LLLD

?

Proof. Clearly the forgetful functors and D all commute on the
level of categories of modules. The result then follows from proposi-
tion 5.3. Q.E.D.

Proposition 5.5 ([Lim12, corollary 3.1.6, proposition 3.1.8]). Let
M, N be Λ-modules.

(1) If M is Artinian, then Λ×M M is continuous if we give
M the discrete topology.

(2) If N is Noetherian, then N is compact if we give it the topology
induced by Λ.

(3) The functor

fff.ggg.-Λ-ModModMod C(Λ)

maps projective objects to projectives.

Proposition 5.6. Let O be a pro-p discrete valuation ring, R =
O[[X1, . . . , Xt]] with maximal ideal m, G = Zd

p and Λ = lim←−i
R[G/Gpi ]

with generalized augmentation ideals Ii = ker Λ R[G/Gpi ]. Then
the following holds in DDDb

c(Λ-ModModMod):

LLLD ◦ T ∼= [d] ◦RRRΓI ,

Especially the following diagram commutes:

DDDb
c(Λ-ModModMod) DDDb(fff.ggg.-Λ-ModModMod) DDDb(C(Λ)) DDDb(D(Λ◦))

DDDb(Λ-ModModMod) DDDb(Λ-ModModMod)

∼= T

LLLD
[d]◦RRRΓm

Proof. Λ is a regular local ring with maximal ideal generated by
(π, X1, . . . , Xt, γ1 − 1, . . . , γd − 1) for any set of topological generators
(γi)i of G and uniformizer π of O. One immediately verifies that the
sequences γpi

1 − 1, . . . , γpi

d − 1 are again regular and generate the ideals
Ii.
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By proposition 4.10,

[d] ◦RRRΓI = lim−→
n

T ◦RRRHomΛ(Λ/In,−) ◦ T.

Take a bounded complex M of finitely generated R-modules that is
quasi-isomorphic to a bounded complex P of finitely generated projec-
tive modules. The resulting complex T (P ) is then not only a bounded
complex of injective discrete modules by Pontryagin duality and propo-
sition 5.5, but also a bounded complex of injective abstract Λ-modules
by lemma 3.5. In all relevant derived categories T (M) ∼= T (P ) holds. As
HomΛ(Λ/In,−) = (−)Gpn

by construction, we can compute [d]◦RRRΓI(M)
as follows (keeping corollary 4.9 in mind):

[d] ◦RRRΓI(M) = [d] ◦RRRΓI(P )
= lim−→

n

T ◦RRRHomΛ(Λ/In,−) ◦ T (P )

= lim−→
n

T (HomΛ(Λ/In, T (P )))

= lim−→
n

T (T (P )Gpn

)

= lim−→
n

Π(T (P )Gpn

)

= D(T (P )) = LLLD ◦ T (M).

Q.E.D.

Lemma 5.7. Let R be a commutative Noetherian ring with unit
and R S a flat ring extension with R contained in the centre of S
and S again (left-)Noetherian.

Then

RRRHomR : DDD−(R-ModModMod)opp ×DDD+(R-ModModMod) DDD+(R-ModModMod)

extends to

RRRHomR : DDD−(R-ModModMod)opp ×DDD+(S-ModModMod) DDD+(S-ModModMod),

which in turn restricts to

RRRHomR : DDDb
c(R-ModModMod)opp ×DDDb

c(S-ModModMod) DDDb
c(S-ModModMod),

Proof. First note that if M is an R-left-module and N an S-left-
module, then HomR(M, N) carries the structure of an S-left-module via
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(sf)(m) = sf(m). Then HomR(R, S) ∼= S as S-left-modules and the
following diagram commutes:

S-ModModMod S-ModModMod

R-ModModMod R-ModModMod

HomR(M,−)

? ?
HomR(M,−)

As S is a flat R-module, ? preserves injectives by lemma 3.20 and we
can compute RRRHomR(M,−) in either category.

If M is a finitely generated R-module and N a finitely generated
S-module, then HomR(M, N) is again a finitely generated S-module,
as S is left-Noetherian. If M is a bounded complex of finitely gen-
erated R-modules, then it is quasi-isomorphic to a bounded complex
of finitely generated projective R-modules. The result then follows at
once. Q.E.D.

Remark 5.8. Note however that RRRHomR does not extend to a func-
tor

RRRHomR : DDD−(S-ModModMod)opp ×DDD+(R-ModModMod) DDD+(S-ModModMod).

Even in those cases where we can give HomR(M, A) the structure of an
S-module (e. g. when S has a Hopf structure with antipode s s via
(sf)(m) = f(sm)), projective S-modules in general are not projective.
This is specially true for R[[G]], which is a flat, but generally not a
projective R-module.

An essential ingredient in the proof of this section’s main theorem
is Grothendieck local duality. It is commonly stated as follows:

Theorem 5.9 (Local duality, [Har66, theorems V.6.2, V.9.1]). Let
R be a commutative regular local ring of dimension d with maximal ideal
m, and E a fixed injective hull of the R-module R/m. Denote with R[d]
the complex concentrated in degree −d with entry R. Then

RRRΓm
∼= T ◦RRRHomR(−, R[d]) = [−d] ◦ T ◦RRRHomR(−, R)

on DDDb
c(R-ModModMod).

The regularity assumption on R can be weakened if one is willing
to deal with a dualizing complex that is not concentrated in just one
degree (loc. cit.). Relaxing commutativity however is more subtle and
will be the focus of section 7.
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Theorem 5.10. Let O be a pro-p discrete valuation ring, R =
O[[X1, . . . , Xt]] with maximal ideal m, G = Zs

p and Λ = R[[G]]. Then

T ◦RRRHomΛ(−, Λ) ∼= [t + 1] ◦RRRΓm ◦LLLD ◦ T

on DDDb
c(Λ-ModModMod). The right hand side can furthermore be expressed as

RRRΓm ◦LLLD ◦ T ∼= lim−→
k

LLLD ◦ T ◦RRRHomR(R/mk,−).

Proof. Λ is again a regular local ring, now of dimension t + s + 1.
Denote its maximal ideal by M. By theorem 5.9

RRRΓM
∼= T ◦RRRHomΛ(−, Λ[s + t + 1]) = [−s− t− 1] ◦ T ◦RRRHomΛ(−, Λ).

Now M = m+(γ1−1, . . . , γs−1) and if x1, . . . , xt+1 is a regular sequence
in R, then x1, . . . , xt+1, γ1 − 1, . . . , γs − 1 is a regular sequence in Λ.
Furthermore, the sequence γ1− 1, . . . , γs− 1 is of course itself regular in
Λ. Let it generate the ideal I. Then we can apply proposition 3.27, i. e.,

RRRΓM
∼= RRRΓm ◦RRRΓI .

By proposition 5.6, we have RRRΓI = [−s] ◦LLLD ◦ T , which shows the first
isomorphism.

Consider furthermore the functor lim−→k
LLLD ◦ T ◦RRRHomR(R/mk,−).

By lemma 5.7 we can compute it on DDDb
c(Λ-ModModMod) as

lim−→
k

LLLD ◦ T ◦RRRHomR(R/mk,−) ∼= lim−→
k

[s] ◦RRRΓI ◦RRRHomR(R/mk,−)

∼= [s] ◦RRRΓI ◦ lim−→
k

RRRHomR(R/mk,−)

= [s] ◦RRRΓI ◦RRRΓm

∼= [s] ◦RRRΓm ◦RRRΓI

∼= [s] ◦RRRΓm ◦ [−s] ◦LLLD ◦ T

= RRRΓm ◦LLLD ◦ T,

as by proposition 3.23, local cohomology commutes with direct limits,
RRRΓm and RRRΓI commute by proposition 3.27, and by two applications of
proposition 5.6. Q.E.D.

Remark 5.11. Proposition 5.6 and theorem 5.10 should together be
compared with the duality diagram [Nek06, (0.4.4)].
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Remark 5.12. If we express theorem 5.10 in terms of a spectral
sequence, it looks like this:

lim−→
k

LLLpD(T (Extq
R(R/mk, M))) =⇒ T (Extt+1−p−q

Λ (M, Λ)).

Writing E•
Λ for Ext•

Λ(−, Λ), flipping the sign of p and shifting q t+
1− q then yields

lim−→
k

Dp(Extt+1−q
R (R/mk, M)∨) =⇒ Ep+q

Λ (M)∨

and the following exact five term sequence:

E2
Λ(M)∨ lim−→k

D2(Extt+1
R

(R/mk, M)∨) lim−→k
D(Extt

R(R/mk, M)∨)

E1
Λ(M)∨ lim−→k

D1(Extt+1
R

(R/mk, M)∨) 0

§6. Iwasawa Adjoints

In this section let R be a pro-p commutative local ring with maximal
ideal m and residue field of characteristic p. Let G be a compact p-adic
Lie group and Λ = Λ(G) = lim←−U

R[[G/U ]], where U ranges over the
open normal subgroups of G. As is customary, we set again E•

Λ(M) =
Ext•

Λ(M, Λ).
Remark 6.1. Note that if M is a left Λ-module, it also has an oper-

ation of Λ from the right given by mg = g−1m. This of course does not
give M the structure of a Λ-bimodule, as the actions are not compatible.
We can however still give HomΛ(M, Λ) the structure of a left Λ-module
by (g.ϕ)(m) = ϕ(m)g−1.

The following lemma is based on an observation in the proof of
[Jan89, theorem 2.1].

Lemma 6.2. E0
Λ(M) = lim←−U

HomR(MU , R) for finitely generated
Λ-modules M , where the transition map for a pair of open normal sub-
groups U ≤ V are given by the dual of the trace map

MV MU , m
∑

g∈V/U

gm.

Proof. Note first that as HomΛ(M,−) commutes with projective
limits,

HomΛ(M, Λ) = lim←−
U

HomΛ(M, R[G/U ]) = lim←−
U

HomR[G/U ](MU , R[G/U ]).
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For U an open normal subgroups of G, consider the trace map

HomR(MU , R) HomR[G/U ](MU , R[G/U ])

ϕ

m
∑

g∈G/U

ϕ(g−1m) · g

 ,

which is clearly an isomorphism of R-modules and induces the required
isomorphism to the projective system mentioned in the proposition.

Q.E.D.

Proposition 6.3. On DDDb
c(Λ-ModModMod) we have

Π ◦RRRHomΛ(−, Λ) ∼= lim−→
U

Π ◦RRRHomR(−, R) ◦LLL(−)U .

Proof. Immediate by lemma 6.2, as (−)U clearly maps finitely gen-
erated free Λ-modules to finitely generated free R-modules. Q.E.D.

Remark 6.4. The spectral sequence attached to proposition 6.3 looks
like this:

lim−→
U

Extp
R(Hq(U, M), R)∨ =⇒ Ep+q

Λ (M)∨

Its five term exact sequence is given by

E2
Λ(M)∨ lim−→U

Ext2
R(MU , R)∨ lim−→U

HomR(H1(U, M), R)∨

E1
Λ(M)∨ lim−→U

Ext1
R(MU , R)∨ 0

The following lemma is also based on an observation in the proof of
[Jan89, theorem 2.1].

Lemma 6.5. HomΛ(M, Λ)∨ ∼= lim−→U
R∨ ⊗R MU for finitely gener-

ated Λ-modules M .

Proof.

HomΛ(M, Λ)∨ ∼= lim−→
U

Π(HomR(MU , R))

∼= lim−→
U

Π HomR(Π(R), Π(MU ))

∼= Π ◦Π(lim−→
U

MU ⊗R Π(R))

∼= lim−→MU ⊗R R∨.

Q.E.D.
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Proposition 6.6. Π ◦ RRRHomΛ(−, Λ) ∼=
(
R∨ ⊗LLL

R −
)
◦ LLLD ◦ Π on

DDDb
c(Λ-ModModMod).

Proof. Using lemmas 6.2 and 6.5, usual Pontryagin duality, and
the fact that tensor products commute with direct limits, we get:

HomΛ(M, Λ)∨ ∼= lim−→
U

R∨ ⊗R MU

∼= R∨ ⊗R lim−→Π(Π(M)U )
= R∨ ⊗R D(Π(M)).

It hence remains to show that (D ◦Π) maps projective objects to R∨⊗R

−-acyclics and it actually suffices to check this for the module Λ. But
D(Π(Λ)) = lim−→U

R[G/U ] is clearly R∨ ⊗R −-acyclic. Q.E.D.

Remark 6.7. The spectral sequence attached to proposition 6.6 looks
like this:

TorR
p (R∨, Dq(M∨)) =⇒ Ep+q

Λ (M)∨,

which yields the following five term exact sequence:

E2
Λ(M)∨ TorR

2 (R∨, D(M∨)) R∨ ⊗R D1(M∨)

E1
Λ(M)∨ TorR

1 (R∨, D(M∨)) 0

This also proves that Ep
Λ(M) = 0 if p > dim G + dim R. If dim R = 1,

the spectral sequence degenerates and we can compute Ep
Λ(torR M) and

Ep
Λ(M/ torR M) akin to [NSW08, (5.4.13)]. The spectral sequence for

R = Zp first appeared in [Jan89, theorem 2.1].

Lemma 6.8. R∨ ∼= lim−→k
R/m(k) if R is regular.

Proof. R satisfies local duality by assumption, hence by corollar-
ies 4.9 and 3.16 R∨ = T (R) ∼= RRRdΓm(R) = lim−→k

Extd
R(R/m(k), R) ∼=

lim−→k
R/m(k). Q.E.D.

Lemma 6.9. HomΛ(M, Λ)∨ ∼= lim−→U,k
(M/m(k))U for finitely gener-

ated Λ-modules M and regular R.
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Proof.

HomΛ(M, Λ)∨ ∼= R∨ ⊗R lim−→
U

MU

∼= lim−→
U

lim−→
k

R/m(k) ⊗R MU

∼= lim−→
U

lim−→
k

(M/m(k)M)U

using lemmas 6.5 and 6.8. Q.E.D.

Proposition 6.10. If R is regular, Π◦RRRHomΛ(−, Λ) ∼= lim−→k
LLLD◦Π◦(

R/m(k) ⊗LLL
R −

) ∼= lim−→k
LLLD◦Π◦ [d]◦RRRHomR(R/m(k),−) on DDDb

c(Λ-ModModMod).

Proof. By lemma 6.9

HomΛ(M, Λ)∨ ∼= lim−→
U

lim−→
k

(M/m(k)M)U

∼= lim−→
U,k

Π(Π(M/m(k)M)U )

= lim−→
k

D(Π(R/m(k) ⊗R M)).

By proposition 3.14 it suffices to show that (Λ/m(k))∨ is D-acyclic. But

LLL−iD((Λ/m(k))∨) = lim−→
U

Hi(U, R/m(k)[[G]]∨)∗ = lim−→
U

Hi(U, R/m(k)[[G]]),

which is zero for i > 0 by Shapiro’s Lemma.
The other isomorphism now follows from proposition 3.14. Q.E.D.

Remark 6.11. Writing Dp for LLL−pD, the spectral sequences attached
to proposition 6.10 look like this:

lim−→
k

Dp(TorR
q (R/m(k), M)∨) =⇒ Ep+q

Λ (M)∨

and
lim−→

k

Dp(Extd−q
R (R/m(k), M)∨) =⇒ Ep+q

Λ (M)∨

with exact five term sequences

E2
Λ(M)∨ lim−→k

D2((M/m(k)M)∨) lim−→k
D(TorR

1 (R/m(k), M)∨)

E1
Λ(M)∨ lim−→k

D1((M/m(k)M)∨) 0
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and

E2
Λ(M)∨ lim−→k

D2(Extd
R(R/m(k), M)∨) lim−→k

D(Extd−1
R

(R/m(k), M)∨)

E1
Λ(M)∨ lim−→k

D1(Extd
R(R/m(k), M)∨) 0

respectively. For R = Zp, these appear in the proof of [Jan89, theorem
2.1].

Lemma 6.12 ([Lim12, proposition 3.1.7]). Let M be a finitely gen-
erated Λ-module. Then M ∼= lim←−k

M/MkM algebraically and topologi-
cally.

Lemma 6.13. Π ◦ RRRHomR(R/m(k),−) maps bounded complexes
of Λ-modules with finitely generated cohomology to bounded complexes
whose cohomology modules are discrete p-torsion G-modules. If M is a
complex in lim−→U

DDDb
c(R[G/U ]-ModModMod), then all cohomology groups of

RRRHomR(R/m(k), M)∨

are furthermore finite.

Proof. The groups Extq
R(R/m(k), M) for M finitely generated over

Λ are clearly p-torsion and finitely generated as Λ-modules, hence com-
pact by lemma 6.12, and consequentially topologically profinite and
pro-p. Their Pontryagin duals are thus discrete p-torsion G-modules.

If M is finitely generated over some R[G/U ], it is also finitely gener-
ated over R and Extq

R(R/m(k), M) finitely generated over R/m(k), hence
finite. Q.E.D.

Proposition 6.14. Assume that R is regular. Let G be a duality
group (cf. [NSW08, (3.4.6)]) of dimension s at p. Then

Em
Λ (M)∨ ∼= lim−→

k

LLL−sD Extd−(m−s)
R (R/m(k), M)∨

∼= lim−→
k

LLL−sD TorR
m−s(R/m(k), M)∨.

for finitely generated R[G/U ]-modules M . Especially Π ◦ Es
Λ is then

right-exact.

Proof. As G is a duality group of dimension s at p, the complex
LLLD(M ′) has trivial cohomology outside of degree −s if M ′ is a finite
discrete p-torsion G-module. Together with lemma 6.13 this implies
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that the spectral sequence attached to proposition 6.10 degenerates and
gives

Em
Λ (M)∨ ∼= lim−→

k

LLL−sD Extd−(m−s)
R (R/m(k), M)∨.

The other isomorphism follows with exactly the same argument. Note
furthermore that as dim R = d, Extd−(m−s)

R (R/m(k), M) = 0 if m−s < 0,
hence Em

Λ (M)∨ = 0 if m < s. Q.E.D.

Theorem 6.15. Assume that R is regular and that G is a Poincaré
group at p of dimension s with dualizing character χ : G Z×

p (i. e.,
lim−→ν

Ds(Z/pν) ∼= Qp/Zp(χ), cf. [NSW08, (3.7.1)]), which gives rise to
the “twisting functor” χχχ : M M(χ). Assume that R is a commu-
tative complete Noetherian ring of global dimension d with maximal ideal
m. Then

T ◦RRRHomΛ(−, Λ) = χχχ ◦ [d + s] ◦RRRΓm

on lim−→U
DDDb

c(R[G/U ]-ModModMod).

Proof. Let I = Qp/Zp(χ) = χχχ(Qp/Zp) be the dualizing module
of G. For any p-torsion G-module A we have by [NSW08, (3.7)] that
LLL−sD(A) = lim−→U

Hs(U, A)∗ ∼= lim−→U
HomZp

(A, I)U = HomZp
(A, I), as I

is also a dualizing module for every open subgroup of G.
Note that

H0(χχχ ◦ [d] ◦RRRΓm) = χχχ ◦RRRdΓm

and that χχχ ◦RRRdΓm is hence right-exact. Note furthermore that

H0([−s] ◦ T ◦RRRHomΛ(−, Λ)) = Es(−)∨

∼= lim−→
k

LLL−sD Extd
R(R/m(k),−)∨

∼= lim−→
k

HomZp
(Extd

R(R/m(k),−)∨, I)

∼= χχχ ◦ lim−→
k

Extd
R(R/m(k),−)

= χχχ ◦RRRdΓm

using proposition 6.14 and Pontryagin duality.
By [Har66, proposition I.7.4] the left derivation of RRRdΓm is [d] ◦

RRRΓm: The complex RRRΓm(R) is concentrated in degree d and hence every
module is a quotient of a module with this property, as local cohomology
commutes with arbitrary direct limits. Q.E.D.
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Note that even though this theorem suspiciously looks like local
duality, the local cohomology on the right hand side is with respect to
the maximal ideal of the coefficient ring, not the whole Iwasawa algebra.
The local duality result is subject of the next section.

We end this section with a generalization of [Jan89, corollary 2.6],
where R = Zp was considered.

Corollary 6.16. In the setup of theorem 6.15 assume that M is a
finitely generated R[G/U ]-module. Then the following hold:

(1) If M is free over R, then

Eq
Λ(M)∨ ∼=

{
M ⊗R R∨(χ) if q = s

0 else

(2) If M is R-torsion, then Eq
Λ(M) = 0 for all q ≤ s.

(3) If M is finite, then

Eq
Λ(M)∨ ∼=

{
M(χ) if q = d + s

0 else

Proof. By theorem 6.15, we have

Eq
Λ(M)∨ ∼= RRRd+s−qΓm(M)(χ)

in any case.
In the first case, this is just M ⊗R R∨ for q = s and zero else. In the

second case, local duality yields RRRdΓm(M) ∼= HomR(M, R)∨ = 0. In the
third case, we note that M has an injective resolution by modules that
are the direct limit of finite modules. Proposition 3.23 together with
proposition 3.22 then imply the result. Q.E.D.

§7. Local Duality for Iwasawa Algebras

This section gives a streamlined proof of a local duality result for
Iwasawa algebras as first published in [Ven02] and generalizes the result
to more general coefficient rings. Let G be a pro-p Poincaré group of
dimension s with dualizing character χ : G Z×

p and R a commuta-
tive Noetherian pro-p regular local ring with maximal ideal m of global
dimension d. Set Λ = R[[G]], which is of global dimension r = d + s.

Proposition 7.1. RRRΓM(Λ) ∼= Λ∨[−d − s] and Exti
Λ(Λ/Ml, Λ) ∼=

RRRΓd+s−i
m (Λ/Ml)(χ).
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Proof. By proposition 6.14,

RRRiΓM(Λ) = lim−→
l

Ei(Λ/Ml)

∼= lim−→
l

(
lim−→

k

LLL−sD(Extd−(i−s)
R (R/m(k), Λ/Ml)∨)

)∨

.

As in the proof of theorem 6.15, we can express

LLL−sD(Extd−(i−s)
R (R/m(k), Λ/Ml)∨)

as
HomZp

(Extd−(i−s)
R (R/m(k), Λ/Ml)∨,Qp/Zp(χ)),

which we again see is isomorphic to

Extd−(i−s)
R (R/m(k), Λ/Ml)(χ).

In the direct limit over k this becomes RRRΓd−(i−s)
m (Λ/Ml)(χ).

Γm restricted to the subcategory of finite Λ- (or R-)modules is the
identity. As Γm commutes with arbitrary direct limits, this is also true
for the category of discrete Λ-modules. As the latter category contains
sufficiently many injectives, RRRΓm(N) = N if N is a complex of discrete
Λ-modules.

Now Λ/Ml is such a finite module, hence

RRRΓM(Λ) = [−d− s] ◦ lim−→
l

(RRRΓm(Λ/Ml)(χ))∨ = Λ(χ)∨[−r].

The proposition now follows at once if we observe that Λ ∼= Λ(χ) as a
Λ-module via g χ(g)g. Q.E.D.

Theorem 7.2 (Local duality for Iwasawa algebras).

RRRΓM
∼= [−r] ◦Π ◦RRRHomΛ(−, Λ)

on DDDb
c(Λ).

Proof. Because of proposition 7.1, this follows verbatim as in
[Har67, theorem 6.3]: The functors RRRrΓM and HomΛ(−, Λ)∨ are re-
lated by a pairing of Ext-groups, are both covariant and right-exact
and agree on Λ, hence also agree on finitely generated modules. As the
complex RRRΓM(Λ) is concentrated in degree r, the same argument as in
theorem 6.15 shows that the left derivation of RRRrΓM is just [r] ◦RRRΓM

and the result follows. Q.E.D.
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§8. Torsion in Iwasawa Cohomology

There are notions of both local and global Iwasawa cohomology. Our
result about their torsion below holds in both cases and we will first deal
with the local case.

In both subsections, R is a commutative Noetherian pro-p local ring
of residue characteristic p.

8.1. Torsion in Local Iwasawa Cohomology
Let K be a finite extension of Qp and K∞|K a Galois extension

with an analytic pro-p Galois group G without elements of finite order.
Let T be a finitely generated Λ = R[[G]]-module and set A = T ⊗R

R∨. Due to Lim and Sharifi we have the following spectral sequence
(stemming from an isomorphism of complexes in the derived category).
Write Hi

Iw(K∞, T ) = lim←−K′ Hi(GK′ , T ) where the limit is taken with
respect to the corestriction maps over all finite field extensions K ′|K
contained in K∞, and where we denote by GL the absolute Galois group
of a field L.

Theorem 8.1. There is a convergent spectral sequence

Ei
Λ(Hj(GK∞ , A)∨) =⇒ Hi+j

Iw (K, T ).

Proof. This is [LS13, theorem 4.2.2, remark 4.2.3], which gen-
eralizes a local version of the main result of [Jan14] to more general
coefficients. Q.E.D.

Theorem 8.2. If G is a pro-p Poincaré group of dimension s ≥ 2
with dualizing character χ : G Z×

p and if R is regular, then

torΛ H1
Iw(K∞, T ) = 0.

If s = 1, then

torΛ H1
Iw(K∞, T ) ∼= HomR((T ∗)G, R)(χ−1),

where T ∗ = HomR(T, R).

Proof. The exact five-term sequence attached to the spectral se-
quence of theorem 8.1 starts like this:

0 E1
Λ(H0(GK∞ , A)∨) H1

Iw(K∞, T ) E0
Λ(H1(GK∞ , A)∨)

E2
Λ(H0(GK∞ , A)∨)
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Note that E2
Λ(M) is pseudo-null and hence Λ-torsion for every finitely

generated module M , which follows from the spectral sequence attached
to the isomorphism RRRHomΛ(−, Λ) ◦RRRHomΛ(−, Λ) ∼= id on DDDb

c(Λ-ModModMod).
Furthermore E0

Λ(M) is always Λ-torsion free, as Λ is integral. It follows
that torΛ H1

Iw(K∞, T ) ⊆ E1
Λ(H0(GK∞ , A)∨). As the latter is Λ-torsion,

torΛ H1
Iw(K∞, T ) = E1

Λ(H0(GK∞ , A)∨).

The result now follows immediately from corollary 6.16. Q.E.D.

8.2. Torsion in Global Iwasawa Cohomology
Let K be a finite extension of Q and S a finite set of places of K.

Let KS be the maximal extension of K which is unramified outside S
and K∞|K a Galois extension contained in KS . Suppose that G =
G(K∞|K) is an analytic pro-p group without elements of finite order.
Let T be a finitely generated Λ = R[[G]]-module and set A = T ⊗R

R∨. Due to Lim and Sharifi we have the following spectral sequence
(stemming from an isomorphism of complexes in the derived category).
Write Hi

Iw(K∞, T ) = lim←−K′ Hi(G(KS |K ′), T ) where the limit is taken
with respect to the corestriction maps over all finite field extensions
K ′|K contained in K∞.

Theorem 8.3. There is a convergent spectral sequence

Ei
Λ(Hj(G(KS |K∞), A)∨) =⇒ Hi+j

Iw (K∞, T ).

Proof. This follows from [LS13, theorem 4.5.1], which generalizes
the main result of [Jan14] to more general coefficients. Q.E.D.

From this we derive the following.

Theorem 8.4. If G is a pro-p Poincaré group of dimension s ≥ 2
with dualizing character χ : G Z×

p and if R is regular, then

torΛ H1
Iw(K∞, T ) = 0.

If s = 1, then

torΛ H1
Iw(K∞, T ) ∼= HomR((T ∗)G, R)(χ−1),

where T ∗ = HomR(T, R).

Proof. Replace “GK∞” with “G(KS |K∞)” in the proof of theo-
rem 8.2. Q.E.D.
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