Anticyclotomic main conjecture for modular forms
and integral Perrin-Riou twists
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Abstract.

We prove a one-sided divisibility relation for the anticyclotomic
Iwasawa main conjecture for modular forms in terms of the p-adic L-
function constructed by Bertolini-Darmon-Prasanna and Brakodéevic.
The divisibility relation is known by Castella if p is ordinary and by
Castella-Wan for the elliptic curve case. Here we prove the higher
weight non-ordinary case with a treatment that works uniformly for
both ordinary and non-ordinary cases. In the proof, we establish
a theory of integral Perrin-Riou twist. It enables us not only to
twist systems of generalized Heegner cycles (which are not norm-
compatible) by any continuous p-adic anticyclotomic characters but
also to investigate the denominators of resulting systems explicitly.

§1. Introduction

1.1. Our setting of the main conjecture

The aim of this paper is to prove a one-sided divisibility relation
for the anticyclotomic Iwasawa main conjecture for modular forms. The
anticyclotomic Iwasawa theory has a long history and there are many
works in different settings. Here we clarify our setting comparing with
others.

Let f be a normalized (elliptic) eigen newform of weight & for T'g (V).
Let K be an imaginary quadratic field. We consider a factorization
N = NTN~ where a prime factor of N divides N* (resp. N7) if and
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only if it is split (resp. inert or ramified) in K. The arithmetic of f
over K depends significantly on the condition on N~ and the Iwasawa
theory also depends on the condition on a fixed prime p (ordinary or not
for f, split or not in K). For example, the classical Heegner hypothesis
is that N~ = 1. Then the sign of the functional equation of the L-
function of f over K is —1 and we have special cycles called Heegner
cycles. The Gross-Zagier formula relates the derivative of the L-function
at the central point to the height of the Heegner cycle of conductor
1. The existence of such special cycles gives a special flavor in the
anticyclotomic Iwasawa theory. (We recall it in §1.2 below.) On the
other hand, if N~ is a square-free product of the odd number of inert
primes, the sign of the functional equation is +1. Special cycles do not
exist directly, however, Bertolini-Darmon [4] studied the Iwasawa theory
in the ordinary case of weight 2 by considering congruences from Heegner
points on various Shimura curves. Chida-Hsieh [14] generalized their
work to the higher weight ordinary case. If f has complex multiplication
by our fixed imaginary quadratic field K (hence N~ contains ramified
primes and it is not square-free), there are works by Agboola-Howard
(1], [2)).

In this paper, we assume the classical Heegner hypothesis N= =1
and our prime p splits in K and p f N but there is no condition on
the ordinarity for f. We think our method also works when N~ is a
square-free product of the even number of inert primes.

1.2. Background

Here we recall the background of our work. The origin goes back to
the study of the behavior of the Mordell-Weil rank of elliptic curves in
Zp-extensions by Mazur (cf. [26]). The behavior in the anticyclotomic
Z,-extension (with the classical Heegner hypothesis) is special because
of the existence of a system of Heegner points of higher conductors.
Then Perrin-Riou [29] formulated an Iwasawa theoretic conjecture on
Heegner points, which is considered as the Iwasawa main conjecture in
this context. Since our result is intrinsically related to her conjecture,
we recall it briefly.

Let E be an elliptic curve defined over Q with conductor N. Let
K be an imaginary quadratic field satisfying the classical Heegner hy-
pothesis. Let p be a good ordinary prime for E. Let K. /K be the
anticyclotomic Zy-extension and put A = Z,[[Gal(Kw/K)]]. Let X
be the Pontryagin dual of the discrete p-Selmer group of E over K.
We also consider the projective limit of compact Selmer groups Sy =
Hm Sel(K,,,T,E), which naturally contains the limit of the Mordell-
Weil groups lim E(K,)®Z, (In fact, we have Soo = Hm E(K,)®Zy,if
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the Tate-Shafarevich groups are finite). We take a modular prametriza-
tion 7 : Xo(N) — E and then the system of Heegner points defines
a A-submodule H in @n E(K,) ® Z,. We remark that the natural
system of Heegner points of p-power conductors is not norm compatible
and here we need the ordinarity condition on p for E to stabilize the
system to obtain the module H.,. We come back to this point later
when we consider the non-ordinary case.

Conjecture 1.1. (Perrin-Riou)

(1) S is a free A-module of rank 1.

(2)  There exists a finitely generated torsion A-module M such that
Xoo 18 pseudo-isomorphic to A M O M.

(3) We have the equation of characteristic ideals

Char(M) = c; 'uj Char(Se /Hoo )

where ¢, is the Manin constant of T and ug = (§O0%)/2.

This conjecture is a A-adic version of Kolyvagin’s result relating the
square root of the order of the Tate-Shafarevich group to the index of
the Heegner point in the Mordell-Weil group (if the Heegner point is
non-trivial). By Cornut, Vatsal and Howard ([15], [39], [18]), now we
know (1), (2) and a one-sided divisibility for (3) under mild assumptions.
Recently, there is progress on the other divisibility for (3) (See [8], [40].)
There is also a generalization of the Perrin-Riou conjecture to modular
forms of higher weight by using (generalized) Heegner cycles or a Hida
theoretic deformation of Heegner points. See Castella [10] and Longo-
Vigni [25].

In the Perrin-Riou conjecture, the ordinary condition on p for F
is essential, otherwise, Ho, = 0 since there is no universal norm (or
norm compatible system of rational points) for E in the supersingular
case. However, the system of Heegner points of p-power conductors
satisfies a certain norm relation associated to the p-Euler factor of E.
(See [29] or [20].) One remedy is to use the idea in [19] to decompose
the system to obtain a norm compatible system non-canonically, that
is, to consider the plus/minus version of the Perrin-Riou conjecture. In
fact, if a,(E) := 1+ p — tE(F,) = 0, Castella-Wan [13] formulated the
plus/minus Perrin-Riou conjecture and obtained similar results known
in the ordinary case. It seems to be possible to generalize their method
to more general settings by using the idea by Sprung in [38]. However,
in this paper, we do not pursue this direction, instead, we use another
formulation of the conjecture that works for the both ordinary and non-
ordinary cases equally well.
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In general, we have (at least) two types of the formulation of the
Iwasawa main conjecture. One uses a system of “zeta elements” and the
other uses a p-adic L-function, and both formulations are important.
For example, in the classical Iwasawa theory of cyclotomic fields, cyclo-
tomic units are used as zeta elements and played the key role to prove
the one-sided divisibility via the Euler system in the main conjecture.
On the other hand, the Kubota-Leopoldt p-adic L-function is used in
the other formulation where the divisibility in the opposite direction
is shown by using congruences of modular forms. In the Perrin-Riou
conjecture, Heegner points are considered as zeta elements and form
an Euler system. It is natural to expect the formulation of the main
conjecture in terms of p-adic L-function equivalent to the Perrin-Riou
conjecture.

Though the Perrin-Riou conjecture was formulated in 1980’s, the
corresponding p-adic L-function was found almost 30 years later by
Bertolini-Darmon-Prasanna [5] and Brakoc¢evi¢ [7]. (For simplicity, we
call it BDP-B’s p-adic L-function.) Its square interpolates the special
values of the L-function of f over K twisted by anticyclotomic characters
with appropriate infinity type. See §2.2 for details. One can then formu-
late an Iwasawa main conjecture in terms of BDP-B’s p-adic L-function
following the philosophy or recipe of Bloch-Kato or Greenberg. However,
it is surprising (at least for the authors) that BDP-B’s p-adic L-function
lives in the Iwasawa algebra A without having huge denominators even
in the non-ordinary case (though the condition p splits in K is still very
important), and the formulation of the main conjecture via BDP-B’s
p-adic L-function works for the both ordinary and non-ordinary cases
equally well without any modification. This phenomenon is explained
by the fact that BDP-B’s case (twists of the Galois representation of f
by anticyclotomic characters with split p) satisfies the Panchishkin con-
dition even when p is non-ordinary for f. Castella [10, 11] showed that
at ordinary primes, this main conjecture is equivalent to the Perrin-Riou
conjecture (and its generalization to the higher weight case). For ellip-
tic curves with a,(E) = 0, Castella-Wan [13| showed the equivalence to
the plus/minus Perrin-Riou conjecture. In this paper, though we do not
formulate the Perrin-Riou type conjecture in terms of generalized Heeg-
ner cycles in the non-ordinary case, we prove a one-sided divisibility in
the main conjecture via BDP-B’s p-adic L-function in the higher weight
non-ordinary case (cf. Theorem 1.5).

1.3. Difficulties in the non-ordinary higher weight case

Concerning the dependence on the ordinarity condition on p for
f, it is interesting to compare with the cyclotomic Iwasawa theory for
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modular forms. In the cyclotomic case, there is a formulation of the
main conjecture by Kato using his zeta elements, which works for the
both ordinary and non-ordinary primes (even for bad primes) equally
well. On the other hand, the cyclotomic p-adic L-function (by Amice-
Vélu-Vishik) has huge denominators if p is non-ordinary and it is not
straightforward to formulate the main conjecture in terms of the p-adic
L-function. (One needs Perrin-Riou’s local theory or plus/minus theory,
etc.) We explained that the anticyclotomic case was the contrary. In
fact, in the following sense, the anticyclotomic case is more subtle.

In the cyclotomic case, the obstruction of denominators comes p-
locally. That is, the p-adic L-function is the image of the Perrin-Riou
(or Coleman) map of zeta elements and the denominator comes from
the Perrin-Riou map, which is p-locally defined. Kato zeta elements
are integral and norm compatible in the p-power direction. The norm
compatibility plays an important role when we consider the Soulé twist.
In fact, Kato first constructed the system related to non-critical values
of the L-function and used the Soulé twist and the explicit reciprocity
law to obtain the system related to critical values.

In the anticyclotomic case, the obstruction of the denominator comes
globally. Since the defining interpolation range of BDP-B’s p-adic L-
function is different from that of (generalized) Heegner cycles, we need
a Soulé type twist and an explicit reciprocity law to relate these. How-
ever, the system of generalized Heegner cycles is not norm compatible
in the p-power direction, and if p is non-ordinary, we need denominators
for the stabilization. These denominators break not only the principle
of the Soulé twist but also the argument of the Euler system itself. The
problem of the Soulé twist was solved in [21] for twists of algebraic anti-
cyclotomic characters but it was not sufficient for proving the divisibility
in the main conjecture. In this paper, we consider the integral Perrin-
Riou twist generalizing the twist of [21], and it can be applied for all
continuous anticyclotomic p-adic characters. (Precicely speaking, our
twisting method is not completely identical to that in [21].)

Readers may think that the language of the analytic distribution
seems more natural to describe our integral Perrin-Riou twist. In fact,
such approach is taken in [23] to twist Beilinson-Flach elements. How-
ever, in our case, we needed more subtle calculations of denominators
to check the axiom of the Euler system at [ # p (cf. Lemma 4.5 (2)) in
cohomology groups with huge torsion subgroups.

1.4. The conjecture and our main result

In order to state our main result precisely, we fix notation. Let
f € S2,.(T'g(N)) be a normalized eigen newform of weight k = 2r > 2 for
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['o(N). Let K be an imaginary quadratic field with discriminant — Dy
satisfying the classical Heegner hypothesis, that is, the rational primes
dividing N split in K. Let p be an odd prime, and fix embeddings
to : Q@ = C and ¢, : Q = C,. We assume that p splits in K and
write (p) = pp, where p denotes the prime in K above p compatible
with ¢,. Let Fy be the minimal field in C, containing Q, and all the
Fourier coefficients a,, of f, and let & be its ring of integers. Let V; =2
F J;ez be the Galois representation attached to f and Ty an &-lattice of
V; stable under the Gal(Q/Q)-action. Let K. be the anticyclotomic
Zy-extension of K and put I' = Gal(K/K). We put A = O¢[[T]
and AM = ﬁ?r[[F]], where 5’?’“ denotes the ring of integers in the p-
adic completion of the maximal unramified extension of Fy. We denote
BDP-B’s p-adic L-function by .Z,(f) € A", whose square interpolates
algebraic parts of L(f,x,r) for anticyclotomic Hecke characters x of
infinity type (j,—j) with j > r. We note that .Z,(f) depends on the
choices of periods, and we refer the reader to Subsection 2.2 for details.
We put W = (Vy/T¢)(r), where (r) denotes the r-th Tate twist, and
define

(1.1)

Hj o(Koo, W)= Ker (Hl(Koo, W) = [[ H' (Koo, W) x [ [ Hl(ng,w/7W))

wlp w'tp

where w (resp. w’) runs over all places of K, dividing p (resp. not
dividing p). Let X o(Ks, W) be the Pontryagin dual of Hé)O(KOO, Ww).
It is a finitely generated A-module for the canonical A-action.

Castella formulated the anticyclotomic Iwasawa main conjecture in
terms of BDP-B’s p-adic L-function at ordinary primes ([10, 11].) Since
our representation satisfies the Panchishkin condition, it is natural to
expect the anticyclotomic Iwasawa main conjecture precisely in the same
form as for the ordinary primes even for non-ordinary primes:

Conjecture 1.2. (1) The A-module X o(Koo, W) is torsion.
(2) We have
Char(Xp o (Koo, W))@AAY = L () A
where Char denotes the characteristic ideal of finitely generated
torsion A-modules.

Twisting by Hecke characters, the above conjecture is equivalent to
the Iwasawa main conjecture of the following form that relates the p-adic
L-function to the Bloch-Kato Selmer group.

Conjecture 1.3. Let ¢ be an anticyclotomic Hecke character of
infinity type (j,—7) such that j > r and the p-adic avatar ¢ factors
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thorough T'. Let H} (Koo, W ()™ 1)) be the Bloch-Kato Selmer group as-
sociated to the twist W (1) of W by ¢! (see Remark 2.6 and (2.6)
for details). Then, its Pontryagin dual Hf (Koo, W(¢™1))V is a finitely
generated torsion A-module, and

Char(H; (Koo, W (™)) @a A™ = Twy (L ()*) A"

where Twy, : A" — A" denotes the twist by ’(ZJ

Remark 1.4. (1) By definition, Twy (%, (f)?) interpolates
the algebraic parts of L(f, x~!¢~1,r) for anticyclotomic Hecke
characters x such that the infinity type of xv is of the form
(i, —i) with i > 7.

(2)  Our Selmer group is pseudo-isomorphic to Greenberg’s Selmer
group introduced in [17] (see Proposition 2.8 for details).

(3) Conjecture 1.2 (2) is independent of the choice of the lattice
Ty assuming Conjecture 1.2 (1). (cf. Proposition 2.9.)

The following is our main result, which gives an evidence of the
above conjecture.

Theorem 1.5. Suppose that K # Q(v/—1),Q(+v/—3) and Dk is
odd or divisible by 8. Assume that p { 6hx where hx denotes the class

number of K. Assume also that the image of Gal(Q/Q) — Autg, (Ty) =
GL2(Oy) contains the subgroup consisting of the elements g € GLo(Zp)
such that det(g) € (Z))?"~'. Then, Conjecture 1.2 (1) holds, and we
have

(1.2) Zo(f)? € Char(Xp o(Koo, W)) @a A" @z, Qp.

We note that by twisting (1.2), we also have a similar result for
Conjecture 1.3 as follows.

Theorem 1.6. Let ¢ be an anticyclotomic character as in Conjec-
ture 1.3. Under the same assumption as in Theorem 1.5, the finitely
generated A-module H} (Koo, W (1p™1))Y is torsion, and we have

Twy (L (f)?) € Char(H} (Koo, W (% ™1)Y) @a A™.

Recently, a similar result is obtained by K. Biiyiikboduk and Lei
in a slightly different setting by a completely different method using
Beilinson-Flach elements ([9]).

1.5. Plan of our proof
Our strategy is as follows. First, for sufficiently many continuous

characters x : ' — Q; , we compare the specialization of both sides
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of Conjecture 1.2 (2). Here we use the Euler system obtained by our
integral Perrin-Riou twist of generalized Heegner cycles by x. Next, by
using a certain control theorem, we glue up the comparisons between
specializations to prove our main result. The key point is that in terms
of generalized Heegner cycles, a naive gluing argument does not work
in the non-ordinary case but it works in the formulation in terms of
BDP-B’s p-adic L-function.

More precisely, our proof consists of the following three steps.

Step 1: For almost all height-one prime ideals 8 # pA of A, we
compare the following two quantities:

e The p-adic valuation of xq () € Q,, where £ € A is a gener-
ator of the ideal .Z,(f)A"" NA, and xq : I' — @; is the contin-
uous character induced by choosing an embedding A/ — @p.
e The length of the Selmer group H o(K, W (xq'))-
By our integral Perrin-Riou twist, we obtain an Euler system related to
xp (L) from generalized Heegner cycles. Then, by similar arguments to
those in the ordinary case (cf. [10]), we complete Step 1 (cf. Proposition
5.4).

Step 2: We prove a control theorem which says that the length of
Hé’O(K, W(Xq_;)) and that of Hé)O(KOO, W)[B"] (the part killed by B*)
are the same up to a constant when ‘B3 varies. Here, ¢ : A — A is the
involution sending g € T' to g~ !, and P* := +(B). See Proposition 5.7
for the details.

Step 3: Let Q # pA be a height-one prime ideal of A, and we
take a certain sequence {%(m)}mzo of height-one prime ideals such that
Im(XQX;J,%m) C 1+ p™Z,, where Z, denotes the ring of integers in @p.
Since

X@,O(KOC’ W)/m(m) = Hom(H(Z},O(Koov W)[m(M)7L]7 QP/ZP)’

the control theorem above relates the asymptotic behavior of the length
of H&O(K,W(X;}%m))) (as m varies) to ordg (Char(Xp (K, W))). On
the other hand, the asymptotic behavior of the p-adic valuation of the
evaluation Xgqm (Z) is related to ordg(-Z). Then, by using the first
step, we conclude that

2ordg () > ordg (Char(Xp o(Koo, W))).

Step 3 is completed in Subsection 5.3.

Acknowledgements. The authors thank Francesc Castella and Ming-
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§2. The p-adic L-function and the Selmer group

In this section, we recall the p-adic L-function of Bertolini-Darmon-
Prasanna and Brakocevi¢ and basic properties of our Selmer group.

2.1. Notation and settings

Here we fix our notation and settings that are used throughout this
paper. For a number field or valuation field L, we denote by & the
ring of integers in L. For a number field L and a place of v, we write
its completion at v by L,, its adéle ring by Ap, and the Galois group
Gal(Q/L) by Gr. For an algebraic extension L of Q and a place v of L,
we denote by L, the union of the completion at v of finite extensions in
L. For a local field L, we denote the maximal unramified | extension of L
in the algebraic closure L by L" and its completion by L.

Let f =7, a,q™ be a normalized eigen newform of weight k = 2r
for To(N). Let K be an imaginary quadratic field with discriminant
—Dy satisfying the classical Heegner hypothesis for f, and let 91 be
an ideal of Ok such that Ox /M = Z/NZ. We also assume that K #
Q(v/-1),Q(v/=3) and D is odd or divisible by 8.

For a natural number ¢, let K[c] be the ring class field of K of
conductor ¢. We put K[ep™] := U2 K[cp"]. Let K be the anticyclo-
tomic Zy-extension of K, that is, the unique extension of K in K[p™]
whose Galois group I' = Gal(K ./ K) is isomorphic to Z,. For an integer
m >0, let K,;, be the unique subfield of K., with [K,, : K] = p™.

Let p 12N be a prime which splits in K and write pOx = pp, where
p is the prime ideal of Ok above p compatible with a fixed embedding
tp : Q = C,. We also fix an embedding top : Q@ < C and denote by
7 € Gg the complex conjugation induced by to. Let F'y be the minimal
field extension of Q, in C, containing all the Fourier coefficients of f via
loo and t,. We denote by Vi = F;BQ the Galois representation of Deligne
attached to f. Let &y be the ring of integers in Fy and Ty an &-lattice
of V; which is stable under the action of Gg.

Let € be the ring of integers in a finite extension F' of Fy containing
the roots of X2 — a,X + p*~!. In the rest of this paper, by abuse of
notation, we denote by 7'y (resp. V) the scalar extension Ty ®¢, € (resp.
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Vr®0). We note that the scalar extension is harmless to prove the main
result (Theorem 1.5).

2.2. Hecke characters and p-adic L-functions
Let I(Dg) be the group of fractional ideals of K relatively prime
to Dg. Then, by [34] (see also [41]) there exists a Hecke character
vr  I(Dg) — C* such that
e the conductor f of ¢ is divisible only by primes dividing D,
e for a € I(Dg), we have px(a) = px(a),
e for a« € K* relatively prime to f, we have i (a0k) = +a.
(Note that K # Q(v/—1),Q(v/=3).) Let H be the Hilbert class field of
K and A an elliptic curve over H with complex multiplication by Ok
such that j(A) = j(Ok) and its Serre-Tate character ¥4 is given by
Ya = ¢k o Ny k, where Ny, is the norm map.
For a place v of Q, let N, : (H ® Q,)* — (K ® Q,)* be the norm
map. We denote by 14 : A}, — K* the idelic Serre-Tate character
associated to 4. (cf. [36, Theorem 10].) We define

¢A,v : A;f] — (K® Qv)xa ar— &A(Q)Nv(av)ila

where a, denotes the component of ¢ in (H ® Q,)*, and then 4,
factors through A}, /H*. By class field theory, ¥4 , factors through the
Artin map arty : Aj/H* — Gal(H*®/H), and induces a map Gy —
(K ®Q,)*, which is also denoted by 14 ,. For q € {p,p}, we denote by
g : Gg — K the composite

TPAp

Gu 22 (K 0 Q)% — K,

where the last map is the projection induced by K ® Q, = K, ® K.
We note that Gy acts on A[p"] and A[p"] by ¢, and ¢y, respectlvely
By identifying K ® R with C via the fixed embedding ts, : Q — C, we
obtain a Hecke character 14 o : Afy/H* — C*.

We denote by po the prime ideal of H above p compatible with ¢,,.
We fix a minimal Weierstrass model of A over the localization of Oy
at po and write the Néron differential by wa. We fix an isomorphism
tpoo : G = A of formal groups over Z‘” and a complex uniformization

teo : C/Ok = A(C). Then, there exists (Qx,Q,) € C* x Zgrx such that

ar
where z and T denote the standard coordinate of C/0k and G, Te-
spectively.
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Now we recall the p-adic L-function constructed in [5, 7]. We say
that a Hecke character x : Ag/K* — C* is of infinity type (m,n)
if x(a) = a™™a"" for a € (K ® R)*, where @ denotes the complex
conjugation of a, and we identify (K ® R)* with C* by ts and put
it in the archimedean component in Aj. We note that the sign of our
definition of infinity type is the same as that in [5] and opposed to that
in [12]. We denote by ¥ the set of anticyclotomic Hecke characters
whose infinity type is of the form (j,—j). Then s = r is a critical
point of L(f,x~ !, s) for x € ¥ in the sense of Deligne. We consider the
decomposition ¥ = ¥ UX® Ux@) where

> = { x is of infinity type (j, —j) | —=r <j <7},
»(@ = { x is of infinity type (j,—j) | j >},
»2) — { x is of infinity type (j,—7) | j < —r}.

Then a character x € X lies in £V if and only if the sign of the functional
equation of L(f,x ™!, s) is equal to —1 (cf. [5, §4.1]).

We put K = K ©7Z, where Z = 11 primes Z1- For a Hecke character
¢ A /K> — C* of infinity type (m,n), we define the p-adic avatar
¢ K*/K* — C¥ of o by

p(a) = 1y 0 15 ((a))ay "ag™.
Here, a, and ap denote the p-component and p-component of a, respec-
tively. We note that the image of K* under © lies in a finite extension
of K. By class field theory, we obtain ¢ : Gx — @;

Let Gy = Gal(K[p™]/K) be the Galois group of the tower of
the ring class fields of p-power conductor over K. Let .ZPBDP*B( f) e
0" [[Gp~]] be the p-adic L-function constructed in [5, 7] characterized

by the following interpolation property: for every x € X2 of infinity
type (j,—j) such that x factors through G,e, we have

o BDP-B 2
(23) ("(3" S ”) = L (o e (T X2 (P D,
P

where L¥8(f,x"1,7) € Q is equal to L(f,x,7)/Q up to explicit
factors. We refer the reader to [12, Proposition 3.8] for details (the sign
of infinity type in loc. cit. is opposed to ours). We note that the twist
of L(.,Z’pBDP_B(f)) by ¢ € ) coincides with %, 4 (f) of [12, Definition
3.7], where ¢ : é’ur[[gpoo]] — 5’“[[9,,00]] is induced by the involution
Gp — Gp sending g to g~ .
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2.3. Selmer groups

In this subsection, we fix general terminologies on Selmer groups.

Let V be a finite dimensional F-vector space with continuous G k-
action. We assume that for almost all primes v of K, the representation
V is unramified at v. Let T be an Op-lattice of V' which is stable under
the G k-action. We put W = V/T.

Given a Selmer structure .# on V (cf. [18, Definition 1.1.10]), by
abuse of notation, we denote by the same symbol .# the Selmer struc-
tures on T and W defined as follows. Let L be a finite extension of
K. For a prime v of L, we let H%(L,,T) (resp. HZ%(L,,W)) be
the inverse image (resp. the image ) of H%(L,,V) under the natu-
ral map H*(L,,T) — H*(L,,V) (resp. H'(L,,V) — H'(L,,W)). For
the maximal ideal m of &, we also define Selmer structures on 7'/m”
and W[m"] by letting H%(L,,T/m") (vesp. HL(L,, W[m"])) be the
image (resp. the inverse image) of HY (L,,T) (resp. H% (L,, W)) under
HY(L,,T) — HY(L,,T/m") (resp. H'(L,, W[m"]) — H(L,, W)).

The Bloch-Kato local condition is given by

Ker (Hl(Lv7 V)— HY(L,V ®q, Bcrys)) ifv|p,

(2.4) Hfl(LmV) = {H&r(Lv,V) -— Ker (Hl(Lv,V) — H%LEHV)) ifvfp.

Definition 2.1. Let .%,¥ be Selmer structures on V' such that for
every prime v of L not dividing p, we have H%(L,,V) = H,(L,,V) =
H}(L,,V). Let M be one of the representations V,T,T/m", W and
Wm"]. Then we define H (L, M) as the kernel of

HL,M
H(LM%HH‘?LU,M H - HHl )

vip

If 7 satisfies H5(L,,V) = {0} (resp. H5(L,,V) = H'(L,,V)) for
v | p then we denote the Selmer group HY (L, M) by Hj (L, M) (resp
Hé’g(L, M)). We similarly define H (L, M), Hi@’@(L, M), Hé’@( , )
and Hy (L, M). We put

#(L,W) = (HR(L,W))", Xzu(L,W) = (HY4(L,W))"

where ()Y denotes the Pontryagin dual.

For a Z,-extension K, of K, we define the Selmer groups over
Koo as Hy (Koo, M) = lim Hy 4(Ky, M) where .#, & are one of
0, ® and the Bloch-Kato local condition. Then its Pontryagin dual
Xz 9 (Koo, W) is a finitely generated Op[[Gal(K/K)|]-module.
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Now we define Greenberg’s Selmer groups. Suppose that for each
v|p a subrepresentation F,f'V of Vg, is given. Then F;f M is defined
similarly and we put

H& (Ly, M) :=Ker (H'(L,, M) — H (K", M/F}f M)) .

Greenberg’s Selmer group H, (L, M) is defined to be HE, o, (L, M).
The group H} (Koo, M) is also defined similarly.

2.4. The main theorem
Let A" = &™[[I], and we denote by Z,(f) € A" the image of

prDpr(f) under the natural projection é’ur[[gpx]} — A", We put
A = O[] and W = (V;/Tf)(r). We now state the anticyclotomic
Iwasawa main conjecture.

Conjecture 2.2. (1) The A-module X o(Koo, W) is torsion.
(2)  We have Z,(f)*A™ = Char(Xyo(Ke, W)) @4 A™.

We assume the following.
Condition 2.3. (1) p16hg. Fixing an Oy-basis of Ty, the
image of Gg — Aute(Ty) = GL2(O) contains
{9 € GLa(Zp) | det(g) € (2,))* '}

Remark 2.4. If f is non-CM, then Condition 2.3 is satisfied for
almost all primes p ([33]). The condition p { hx is assumed in 18], and
we use it only when we use results in in [18].

Our main theorem is the following.

Theorem 2.5. We assume Condition 2.3. Then

(1)  Conjecture 2.2 (1) holds.
(2) We have

(2.5) Z,(f)? € Char(Xp o(Kso, W)) @4 A™ @ Q.

Remark 2.6. For ¢ € ©(?) the Hodge-Tate weights of V(w_l)\GKp
are all positive, and those of V(1/1’1)|GKF are less than or equal to zero,

where V(1)~1) denotes V(¢)~1), and in our convention the Hodge-Tate
weight of Q,(1) is 1. In particular, for n > 0 we have

Hfl(K%Pa V(wil)) = Hl(KnVP’ V(wil))v Hfl(Knyﬁa V(qpil)) = {0}7
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where K, , (v € {p,p}) denotes the completion of K,, at any prime above
v. Hence the Bloch-Kato Selmer group H{ (Ko, W(¢p™1)) is explicitly
written as

(26)  Ker [ Hjy(Koo, W ™) = [[ B Boorw: W) |,
wlp

and twisting (2.5) by 1& yields a similar result for Conjecture 1.3. This
also explains why the Selmer structure on Xy (Ko, W) is natural.

In [17], for Galois representations satisfying the Panchishkin con-
dition, Greenberg has formulated Iwasawa main conjectures (without
precise formulation of p-adic L-functions). We note that by Remark 2.6,
for 1 € ©(?), the Galois representation V() ~!) satisfies the Panchishkin
condition. In the rest of this subsection, we compare the Bloch-Kato
Selmer group with Greenberg’s Selmer group with FfV(¢~1) = V(¢~1)
for v|p and F,SV (v»~1) = {0} for v|p. Explicitly, our Greenberg’s Selmer
group is given by

w|p

Hg (Koo, W(§T1)) = Ker (Hé,@(Koo,W(w_l)) - HHI(K!E,WW(WI))) :

We also define H}, (Koo, W) by twisting the above.

Lemma 2.7. For a place w of Koo dividing p, HY(K 4w, V) = {0},
and HO(K oo, W) is finite.

Proof. Assume that Vy := H°(Kusw,V) # {0}. Then, by the ex-
istence of a Gg-equivariant, non-degenerate paring V x V' — F(1), we
have dimg(Vy) = 1. Let E be an elliptic curve with complex multiplica-
tion by Ok defined over a finite field I, of characteristic p. We denote by
«, B the roots of the p-Euler factor of E. Since V} is a one-dimensional
crystalline representation of Gal(Ks w/K,), it is a power of the anti-
cyclotomic character up to a finite character. Hence, if we denote by
Derys (Vo) the filtered ¢-module associated to Vo, then a non-zero power
of the eigenvalue Ay, of the Frobenius on De,ys(V0) is equal to (a/5)™
for some m € Z. By the Weil conjecture for F, a and g are g-Weil num-
bers. Hence, Ay, is a 1-Weil number. However, the Weil conjecture for
f implies that Ay, must be a p-Weil number, which is a contradiction.
Hence, H*(K o, V) = {0}.

We next prove that H°(K e ., W) is finite. We denote by Goo 4 the
absolute Galois group of K . Assume that HO(KOO,M,7 W) is infinite.
Then, for m > 1, by identifying W[p™] = T/p™, the group (T /p™)%=-w
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has an element of order p”. Hence, for n > 1

T, = lim (T/pF\ {0) 7" = T T/p™

k<n m>n

is non-empty, closed subset of [, ~, T'/p™. Since T,, 2 T, 11, the family
{% }n>1 has the finite intersection property. Hence, by the compactness
of 1,51 T/p™, we have Np,>1%,, # 0, and then

T\ {0} = Lm(T/p™) %= \ {0} # 0,

which contradicts that H°(Ks ., V) = {0}. Q.E.D.

Proposition 2.8. The following assertions hold.

(1)  The A-modules Xy o(Koo, W) and H, (Koo, W)Y are pseudo-
isomorphic.

(2)  The A-modules H} (Koo, W(™1))Y and HE, (Koo, W(p™1))Y
are pseudo-isomorphic.

Proof. Since

Hjo(Koo, W) (1) = HY (Koo, W (1 71)),
H(l}r(KOO’ W)(¢_1) = Hér(KOCH W(¢_1))

as A-modules, the assertion (2) follows from (1). We prove (1). By
definition, we have an exact sequence

0= Hyo(Koo, W) = H (Koo, W) = @y pH (KX /Koo w, W),

where I, denotes the inertia subgroup of G,,. Hence, it suffices to show
that for each w | p the module H' (KX, /Koo w, W) is finite.

We denote by Fr,, € Gy /I, the Frobenius map of w, which topo-
logically generates G,/ I, = Z. Then, there exists an exact sequence

0= H (Koo, W) = W = W — HYKY | /Koo w, W*) =0,

where the map W'+ — W!v is given by Fr,, — 1. Hence, by Lemma 2.7,
the group H* (K2 /Koo, W) is finite. Q.E.D.

Proposition 2.9. Assume that Conjecture 1.2 (1) is true. Then
Congjecture 1.2 (2) is independent of the choice of the lattice T.
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Proof. First, by construction, the p-adic L-function %, (f) is inde-
pendent of Ty. (The complex period related to the interpolation prop-
erty is the CM period of K and not the period of f.) For the charac-
teristic ideal, the choice of the lattice affects only the p-invariant. Since
our Selmer group is pseudo-isomorphic to Greenberg’s one, we can use
Perrin-Riou’s formula in [30, §1] to calculate the difference. Suppose
that 77 and T3 are lattices of Vy (r) stable under the Galois action such
that 77 C T5. We denote by p; the p-invariant of the Selmer group
associated to V¢(r)/T;. Then the theorem in [30, §1] implies that

pa — = ordy (#H®(C,0)) = Y ord, (#(F,C)),

vlp

where C' := T5/T7, v ranges over all primes dividing p, and the filtrations
F,C on C are given by F,C = C and FzC = {0}. Hence, pp— 11 is equal
to ord, (#C) — ord,(#C) = 0, and hence the p-invariant is independent
of the choice of the lattice. The case where T} is not contained in 715 is
reduced to the above case by considering 77 N7 C T;. Precisely speak-
ing, the Galois representation in [30] is assumed to be ordinary and the
ordinary filtration is used to define the Greenberg Selmer group. How-
ever, we checked that the proof therein works for any local filtration over
p if the associated Greenberg Selmer group and its contragredient are A-
cotortion. In particular, since our V' is self-dual, if we assume Conjecture
1.2 (1), Perrin-Riou’s formula works for our filtration. Q.E.D.

§3. Integral Perrin-Riou twists

In this section, we give a generalization of the Perrin-Riou twist with
integral coefficients which works also for global Galois representations
(cf. Proposition 3.7). Although a global generalization of Perrin-Riou
twist is given by Loefller-Zerbes ([23]), our advantage is to construct
twisted elements with explicit expression, which enables us to investigate
the denominators of twists precisely. This expression is crucial to study
the images of generalized Heegner classes in the local cohomology groups
with huge torsions.

Since this section is independent of the other sections of this paper
and we consider general cases, we start with fixing notation.

3.1. Setup

Let p be a prime. Let L be a finite extension of Q or of Q; for
some prime !, which is allowed to be p. Let Lo,/L be a Z,-extension
and L, the n-th layer. We put I' = Gal(L /L) and fix a topological
generator v € I'. Let F' be a finite extension of Q, with the integer ring
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O, and let V be a finite-dimensional F-vector space with continuous

Gr-action. Let p: I' — & be a non-trivial, continuous character such

that Im(p) C 1+2p0. Let T be an O-lattice stable under the G'-action.
For m > 0 and h > 1 we put

wnno(X) =" [ (™" (1+X)P" —1).

0<i<h—1

When there is no fear of confusion, to simplify the notation we write
Wm,h = Wm,h,p- FOr a positive integer 4 and an element a of a commuta-
tive Q-algebra, we put

(a> ala—1)(a—2)-(a—i+1)

i

1!

We also put () = 1.

For a continuous character x : I' — CJ, we denote by &(x) the
representation of G whose underlying space is the completion of the ring
of integers in F(Im(x)) and whose G -action is given by y. We denote
by e, the basis of €(x) corresponding to 1 € F(Im(x)). For a topological
O-module M with continuous G-action, we put M(x) = M ®¢ O(x),
and we note that there is a canonical isomorphism of I'-modules

H'(Loo, M(x)) = H' (Loo, M) (x).

By this isomorphism, we often identify the two I'-modules.
For h > 1 and a subfield H C C,, we put

(3.7 Hu(l) = { Y an(y—1)" € Hlly - 1]]

n>0

lim n="a,|, =0 }
n—oo

where | - |, denotes the multiplicative valuation on C, normalized by
Ipl, = p~t. We put #a g (1) = Up>175,, (L) and

Hllw(L’T) :@HI(LM’T% Hllw(va) :Hllw(L’T)@QP'
m

For a continuous character x : I' = C, we define
pr, Hig(L,T) = H' (L, T(x))
as the composite

H (L, T) = Hi (L, T)(x) = Hi (L, T(x) = H' (Lo, T(X)),
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where the first map is z — z ® e, the second map is due to [35, Propo-
sition 6.2.1], and the third map is the projection. By abuse of notation,
we denote by

(38) prn,x : Hllw(LvT) ®ﬁ’[[F]] %ﬂOO,F(P) — Hl(LTH V(X))

the scalar extension.

Now, we briefly explain the idea of the Perrin-Riou twist. Given
a system as in Proposition 3.7 below, one can construct an element
of H\ (L, T) ey #5,r(T) (see Remark 3.13), and then its image
under pr,, , is the twist of the given system by x. The main result
(Proposition 3.7) of this section gives the twist without constructing
elements of HY, (L, T) @e(r)) #50,r(T).

3.2. The integral twist

Lemma 3.1. Let x : I' = CJ be a continuous character and k an
integer such that X(’y)pk € 1+p0Oc,. Then, for n > 1, we have

n fel

— 1)
ord, <<><(7>>> > Z% ~log, n,

where ord, : C)X — Q denotes the additive valuation such that ord,(p) =
1, and log, denotes the real logarithmic function with base p.

Proof. Since X(’y)pk € 1+p0c,, we have (x(v) — 1)pk € pOc,, and
hence ord,(x(y) — 1) > 1/p*. Combining this with ord,(n) < log,n, we
obtain the inequality. Q.E.D.

Lemma 3.2. For m > 0, h > 1 and a continuous character x :
r—C;,

wm,h,p(X('}/) — 1) =0 mod ph(m+B(X))ﬁ(X)’

where we define B(x) as the mazimal integer m such that for every
0<i<h-—1andn>1,m<ordy, ((p(v) 'x(v)—1)"/n).
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Proof. The lemma is proven by using the congruence

p(v) X() — 1+ )P 1

") e 17

—

p(7) P X ()"

e EM“

o <pm - 1> (p(v) "x(7) — 1)/

f J—1 J

Il
S 5

mod p" BN g (y).
Q.E.D.
For p € R*% and g = 3 5 an(9) X" € Cp[[X]], we put

v(g, 1) = if {ordy(an(g)) +nu} € RU {200}

with the convention that ord,(0) = 4o00. For a subfield H of C,, we
define

Ly, +00] = { > anX" € H[[X]

n>0

ligr_l (ordp(a,) +np) = +oo } .

Lemma 3.3. Let ;i > 0 be a real number and ((X) = 3, - an(£)X"
an element of Ly |p, +o0]. Let w = >0 _jan(w)X™ € H[X]| be a poly-
nomial of degree s which is p-dominant, that is,

v(w, ) = ordy(as(w)) + ps.

Then, there exist a power series g € Ly[u, +00] and a polynomial P =
Zfl;t an(P)X™ € H[X] such that £ = wg + P. Moreover, P and g are
uniquely determined by these properties, and we have

(3.9) o(P, ) = v, ),
(3.10) (g, 1) = vl p) = v(w, ).
Proof. 'This is [22, Lemme 1]. Q.E.D.

For 57 € Z, we put

B1) L+ X) =30 00) )~ ety =

log(l+ X) . 1 (1) txn .
P ’
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Lemma 3.4. For an integer m > 0, there exist a polynomial P, €

Qp(Im(p))[X] and a power series gm = 3, 5o an(9) X" € Qp(Im(p))[[X]]
such that

(1)  deg(Pn) < hp™,

(2) €p70(1—|—X) :Wm,h(X)gm(X)+Pm(X);

(3) f07“ n> O; we have Im € LQP(Im(p))[Uv +OO]

Moreover, Py, and g, are uniquely determined by the properties above,
and the following holds.

(4) If we write Py, = 3" " 4, (P) X" € Q,(Im(p))[X], then
for n > 1 we have

(3.12) ordy,(an(Pm)) > —ord,(log(p(v))) — log,(h) —m,
(3.13) ordy(an(gm)) > —ordy(log(p())) — log,(h) — m — log, (1 + 1).

Remark 3.5. If Im(p) C Z,', then P, € Q,[X] and

ordy(an(P)) > —ord,(log(p(v))) — log,(h) —m + 1.

Proof. We first verify the assumptions in Lemma 3.3. We note
that for all > 0, we have ¢,o(1 + X) € Lp[u,+00]. We also note
that the roots of wy, »(X) are of the form p(v)? (% — 1, where (ym is a
p™-th root of unity, 0 < j < h —1 and a € Z. Hence, by [22, (2.7)], if
0<pu<1/(p™ (p—1)), then the polynomial w,, r(X) is y-dominant.
For such p, Lemma 3.3 implies that there exists a unique pair (P, g)
such that we have (1), (2) and that g € Lg[u, +00]. By the uniqueness,
P, and g are independent of p. Hence, the assertion (3) also holds.

It remains to prove the assertion (4). We note that for u > 0, if we
define a real-valued function v(r) = px — log, x, then

1
pIn(p)

310 migl(o) = (s ) = s o, (i),

where In denotes the natural logarithm function. Since
log(1 + X) = wm n(X)log(p(7))g +log(p(7)) P,
ifO<pu<1/(p™ Y(p—1))and 0 < n < hp™ — 1, then by (3.9)
ordy (log(p(v))an(Fm)) + pn 2 inf {ord,(1/k) + puk}
> juf {~log, () + k)

(3.15) > In(p)~" +log,, (11n(p)),
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where the last equality follows from (3.14). Let u be h=1p~™In(p)~1,
which is less than 1/(p™ *(p — 1)). Then, by (3.15) we have

ord, (log(p(7))an(Pm)) = —h~'p~" In(p)'n +In(p) " —log, (hp"™)
> —log,(h) —m,

where the last inequality follows from n < hp™.

We next consider g,,. By (3.10), for a non-negative integer n and
0<p<1/(p™'(p—1)), we have
ord,, (log(p(7))an(gm)) +np = In(p) ™" + log, (1 1n(p)) — v(wm,n(X), 1)

=In(p)~" + log, (uln(p)) — hp™p,
where the equality follows from the fact that wy, »(X) is y-dominant. If
we take = (n+1)"'h=1p~™In(p)~!, then we have
n(hp™ — 1)

n+ 1)hp™ In(p)
> —log,(n + 1) —log,(h) —m,

ordy (log(p(7))an(gm)) = ( —log,(n + 1) —log,(h) —m

which implies (3.13). Q.E.D.
For m > 1, we denote by ¢,, the isomorphism of F-algebras
om : Fly = fwmn(y — 1) = @ F[0](p")
that sends v — 1 to ((p(7)'"y — 1) @ €,i);.

Lemma 3.6. Let M be an O-module and by, by,...,bn_1 elements
mn M. We put

d= gg(_nﬁ—k (i)bk ® (P’”(Z,_ 1)) e M®F[y—1].

Then, we have @, (d) = (b; ® e,i);, where by abuse of notation, we
denote by the same symbol p,, the homomorphism M ® Fly — 1] —
S M @ F[T,)(p") induced by ©p,.

Proof. First we claim that ¢, (Ppn(7—1)) = (i®e,i);. We note that
for 0 <7 < h — 1 there exists an injective homomorphism of F-algebras
FIT.,](p%) — H;’:O—l Cp(p’) sending 7 to ((Im @ €,s);, Where (pm is a
primitive p™-th root of unity. We note that the image of ¢, (P, (v —1))

in H?:(; ' C,(p') is given by

(Pr(p() G = 1) @ €41);-
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By letting X = p(y)icgm —1in Lemma 3.4 (2), for j € Z, we have

which implies that the i-th component of the element ., (P, (y—1)) in
[1'=) FI0)n](p%) is @ @ e,:. Then, the claim follows.
By the claim, the image of ¢,,(d) in M ® F[[,,](p?) is

h—1 j . .
i B P ‘
2 (-1 ()b’“ “ (J) = |2 D gt | © e

§=0 k=0 k,l,m>0,
k+l4+m=i
This is the coefficient of ¢'/i! of the product of power series e’ - e~* -
S50 o bity, that is, b;. Q.E.D.

For m > n, we put

m—n_q

p

m/n: Z ’pr GZ

For n > 0 or n = oo and for a finitely generated &-module M with
continuous G, -action, we put

HYL,, M) =Tm (H (L, M) — HY(L,,M ® F)).

We note that if H'(L,, M) is torsion-free (e.g. H(L,,M @ F/O) =
{0}), then we may identify H'(L,,, M) and H'(L,, M).

Proposition 3.7. Let h > 1 and o« € F* an element such that
|ph/a|p < 1. Suppose that for 0 <i < h —1, we have a system (¢, i)n €
[L.>0 HY(L,,T(p")) satisfying the following conditions:

(a)  Corpii/nCnt1i = acyi forn >0, where Cory, 1/, denotes the

corestriction map relative to Lyi1/Ly,
(b) for0<i<h-—1, we have

i

Z(—l)i’k (;) Resoo (Cn i) @ e?’k =0 mod p™,

k=0

where Reso; denotes the restriction maps HY(L,,T(p*)) —
AN (Lo T()).
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Let P, (X) € F[X] be the polynomial as in Lemma 3.4. Then, for a
continuous character x : I' = CJ and n > 0, the sequence

i

aim e (fi (P"+m(xi(7) - 1)> > (=1)ik <;) Resco (Crtm, k) @ ep—’“x>

i=0 k=0

(m=1,2,...)in H (L, V(X)) converges to an element cX that satisfies
the following conditions.

(1) Forn > 0, we have cX € H° (Fp”,Hl(LOO,V(X))), In par-
ticular, if H*(Gr__,T) = {0}, then cX is the restriction of an
element in H'(L,,,V(x)), which we denote by the same symbol
cX.

(2) Forn >0, Nyyimeyr,, = ack.

(3) Forn >0, we have

(h = 1)ip" =DM (1og" ™t p(y))am OB ex € A (Lo, T(X)),

where we put §(h) =min { a € Zx¢ | a > log,(h) }. Moreover,
if n >1— B(x), then we have

(h = 1)ip" 2 (log" ! p())ex € H' (Lo, T(X)).
Remark 3.8. If Im(p) C Z,', then for n > 0 we have
(h = 1)iptt DO (10g" ™t p(7)) @m0 =B0 X € HY (Lo, T(x))

(see Remark 3.9 below for details). In particular, if p is odd and Im(p) =
1+ pZ,, then

(h _ 1)!p(h—1)6(h)amax{0,1—B(X)}Cz c lffl(Lom T(X))

Proof. By Lemma 3.4 (4), for 0 < i < h we have

Py (X) |
(3.16) < i ) € ™oty

For m > n, if we put

d,y = hzl io(—1)i’€ (;) ReSoo (Com ) @ €)-k D (P’"(Z. - 1)>,

then by (3.16) and the assumption (b), we have

(3.17) (h—Chdy, € H (Loo, T) ®6 Oy — 1],
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where C,, := p®™ log(p(7)). Under the isomorphism of T-modules

Pm : Hl(LomT) ®e Fly - 1]/wm,h(7 - 1)
= [ HLe V) or FITA0),

0<i<h—1
by Lemma 3.6 we have
(3.18)
Om(dm) = (Resoo(cm,i))i € H Hl(LOOaV(pi))Fp
0<i<h—1
i
< JI (H'(Zeo,V)®r FITwl(p)))
0<i<h—1

Here, we identify H'(Loo,V(p'))T" with a subspace of the vector space

(H (Lo, V) ®p F[Fm](pi))Fp by the map induced by the natural in-
clusion F' — F[I',,,]. Hence, since wp, ,(X) € O[X] is monic up to a unit
in 0, we have

m —1~1—h 17l
(3.19) (7" = V)dp € (h= 1)1 CE P HY (Lo, T) @ o

Here we put J,, = wm (v — 1)y — 1]. For simplicity, we put M, =
(h—=1)" 1Oy "HY (Lo, T) @ Jpn. By (3.19), we have

N?n-l—n-l—l/ndm—i-n—i-l = Nn-l—nb/nNn+m+1/7L+7rLdn+m+l mod Mn+m+l-

By the assumption (a), we also have ¢, (Nyt1/mdmt1) = @m(adn),
and hence

(3.20) Nit1/mdms1 — adpy, € My,
Therefore we also have
Novm/nNoyma1/nimnim+1 = Ny pm/ndntm  mod My ypm,.
Hence, we have
(3.21) Nitnt1/n@mins1 = Ny g ndnym  mod My yp,.

Let
evy I:II(LOO,T) ®0[y—-1] — ﬁl(Lm,T)(X)
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be the evaluation map by &-algebra Oy —1] — 0(x) sending v to x(7),
which is I'-linear. Then, by (3.21) and Lemma 3.2, we obtain

(3.22)

1 1
evy (WN7n+n+l/ndm+n+1) = CVy <amNn+m/nd"+m)

h(n+B(x)) hN\ ™
P (p) (Lo T)00).

d -
e e e

Hence, by [p"/al, < 1 the sequence

1
{evx (WNn+m/ndn+m> }

converges to an element cX of H (Lo, V(X))-
We next prove that
(3.23) X € HOT?" H' (Lo, V(X))

m-4n

Since (V" — 1)Npim/m =7*" —1, by (3.19) we have

(’an - 1)Nn+m/ndn+m € Mm+n~

Combining this with Lemma 3.2 implies (3.23).
It remains to verify the properties (2) and (3). By (3.19) and (3.20),
we have

Nn+1/nNm+n+1/n+1dm+n+1 - aNm+n/ndm+n
=Nm+n/n (Nm+n+1/m+ndm+n+1 - adm—i—n) =0 mod Mm+n-
By combining this with Lemma 3.2 and taking the limit as m — oo, we

conclude (2).
We next prove (3). For m > 0 and 0 < i < h, by (3.16) we have

)

) e ()OO,

and hence evy (dp+m) € (b — 1)!’1Cl}*hl~{1(Loo,T(x)). Then, the con-
gruence (3.22) implies that for n > 1 — B(x)

(3.24) X €(h—1)I"'Cy " H (Loo, T(x)).

This implies the assertion (3). Q.E.D.
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Remark 3.9. If Im(p) C Z)', then by Remark 3.5, instead of (3.16)

we obtain
P (X) 1
( ' ) € AP Toglpp 1)

Then, the rest of the argument in the proof works even if we replace C,
above by p?™~1log(p(v)), and we have the assertion in Remark 3.8.

Lemma 3.10. For elements a,b of a commutative Q-algebra and
an integer i, we have (ajb) =Y (1) (Z_bk)

Proof.  We are reduced to the case where a = X,b=Y € Q[X,Y].
Since (*T) and 37, _, (¥)(;",) are polynomials in Q[X, Y], it suffices
to prove that for all positive integers m,n, (mj”) = >0 (MG,

which follows from considering the coefficient of ¢s™*"~% in (t+5)"*" =
(t+s)™(t+s)™ € Zlt, s]. Q.E.D.

Proposition 3.11. With same notation as in Proposition 3.7, the
sequence

aim Moo (f‘i (13,,,0(247))) zi:(,l)wk <;> ReSoo (Csm k) © ep_kx>

=0 k=0

(m=1,2,...) in H' (L, V(X)) converges to the element cX in Propo-
sition 3.7.

Proof. For g(X) € F[[X]], we write x(g) = g(x(v) — 1) if it con-
verges. For m > 1, by Lemma 3.4 and Lemma 3.10, we have

(ﬁp,o(x(w))) _ <x(gn+m)x(wm+_n) +X(Pn+m)>

| _ Z (x(gnm);(zwm%)) (x%;))_
By Lemma 3.4 (4), we have
ord, ((X(f";’"))) > —m(i - j) + co

for some constant ¢y independent of m. Lemma 3.2 implies that

o, ( (x(gn+m>;<<wm+n>>> e mt e
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for some constant c¢; independent of m. Therefore, we have

(3.25) ord, ((X(g“m»‘(wm*”)) <X<P”+.m)>) > (hj—i)m+co+oci.

J 1=

Hence, by the assumption (b) of Proposition 3.7, we have

1 (X(9n+m)x(wm+n)) (X(Pn+m)) ki;o(_l)ik (;) ReSoo (Crtm,k) @ €,k

am j i—j
pihtmteoter
€———— €H (Lo, T(x))s

am™

which converges to 0 € H' (Lo, T(x)) as m — oo unless j = 0. Our
assertion follows from this. Q.E.D.

We show that our ¢ is compatible with pr, ,. We write pr,, , =
Py, pi-

Proposition 3.12. With the same notation and assumption as in
Proposition 3.7, suppose that co is an element of H{, (L, T) Qe[
4,7 (1) such that for 0 <i < h—1 and m > 0, we have pr,, ;(cCoo) =
Ly i Assume that HY(G_,T) = {0}. Then, for a continuous char-
acter x : ' — CS and n > 0 we have pr,, , (Cs) = 25X

an
Remark 3.13. In the case where L is a finite extension of Q,, [32,
§1.8] implies the existence of co, as above. See [23, Propositions 2.3.3

and 2.4.5] for the case where L is a number field.
Proof. We denote by

Resl,, : Hiy, (L, T) @y H5,7(T) = H' (Loo, T ® 5, ()"
the composite
Resl, : Hyy (L, T) @gyry #,7(T) = H' (L, T © O[[1)) ®gry) H4,# (1)
— HYL, T ®¢ 7,7 (T))
— HY (Lo, T @ 6, (D))"
= (H'(Loo, T) ® 5, (D))",

where the first equality is due to Shapiro’s lemma, and the second arrow
is induced by the restriction map. Let x : I' — C be a continuous
character and F), the completion of the field F'(Im(x)). By [22, (2.7")],
the polynomial x(v)P" (1+X)P" —1 is y-dominant for sufficiently small
1> 0, and by Lemma 3.3 we have an isomorphism

A (D)) (x(7) P AP" = 1) = Fyly — 1]/ (x(v) """ = 1)
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where
Hr (T) = { g(v = 1) € Fy[[y = 1]] | 9(X) € NusoLi [, +09] } .
Then we denote by pr,, , the composite
By, ¢+ (H' (Loo, T) @ 4, p(D))"
= (H' (Lo, T) & (Bl = 1/ (x() "

> (H'(Loo, T) ® FIT,0](x))"
= HY(L,T(x) ® F[T'n)).

m

1)

Here, the isomorphism is induced by Tw, : F,[I'] — F,[[] sending
every element g(v — 1) to g(x(v)y — 1), and the last equality is due to
the assumption that H°(Gy__,T) = {0}. If we denote by

shap, : H'(L, T(x) ® F[Tn]) = H' (Lm, T(x))
the isomorphism induced by Shapiro’s theorem, then
(3.26) pr,, , = shay,, o pr,, . oRes,,.

We first consider the case where n = 0. We write
l
Res), (o) = > 2; ® fj(7 — 1) € (H' (Loo, T) ® 4, ()"
j=1

By (3.26) with m = 0, if we denote by Res(prg , (cx)) the image of
. r
proy (o) in H' (Loo, V(X))" = (H'(Loo, T) ® F(x)) , then

(3.27) Resoo (Pro, (¢o0)) = ij ® fi(x(7) = ey

As is proved in the proof of Lemma 3.3, for 0 < u < 1/(p™ *(p — 1)),
the polynomial w,, 5, (X) is p-invariant. Then, by using Lemma 3.3, we
denote by R;., € F[X] the polynomial such that deg(R;.,) < hp™ and

(3.28) fi(y =1) = Rjm(y — 1) mod wp, (v — 1)74(T).

Since pr,, ;(Coo) = @™ i, (3.26) and (3.28) imply that

S "y @ Rym(y — 1) mod (p(3)"#" 47" 1) = a""Resa (shay,! (cn,i))
J
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as an equality in H'(Loo,T) ® F[[',,](p%). Hence, by Lemma 3.6 and by
noting that Res.(sha,'(cpmi)) = ZZEOI vpresoo(cm,i) ®~7", we have
an equality in H'(Leo,T) ® Fly — 1]/ (Wm.n(y — 1))

40(—1)ik (;) ”ypb(Resoo(cm,k) Qep-r) ® AP’ (Pm(vi B 1)>.

Since wy,,,(X) is monic up to unit and deg(R; ) < deg(wm,n(X)),
(3.17) implies that

m—1h—1 14

(=1t (;) 7" (ReSoo (Cm k) @ €,oi) @47 (Pm(j - 1)>

b=0 ©=0 k=0 !
mod (h — )" 'CH " H (Loo, T) ® winn(y — 1)y — 1].

Hence, by considering H'(Loo, V) ® Fly — 1] = H (Lo, V) @ F(x), we
have

Z z; ® Rjm(x(v) —1)

= O%mNm/O hz_:l Xi:(—l)i*k (;) Resco (Cm k) @ €p-ry (P"L(X(Z) - 1)>

i=0 k=0

mod Wﬁl(Lw’T(X)).

By Proposition 3.7, the right hand side converges to ¢f as m — oo. We
also note that each R; ,(x(v) —1) converges to f;(x(v) —1) as m — o0
(cf. [3, Proposition IV. 1]). Hence, by Lemma 3.2 and (3.27), letting
m — 00, we have

(3.29) Pro,y(Coo) = €3 -

We next consider general n. Since the natural map from F[I',] to
H¢:Fn_>@: F(¢) is injective, by the assumption that H°(GL_,T) = {0},
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the composite

(3.30)
H'Y (L, V(x) = H(L,V(x) ® F[Ts]) = H' (Lo, V(x) ® F[T])"

- I H'@CwvVe)' = [ H'©LV(xe)

¢: 'y, %@; ¢:I'p ﬁ@:
is injective. For ¢ : I'), — @:, the map
g H' (Ln, V(x) = H'(L,V (x9))

coming from (3.30) sends each x to Cor,/o(z ® ey). Hence, mg opr, , =
Pry - We also note that by the explicit expression in Proposition 3.7

of ¢X, we have my(cX) = oz”cf)@. By (3.29) and replacing x by x¢, we

have prg , s(coc) = ?, and hence To(PTy o (C0)) = Tp(a™"cX). By the
injectivity of the composite (3.30), we complete the proof. Q.E.D.

§4. Twists of generalized Heegner classes and Selmer groups

In this section, we apply the integral Perrin-Riou twist to generalized
Heegner classes, and by following arguments as in [18], we bound the
twisted Selmer group by the resulting classes.

Unlike the previous section, we follow the notation fixed in Sub-
section 2.1. We also assume Condition 2.3 here. Let & be the set of
(rational) primes inert in K. We denote by .4 the set of square-free
products of primes in &?. By abuse of notation, for | € & we denote by
the same symbol [ the prime ideal of K above .

In the following, we write

VZVf(?“), TZTf(T), WZV/T.

4.1. Generalized Heegner classes

We fix some notation on generalized Heegner classes, which are the
images of generalized Heegner cycles (introduced in [5]) under the p-adic
Abel-Jacobi map.

For a natural number ¢, we put &, = Z + c¢Ok and we denote by
A, the elliptic curve given by the Weierstrass model associated to the
lattice Qx 0. By CM theory, A, is defined over K|[c|, and the isogeny
C/Qx 0k — C/Qk 0. sending z to cz induces an isogeny m. : A —
A. over Klc]. We fix an element t4 € A[N] of order N, which gives
an H(A[M])-rational point of X (V) represented by (A,t4). Then, for
¢ > 1 with (¢, N) = 1, we have the generalized Heegner cycle A,
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associated to 7, (cf. [5, §2.3]), which is defined over K|[c] := K|[c](A[N]).
As in [12, §4.2], its image under the p-adic Abel-Jacobi map gives an
element of H'(K|c],V; ® Sym® "?H},(Ag, Q,)(2r — 1)). We denote by
zlc] € HY(K|[c], Vs @ SyInQT*QHelt(A@7 Qp)(2r — 1)) its image under the
corestriction map. We note that

H' (K], Vy ® Sym™ ~*Hg, (Ag, Qp) (2r — 1))
= [ H'(K Vilwper ).

1<i<2r—1

Here the isomorphism above is given by choosing an appropriate basis
u,v of TpA (cf. Section 7 of [21].) For 1 < ¢ < 2r — 1, we denote by
2D € HY(K[c], Vi (¢, %"_i)) the i-th component of z[c] under the
decomposition. We note that the denominators of z(9[¢] are bounded as
c and % vary.

Let o € 0 be a root of X2 —a, X + p* ! such that [p?*"~!/al, < 1.
For a positive integer c relatively prime to p/N, a natural number n and
1< <2r—1, we put

Z(l) [Cpn]a = O‘Z(l) [cpn] - p2T72ReSK[cp”*1],K[cp”](Z(i) [Cpnil])

in H'(K[cp"], Vi (1} %Tfi)). Then, [12, Proposition 4.4] implies that for
n>1,

(4.31) Corn+1/nz(i) [ep" T, = az® [cp"] e,

where Cor,, 1/, denotes the corestriction map relative to the extension
K[ep™ 1]/ Klep™].

4.2. Generalized Heegner classes and the p-adic L-function

First, we briefly recall the explicit reciprocity law relating gener-
alized Heegner classes with the p-adic L-function (cf. [5, 12, 21]). We
mostly follow [21].

Let ¢ be a positive integer relatively prime to p/N. For 0 < n < oo,
we denote by flcpn the completion of K[cp™] at the prime p.,n above p
induced by ¢, and we let #,,n be its ring of integers. We put Gepn =

Gal(Hpn /Ky). For i € Z, we put
V(i) = V(yty") = Vi), T(0) = T(pep).

We also put A, = O[[Geps]], H 1 (Gepe) = S, #(D)[GL] (cf. (3.7)),
where G, is a finite abelian group such that Gepes 1= Gal(K[cp™]|/K) =
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I' x G... Following [31, §3.6.1], if we put 5 (Gepos) = Up>196,, 7 (Gepes ),
then we have a natural pairing (—, =) c:

Hiy(He, T) ®3, Hoo(Gepe) * Hiy(He, T) @5 Hoo(Gepoe) = Hoo(Gepee),

where H{ (H.,T) := lim H'(Hpn,T). We note that since we have
fixed a prime of K[cp™] above p via ¢, [35, Corollary B.5.2] implies that
OGepn] RG] H'(Hpn,T{3)) is canonically isomorphic to the direct
sum &,, H'(K[cp™],, T(i)), where v ranges over all primes of K|[cp”]
above p. For n > 0, i € Z, we denote by

Pl Hiy(He, T) @3, Hoo(Gepe) = @oppH (Kep"]o, V(i)

the twisted natural projection (cf. (3.8)).

Let k. be the residue field of ﬂc and A, the reduction modulo p.
of the elliptic curve A, over K|c] introduced in §4.1. We put R, =
Hregc RT, where SR denotes the universal deformation ring for the re-
duction A7 of A7. Then, R, is a #;[[Gep~]]-algebra. For h > r, we
denote by

Vet RE™ @z, Derys(Vlaw, ) = Hiy(He, T) @3 Hoo(Gepe)

the semi-local Perrin-Riou exponential map (see [21, §5] for the details),
where ¢ is the ¢~ '-semilinear map on R, introduced in [21, §4.2] (o
is the Frobenius on #;), and it is regarded as an analogue of ¢ in [31,
1.1.3]. We note that :R¥=0 is a free #,[[Gep=]]-module of rank one (cf.
[21, Proposition 5.4]).

We denote by Dcrys(Vf\GKp)“’:a the one-dimensional subspace of
the F-vector space Derys(Vflgy,) on which ¢ acts by a. We define
DcryS(Vf|GKp )¥7(r) as DcryS(Vf|GKF )¥7* ® Derys(Qp(r)). By [21, The-
orem 4.15], there exists g. € RY=0 ®z, Derys(VflG, )¥~(r) such that
if we put z[c] = Q5. (gc) € Hoo(Gep) ®4, HL (H.,T), then for n > 1
and —r < ¢ < r, we have

(4.32) pry, i(2[c]) = locy (a2 [ep™],).

Here, loc, : H'(K[cp"],—) — @, pH"(K[cp™]y,—) denotes the sum
of localization maps. We write as g. = %, ® n where 7 is a basis
of Derys(Vilay,)?~%(r) and S € RY=0. Let e be a basis of RY™"
as a #1[[Gp]l-module and w € Dgys(V) be an element such that
(1, W] Dpye(vy = 1, where [—, _]DcryS(Vf|GKp )(ry denotes the de Rham pair-

ing. We denote by 5 (Gepeo) the total quotient ring of F#% (Gepo). We
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fix a topological generator v of I' and put

r—1
Qif,l—r,c = H ewqu;%l,j(,)/)_l Qif,r,c'
=1—

] T

Then we consider the element
w=(100)0%, ,, (e®w) € Hi,(H1,T) @3, Hoo(Gpe).

Then, by [21, Theorem 5.8] (a semi-local version of the explicit reci-
procity law [32, Théoréme 4.2.3]), for g € #1[[Gp]], we have

(4.33) (Q1.c(9e @ n),w) 1 € O[[Gyee]].
By [21, Theorem 5.7], there exists u € 6™ [[Gye]]* such that
(4.34) u(z[l], wyr = ZPPPE(f) € 6((Gpee]).

4.3. Twists of generalized Heegner cycles

In this subsection, we use Proposition 3.7 in order to twist the classes
{2[c]o} introduced in §4.1.

By [21, §7], there exists an integer C' > 0 such that for 0 < ¢ < 2r—2,
n > 0 and ¢o > 1 with (co,pN) = 1, the element p® 2 [cop™], lies in
HY(K[cop™], T(z/)f,ibg_i)) and we have

i .
(4.35) Z(—l)i_j (;) Resoo(pcz(jﬂ)[cop”}a) ®e®¥17i =
=0

modulo p™ H'(K[cop™],T) where e is the basis of ﬁ’(i/)pwgl) and
Reso : HY (K[cop™], —) — H*([cop™], —)

denotes the restriction map.

We use Proposition 3.7 as I' = Gal(K[cop™]/K[cop]), p = vy %1,
L = K[epp], Loo = K[cop™] and h = 2r —1. (The conditions are verified
by (4.31) and (4.35).) For a continuous character x : I' — @: and
n > 0, we put

i

wi,n(X) = Z(_l)j_i (Z)Resoo(z(j+1)[c(]pn]a) @ epr—1-iy-

Jj=0
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Then, by Proposition 3.11, the sequence

2r—2

r—1
430 ot 3 (P w0 m=1.2.0)

. 7
=0

in H'(K[cop™],V (x)) converges to an element which lies in the image
of H' (K[cop"™], V(x))-

Definition 4.1. For ¢y > 1 such that (co,pN) =1 and n > 1, we

denote by
2X[cop™a € H (K[cop™], V(X))

the element whose image in H'(K[cop™], V (x)) coincides with the limit
of the sequence (4.36). (Note that since H(Loo,V) = {0} (cf. [24,
Lemma 3.10]), such an element is unique.)

Proposition 4.2. Letn and ¢ be positive integers such that (¢, N) =
1. Then,

(1) CorK[cp"+1]/K[cp”']ZX[Cpn+1]a = aZX[Cpn]ow

(2) For a primel € & such that 1t c, we have

CorK[clp"]/K[cp”] 2% [Clpn]a = a;2* [Cpn]a .

(3)  We have T(2X[cp"]o) = wix(om)og(zX [cp™]a), where wy €
{1} denotes the eigen value of the eigenform f with respect to
the Fricke involution, T denotes the complex conjugation, and
04 denotes the image of an ideal a of K under the classical
Artin map.

Proof. The assertion (1) follows from Proposition 3.7 (2). The
assertion (2) follows from the definition of {zX[cp"],} and the norm
relation of generalized Heegner cycles {z([cp™]} (cf. [12, Proposition
4.4]). Similarly, the assertion (3) follows from [12, Lemma 4.6]. Q.E.D.

Lemma 4.3. Let 0, be the ring of integers in F(Im(x)) and m,
the mazimal ideal. (We give the trivial action of Gk on Oy (cf. O(x)).)
Put T(x) = T(x) ®¢, Oy/my. Under Condition 2.3, the following hold.
(1)  The representation T(x) of Gk is absolutely irreducible.
(2)  For a positive integer c, we have H°(K|c], T(x)) = {0}.
(3) The Oy-module H'(K|c],T(x)) is torsion-free, and for a non-
zero ideal I of Oy, the restriction map

H'(K,T(x)/T) - H° (K[d]/K, H (K[c], T(x)/1))

is an isomorphism.
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(4)  There exists a Galois extension E/Q such that K C E, Gg
acts trivially on T(x), and

H' (E(pp<)/K, T(x)) = {0}.

(5) Form > 1, if L denotes the smallest finite extension K (T /m™)
of K such that G, acts on T /m™ trivially, where m denotes the
mazimal ideal of O, then the restriction map H'(K,T/m™) —
HY(L,T/m™) is injective.

Proof. Since T'(x) is isomorphic to T/m® O, /m, as a Gx-module,
in order to prove (1) and (2), we may assume that x is the trivial char-
acter. Then, the assertion (1) follows from [6, Proposition 6.3 (1)].
To prove (2), it suffices to prove that H°(K][c],T/m) = {0}. By [6,
Lemma 6.2], Condition 2.3 (2) implies that the image of the represen-
tation o5 : Gg = Aute(T') = GL2(0) contains a subgroup of GL2(0)
which is conjugate to GL2(Z,), where we recall that T' = T¢(r). Hence,
the image of the residual representation Go — Autg/n(T/m) contains
a conjugation of GL(F,), which is not solvable by p > 5. Then, the
assertion (2) follows from that Klc]/Q is a solvable extension.

(3) We first note that the torsion part H*(K|c|,T(X))tors iS canon-
ically isomorphic to H°(K[c], W(x)). Then, the assertion (2) implies
that H°(K|[c], W (x)) = {0}, and hence H'(K|c],T(x))tors = {0}. Since
T(x)/I may be regarded as a Gk-submodule of W(x), we have that
H°(K|[c],T(x)/I) = {0}. Hence, by the inflation-restriction exact se-
quence the restriction map

H'(K,T(x)/T) - H® (K[d]/K, H (K[c],T(x)/1))

is an isomorphism.

(4) We put E = K (W), which contains p,~ (we note that the
determinant of T is the representation induced by the p-adic cyclo-
tomic character). Since the restriction of x to Gg_ is trivial, Gg
acts trivially on T'(x). As is explained in the proof of (2), the im-
age 07(Gq) of o5 : Gg = Autg(T) = GL2(O) contains a subgroup of
GL2(€) which is conjugate to GL2(Z,). Then, via the diagonal em-
bedding, we have Z,; C o7(Gq). Since [0f(Gg) : 07(Gk)] < 2, we
have 1,1 C 07(Gk). We let 07(Gg) act on T(x) = T/m ® Oy /m,
where the action on the second component is trivial. Since p > 5, the

image of jip_1 in Autg jm, (T(x)) contains {£1}, and then we have

H'({#£1},T(x)) = {0} for i > 0. Hence, by the inflation-restriction
sequence relative to {£1} C p7(Gk), we have H'(0¢(Gk),T(x)) =
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{0}. Since H'(0;(Gk),T(x)) = H'(K(W)/K,T(x)), By the inflation-
restriction sequence 0 — HY(E/K,T(x)) — HY(K(W)/K,T(x)), we
deduce (4).

(5) We denote by the representation gy, : Gg = GL2(0/m™) in-
duced by T/m™. Since 0¢(Gg) contains a subgroup of GL2(¢’) which
is conjugate to GL2(Zp), 0fm(Gg) contains contains a subgroup of
GL2 (0 /m™) which is conjugate to GLa(Z,/p™" ), where m4 is the inte-
ger defined by p™Z, = Z, Nm™. Hence, ¢;.,(Gk) contains pp=1, and
then by the inflation-restriction sequence relative to fio_1 C 0.m(Gk),
we have H' (0 .m(Gk),T/m™) = {0}. Since H'(L/K,T/m™) is isomor-
phic to H(0f,m(Gk),T/m™), we obtain the assertion (5). Q.E.D.

Remark 4.4. Although in [6], the Hecke field is assumed to be
unramified at p, the assumption is not needed for [6, Lemma 6.2, Propo-
sition 6.3 (1)].

For a continuous character x : I' — @; , we put
Gy = (27, _ 2)!p(2r—2)6(2r—1)+Camax{0,1—B(XpT71)} e FX,

where we use the notation as in Proposition 3.7 (with h = 2r — 1), and
C' is the integer as in (4.35). Lemma 4.3 (3), Proposition 3.7 (3) and
Remark 3.8 imply that if p | ¢ and (¢, N) = 1, then we have

0 2X[da € H'(K[c], T(x)),
where we note that p = wpz/}gl on G p satisfies Im(p) = 1 + pZ,.

Lemma 4.5. Let ¢ be a positive integer relatively prime to N such
that p | c. Then, the following assertions hold.
(1)  For a prime L { p, we have locy(q,2X[cla) € H{ (K[c]x, T (X)),
where X\ is any prime of K|c| above .
(2) Forl e 2 such that l{c, as elements of H*(K|cl]x, T(x)),

Res ke, K[e] (Frob; o loc(gy2X[c]a)) = locx(gy2X[cl]a)

where we denote by the same symbol X the prime of K|cl] above
a prime A | 1 of Klc|, and Frob; is the Frobenius element at |
over Q. (Note that Frob; acts on the cohomology since [ totally
splits in Koo /K and x is trivial on Gk, .)

Proof. If we put

n = max{O, 1— B(Xprfl)}’ b= (27” o 2)!p(2r72)6(2r71)+0’
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then by Proposition 3.7 (2) we have
Cor g [epn)/ k(e (02X [cp"]a) = qx2¥[c]a;
Cor g [eipn/ ket (02X [clp"]a) = ¢y 2¥[cl] o
Hence, it suffices to show that
(4.37) locy (b2X[cp"]a) € HE (K[ep™|a, T(X)),
and
(4.38)  Resgepny, Klepn]s (Frobilocy (02X [cp™]a)) = loca (b2X[clp™]a)

in H'(K[clp"]x,T(x)). Note that by Proposition 3.7 (3), the elements
bzX[cp"] and bzX[clp™], are integral.
Let P, (X) € Z,[X] be as in Lemma 3.4. We put

2r—2 14

Al =b) > (=177 (JZ) Resoo (20 [ep™]a) ® Cyriys ® (Pm(z, a 1))

i=0 j=0

in H'(K[cp™], T (¢, %Tﬁl)) ® Oy — 1] where the integrality follows

from Remark 3.9 and the definition of C. If we denote by
eVyprt + HH (K [ep™], Ty (pyp" ™)) © Oy — 1] = HY (K [ep™], T)(x)

the homomorphism induced by the map &y — 1] — & sending ~ to
xp" (), where p = 1, ﬁ_l, then by definition, the sequence

{evxpr—l (aimNn—&-m/ndlern [CD}mZO

converges to Resoo (bzX[cp™]). We fix a prime ideal of K[cp™] above A,
which by abuse of notation, we denote by the same symbol A, and its re-
striction to K[cp™*™] is also denote by A. Since all locy (20D [ept™],)
lie in H} (K[cp™™™]x, Vy( fflqur*l*])) (cf. [12, Remark 4.8]), we have
lock(amen_,_md;_i_m[c]) € H&r(K[CPOO]M Vi (hp %Tl_l)) ® Oy —1].

Hence, the image of 2X[cp™], in H*(K[cp™]y,V (x)) is unramified. Since
Klep™]x € K}, we conclude the assertion (1).
We next consider (2). By (3.19) and (3.20), there exist

Fogmlc)(X), Gramlcl(X) € H' (K[cp™], Ty (y1y" ™)) © O[X]
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such that

(Nn+m/n - Nn,+m—1/n,Nn+m/n+m—1)d;Ler[C}(’Y - 1)
(4 39) = n+m[c] (’7 - 1)wn+m,2r71(’7 - 1)7
- Nn+m+1/n+md{n+m+l [C] - ad;z«Hn[c]

= Gn+m[0](’}/ - l)wn+m,2r—1(7 - 1)'

To simplify the notation, we write

Wn+4+m = Wn+m,2r—1(7 - ]-) € Zp[’y - 1]7
Fuimld) = Fuymld(y = 1) € H (K[ep™), Ty (0pyy" ™)) @ Oy — 1],
Grimle] = Guimlc(y = 1) € H (K[ep™], Ty ($pt3" 1)) ® Oy — 1].

By [12, Lemma 4.7], we have

(440)  Resgciepm s,k (etpee] (Fr0b1 (100 (e [c]))) = 1o (1 [cl]),
and by (4.39)

Frob; o 10c (Fyyqm[c])wWnm,2r—1 = 1ocx (Frpm [cl])Wngm, 201,

Froby o locx(Gram[e])wntm,2r—1 = 1ocx(Grpm[cl])wntm, 2r—1,
where

locy : HY (K [clp™], Ty (1 %T_l)) ® Oy —1]

— HY(K[elp™]x, Ty (bpt3" 1)) @ Oy — 1]

denotes the scalar extension of the localization map at the prime A of
K[clp™] above X of K[cp®], and Frob; acts on &y — 1] trivially. Since
Wntm,2r—1(X) € O[X] is monic up to unit, we have

Frob; o locy (Frimlc]) = locx(Frimlcl]),

(4.41) Frob; o locy (Grmlc]) = loca(Gnamlcl]).

We claim that for m > 1,
(4.42)
Nn-&-m/nd;nJrn [C} - amd; [C]
= Z aiFn+m—i[C}wn+m—i

0<i<m—2

+ E aan+m717i/nGn+m—l—i[C]wn-i-m—l—ia
0<i<m—1
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where the first summation in the right hand side is regarded as zero
when m = 1.

We prove (4.42) by induction on m. We note that the case m =1
s (4.39). By (4.39), we have

Nn—i—m+1/nd/n+m+1[c] — o™t [C]

n+m/n n+m+1/n+mdn+m+1[ - m+1d%[c] + Fotmtt|clwntm
n+m/n(ad;z+m[ ] + Grtm[clwnim)

o™ (o] + Fugms[cwnymat
[c] — a™d,[c])

+ Fn+m+l [C]wn+m+1 + Nn+m/nGn+m[C]wn+m-

:a(Nn+m/ndl

n+m

Then, the induction hypothesis implies (4.42).

Since [p?"~!/al, < 1, Lemma 3.2 implies that for sufficiently large
m, we have that o'~ "™ wym—i(x(7)—1), &' "wpim-1-i(x(7)—1) € O,
Hence, by (4.41), for such m we have

Frobloloch(ai*mwn_,_m i(X(Y) = D Fnsm—ilc](x(v) — 1))
- "Wntm—i(X(7) = D Fupm—icl](x(v) — 1)),
Froby o locx (@' ™" wnim-1-i(x(7) = 1)Gram-1-i[d(x(7) — 1))
:locz\(aiimwn-&-m—l i(X(Y) = D) Grngm—1—i[cl](x(v) — 1))

in H'(K[clp™]x,T(x)). Hence, by (4.40), (4.42) and Lemma 4.3 (3), for
m > 1 we have

=locy («

Res k[epe< )y, K[elp=]s (Froby (locy 0 evy pr1 (@7 Ny /ndiy 4nld])))
=locy 0 evypr—1 (@ Ny /ndh, 1 [cl])
in H*(K|clp®]x,T(x)). Note that since our global Galois cohomology
groups are torsion-free (cf. Lemma 4.3 (3)), it is harmless to invert «

in the global cohomology groups. Therefore, we inverted a before the
localization. Since the sequence

{evxpT*I (aimNn+m/nd:n+n[ ])}mZO
converges to RessbzX[cp”], we obtain (4.38). Q.E.D.

4.4. Local conditions of twisted Selmer groups

Following ideas in [12, §7.4], we introduce certain Selmer groups that
are suite for Euler system arguments via twisted Heegner classes.
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For a height-one prime ideal 8 of A which is not equal to pA, we
let @y be the fractional field of A/9B, which is a finite extension of
F = 0[1/p]. We denote by Sy the integral closure of A/P in &g and
by mg the maximal ideal. We let Gk act on Sy via the natural map
G - AN — qug. Fixing an embedding &y — C,, which is O-linear, we
denote by x¢ : Gx — ﬁép the character induced by the map Gx —
Sy = Og . For an O-module M, we put My = M ®¢ Sy. In the
case where M has a Gg-action, we let Gx act on My by acting on
both factors in the tensor product. Then, we have My = M(xqp) as
G g-modules.

In order to define Selmer structures, for a prime v of K, we define
a perfect pairing

(4.43) (= =) : HY(K,, Vig) x HY(Ky, Vig) — O

as follows, where ¢ := v”. By [28, Proposition 3.1 (ii)], there exists a
Gg-equivariant skew-symmetric paring

[—, =) : T xT — Zy(1)

such that for A € ¢ and z,y € T, we have [Az,y]; = [z, \y]s, and the
induced pairings T'/p™ x T /p™ — Z/p™(1) are perfect. If 0 € F* is a
generator of the absolute inverse different of &, then the homomorphism

Homg (T, 0(1)) — Homg, (T, Zy(1)); ¢+ Trr/q, © - ¢)

is an isomorphism. We note that the paring [—, —]; gives rise to a
homomorphism 7" — Homgz, (T, Zy,(1)), and by the isomorphism above,
we have a perfect, skew-symmetric, O-linear, Gg-equivariant paring

[—,—]o:TxT— 0(1).
Following [18, Lemma 2.1.1], we have a perfect Sgp-bilinear pairing
[—, —]qg : qu X qu — Sf_p(l)

defined by (t1 ® a1,ts ® ag) — ajas|ty, t3]e. Then, for o € Gk and
s,t € Ty, we have [s7,1777]q = [s,t]g;. Therefore, by the local duality,
for a prime v of K it induces a perfect pairing

(=, =)y s H (Ky, Vi) x H' (K3, V) — .

We note that for a prime v, H (K3, Vig) & H' (K, Vi) (as @p-modules)
via the complex conjugation. Here, we identify ®g with ®g. via 7. By
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abuse of notation, we denote by the same symbol (—, =)y ., the induced
pairing H'(K,, Vg) x H' (K, V) — $gp.

We define %5 as the ®g-subspace of H'(K,, Viz) generated by the
image of the map Qg defined as the composite

o o X

O : RV @, Derys(Vyla, )P~ (r) =5 Hi (H1, T) ®3, Hoo(Gepe)
%Hl(ﬁp’ V‘n)
%Hl(va V‘»B)?

where the second map is induced by (3.8) and by regarding xgp is a
character on the Galois group Gal(flpoo /H,), and the last map is the
corestriction map. If xqg\ng is of the form p’+), where —r < j < r and
1 is a finite character of I'; then the image Qfg coincides with the one-
dimensional subspace H} (Kp, V). Under some assumption, we may
also define the space qu’; in terms of twisted Heegner cycles. To explain
it, we fix some notation. By following the notation as in the previous
subsection, we put gp = ¢y.,, and for ¢ € 4", we put

533 = CorK[cp]/K[c] (quzx"f’ [Cp]a) S Hl(K[c],qu).

Then, by Proposition 4.2, for | € & with [ { ¢, we have

(4.44) Corg len)/ k(¢ (33) = a3y
We also put
KP = Coer]/K(ZfIB) € H'(K,Ty).

Lemma 4.6. For a height-one prime ideal P # pA of A such that
the image of KT in HY(K,, V) is non-zero, the ®s3-vector space Qf{; is
generated by Ii?g.

Proof. The space 25} is generated by

(e @n), Corg, i, (ory (w))

where pr,_, : HL (H;,T) @4, Hoo(Gep) — H'(H,, V) is induced by

Xt
(3.8). Hence it is of dimension at most 1. (It is actually equal to 1 by
the explicit reciprocity law.) Since z[1] = Qf,, ,(g1), the element K

lies on Qfg, and hence generate this space if it is non-zero. Q.E.D.
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We introduce a Selmer structure Fyp as follows. For v = p, we
define Hy, (K, Vy) € H'(Ky, Vi) as the orthogonal complement of

Q”%L under the pairing (—, —)yp,p. For v = p, we define H}%}(Kﬁ, Vip)
as the complex conjugation of H  (Ky, Vy) in @), H' (K, V). For a
prime v of K not dividing p, we put H}%p (Ko, Vi) = H} (K,, V). One
can show that if f is ordinary (i.e. « € 0*), then our Fy coincides
with the Selmer structure introduced in [25, §3.4].

Lemma 4.7. Let ¢ be a positive integer relatively prime to p. Let x
and y be elements in the image of RY=" @ Derys(VilGi, )97 (r) under
Q%,,m. Then, the element (x,y)1,c € Ho(Gepe) is zero.

Proof. This is proved in [21, §8]. Q.E.D.

Remark 4.8. For a height-one prime ideal B # pA, since the
specialization of (x,y)r1 € Hi(Gpe) at xyp is equal to the pairing
(Qp(ha), Qp(hy))p,p, the lemma above (with ¢ = 1) implies that
Hi%s (Kp, Vip) is the orthogonal complement of H}%p (K5, Vip).

For a prime v | p of K, we put
I‘_:’:'L]T‘ﬂ (KU7Tq3) = Htlgqs (KU’T‘B)/Hl(KUaT‘B)torsa

which is a free Sp-module of rank one.

Lemma 4.9. Let M be an O-lattice of Derys(Vylay, )?~%(r). Fora
height-one prime ideal B # pA, there exists a non-zero element By € O
such that the following assertions hold.

(1) We have BypQp(RY™" @ M) C HY (K, Ty).

(2)  There exists mg > 0 which depends on B such that for m > my,

if Q # pA is a height-one prime ideal of A with Im(xqugl) €
1+ p™Sy, then By = Ba and

lengthg,, (ﬁ}% (Kp, Tp) /B Qp(RY ™" @ M))
= lengthg, (H}?Q (K, Ta)/BaQa(RY=" © M)) .

Proof. (1) Let h be a #4[[Gp~]] ® O-basis of RV=" @ M. We write
S i @ gily — 1) € HL (Koop,T) ® Hop_1 p(T) for the image of

Q.1 (h) under the map induced by the trace map. Then, for B, we
have

(4.45) Qp(h) = Z 9i(xsp (7) = 1)pro y s (i)
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Hence, if we define

ﬁ%’ _ pmin{ n€Z | n>0 and n>ord,(gi(xx (y—1))) for 1<i<k },
then we obtain (1).

(2) We enlarge € so that & = Sp = Sq (we note that the as-
sumption on £ implies Sq C Syp). We first note that there exists
a positive integer mj such that for m > m; and for Q such that
Im(megl) € 1+ m™0, where m denotes the maximal ideal of O,
we have fBp = fgq. We note that SpQgqp(h) is not torsion and that
I{I}%} (Kp, Ty) is free of rank one. Hence, if we put

my =max{m € Z | fpQy(h) € mM™H' (K,, Ty) },
then we have
ms = length, (Hl% (Ky, Tyy)/ By Qs (V=" @ M)) .

Under the identification H' (K, Tyz/m™) = HY(K,,Tq/m™), for = €
H{, (Keop/Ky, T) the images of prg () and pry ., () are the same.
We put mg = max{mi,ms }. Then, by (4.45), if m > my, the images
of BpQy(h) and BaQa(h) in HY(K,, Tyy/m™) & HY(K,, Tq/m™) are
the same and non-trivial. Hence we have

max { m € Z | BpQq(h) € m™H' (K,, Ty) }
=max{m € Z| BaQq(h) e m"H" (K,,Tq) },

which implies the assertion (2). Q.E.D.

4.5. Bounding Selmer groups

In this subsection, we give a bound on the Selmer group Hﬁ}m (K, Ty)
in terms of twisted Heegner classes. We assume Condition 2.3. Let &
be the set of rational primes that are inert in K and relatively prime
to N. Let .4/ be the set of square free natural numbers that are only
divisible by primes in Z.

Let B # pA be a height-one prime ideal of A. Since we use argu-
ments in [18], we first show that our Tiy and Fy satisfy the hypotheses
H.1) to H.5) in [18, §1.3]. Lemma 4.3 (1) implies H.1), and Lemma 4.3
(4) implies H.2). If we denote by ¥(%y) the set of primes of K dividing
pN, then the hypothesis H.3) follows from the definition and from [27,
Lemma 3.7.1|. The hypothesis H.4) is satisfied by the pairing [—, —]y,
the definition of Zy and Remark 4.8. Since Tiy := T /mys is naturally
isomorphic to the Gg-module T'/m ® Sy /myp, the hypothesis H.5) a)
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follows from the fact that T is odd. Since the local condition at p is

defined as the complex conjugation of that at p, the hypothesis H.5 b)

holds. The hypothesis H.5) c) is satisfied by Ty = T/m ® Sy /mgs.
For ¢ € 4, we put

G. = Gal(K|[c]/K), G.= Gal(K[c]/K[1]).

For every | € &, we fix a generator o; of G; and put D; = 22:1 iol €
Z|G,]. Then, by an straightforward computation, we have

(4.46) (6, —1)D;=1+1— N,

where N} = ZQGGL g. We note that G, = Hl|c Gy and put D, = Hl|c D, e
Z|G.]. For | € &, we denote by I; the ideal of Sy generated by [ + 1
and a;, and we put I. = Z”CI[. By convention, we put I; = {0} and
G1 = Z. We fix a coset representatives S(c) C G. for G./G., and put

RE =Y sDu(5F) € H' (K[, Tp).

seS(c)

By (4.44) and (4.46), the image of ¥ in H'(K|[c|, Ty/I.) is fixed by G.
and independent of the choice of S(c¢). By Lemma 4.3 (3), the restriction
map

HY(K, Ty /1) ~ H°(Go, H'(K(d], Ty /1)

is an isomorphism. Let ¥ € H'(K, Ty /I.) be the element whose image
in H'(K|[c], Tip/I.) coincides with the image of ¥ .

Lemma 4.10. For c € A, we have k¥ € H}m(c) (K,Ty/I.), where

Fq(c) denotes the Selmer structure as in |18, Definition 1.2.2| (we recall
that for vfc, Hy (K, Ty) = H}%}(c)(KvaT‘B))-

Proof. We need to prove that for a prime v of K we have
(4.47) loc, (r}) € H, (Ky, Ty /1.).
If v { p, then (4.47) follows from Lemma 4.5 (1), Proposition 4.2 and the
same argument as in the proof of [18, Lemma 1.7.3]. Suppose that v | p.
We first consider the case where v = p. We denote by

(= =) : HY(Ky, T/ 1) x H' (Kp, Wope[I]) = Sy /1.

the pairing induced by the local duality.
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It suffices to show that for € H'(K,, Wy.[I.]) whose image in
H'(Ky, Wy.) coincides with the image of Q. (h) for some h € RV @
Derys(Vilay, )¥~%(r), we have

(4.48) (locy (kF),x) = 0.

Let M be an O-lattice of Derys(Vy|cy, ) such that h lies in RV= @ M.
Since the trace map tr./; : # — #1 is surjective and R, is isomorphic
to Ry @y, #e, there exists h’ € RY=" @ M whose image in RV =" @ M
under the map induced by tr./; is equal to h. Hence, if we put y =
Qﬁ/mc(h') € oo (Gep) ®i, wa(flc,T) and x = Q?/,m(h)v then

WK[cpoo]/K[poo](y) =<,

where TK[cp=]/K[p>] * Hllw(Hc,T) ®AC jfoo(gcpoo) — Hllw(ﬁl,T) ®[\1
I (Gpeo) denotes the natural map induced by the corestriction map.
We denote by ¥ € H'(H.,Wg.) the image of y. Then the element
Corg /i, (y*") of H'(H,,Wy.) coincides with the image of . Hence,
by a simple computation, we have

(4.49)  (locy(k?),x) = | locy. . Z sDegp2** [cla | ,¥* )
s€S(c) e

where 2X%[c|, is as in Definition 4.1, the pairing
(= =)y : H (H, Ty) x H'(H,, Wy.) — ®gp/Sp

is induced by the local duality, and locy . : H*(K|c], Tip) — Hl(ﬁc, Tiyp)
denotes the localization map. Hence, we are reduced to showing that

(4.50) (locp,c (gp2*¥[cla) ,yqy)q3 = 0 € o /Syp.

We note that the left hand side coincides with the image of the spe-
cialization of the element (gpz[c],y) € o (Gep=) at xy, where z[c] is
as in Subsection 4.2. Since z[c] and y are elements in Q%,mc(ij%f:o ®z,
Derys(Vilay, )¥=*(r)), the equation (4.50) follows from Lemma 4.7.
The case where v = p is completed by using the complex conjugation
and Proposition 4.2. Q.E.D.

For ¢ € ./, we put ¥ = k¥ ® [lyco € H}}m(c)(K7 Tp/l.) ®z7 Ge.
For i > 1, we denote by 22 the subset of & consisting of I such that
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I, C m?b. We similarly define 4. For ¢ € A4 we put ng) = qu;/mf13

and denote by k2" the image of k¥ in Hj%p(c)(K7 Tq(;)). For a prime

vipof K, we put HM(K,, Tyy)) = H'(K,, Ty ) /H} (Ko, TY).

Lemma 4.11. Let d* be an element of HY(K,Typ)" and d~ an
element of HY(K,Ty)~, where H'(K,Tiy)* denotes the subspace of
H'(K,Ty) on which the complex conjugation acts by +1 (recall that
Ty = Tm/mm). Then, for ¢ € N %=1 there exist infinitely many
primes | € 2V such that

(1) if d* #0, then 1ocl(d%) #0 e H'(K;, Ty),

(2) the image of locl(ﬁg’(z)) in Hsl(Kl,Tq(;)) ® G coincides with

(¢ @ 1) o locl(@?’(i)) up to a unit in Sy, where ¢f* @ 1 :

H} (K, 1Y) ® Ge — HY(K;, Ty)) ® G is as in [18, §1.2].

Proof. We assume that d* and d~ are both nonzero (the other
cases are proven by the same argument). We denote by ng e the
G g-module whose underlying space is Tgi_l) =T ®e ng/m%_l and
whose G i-action on the second factor is trivial. If we denote by w a
uniformizer of Sg, then we have a homomorphism of Sgp-modules

(4.51) HY(K, Ty) = H' (K, T ") [mqs)

induced by the map Ty — Tq(fi_l)’o sending each element z to @w? ~2x.
Here, we used the isomorphism Ty 2 T'/m¢ ® Sq/mgs. We note that by
the hypothesis H.1) in [18] the map (4.51) is injective, and by abuse of
notation, we denote by the same symbols d% the corresponding elements
in H'(K, T$2171)7°)[ms43]. Let L = K(Tg%l)’o) be the smallest finite
extension of K such that Gz acts on T;g =1:° trivially. Then, L is a
Galois extension of Q, and by Lemma 4.3 (5) we have an injective map

2i—1),0 2i—1),0
HYK,TFD°) — HY(Gal(L/K), H'(L, Ty~ "))
= HomGal(L/K)(GLaTq(321_1)70)7
where the first map is the restriction map. Regarding d* as homomor-
phisms G — Tgl_l)’o, we denote by F the finite abelian extension of
L such that ker(d*) Nker(d~) = Gg. Then, Gal(E/L) is an Fp-vector
space with Gg-action, and we denote by G the subspace of Gal(E/L)
on which the complex conjugation 7 acts trivially. If we regard d* as

elements of HomGal(L/K)(Gal(E/L),Tq(fi*l)’o), then by H.1 and H.5 in
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[18], d*|g+ and d~|g+ are non-trivial. Hence, there exists n € G* such
that d*(n) and d~(n) are both nonzero. By [28, Proposition 12.2 (3)]
or [12, Proposition 7.14], there exist infinitely many primes [ inert in K
such that

(a) The element Frob} € Gal(E/K) is conjugate to n € G.

(b) @* 1 |l+1+aq and @1 |1+ 1—ay,

(c) @ fl+1+aq and @ {1+ 1—q

(d) the elements d* € H'(K, Ty) are both unramified at [
(under Condition 2.3 (2), [6, Lemma 6.2] implies that the constant a
in [28, Proposition 12.2] or By in [12, Proposition 7.14] is zero). We
note that (b) implies that | € 22~ Since H*(K}"/K;, Ty) = Ty by
the map sending each cocycle ¢ to c(Frob?), the assertions (a) and (d)
imply (1). We note that by Lemma 4.5 (2), the proof of [28, Proposition
10.2] also works in our case. Then, by [28, Proposition 10.2 (4)] or [12,

(K2)], the assertions (b) and (c) imply that the image of loc; (53’(2i_1)) in

H(K, Tq(fi_l))@Gcl coincides with (¢*®1)oloc; (@23’(2i_1)) up to a unit
in Sg. By reduction modulo m?p, we deduce the assertion (2). Q.E.D.

Remark 4.12. Although the Kolyvagin system of Heegner points
in [18] satisfies the assertion (2) for all ¢ € A4 (3= and | € 2~
our proof implies only (2) as in Lemma 4.11. However, the lemma is
sufficient for our application.

Lemma 4.13. If c € /=1 then kW e S (c), where SW(c)
is the stub Selmer group contained in H‘I%B(K7 Tq(;)) (see |18, §1.6] for
the details).

Proof. Although this is essentially [18, Lemma 1.4], we slightly
need to modify the proof as follows. When we choose a prime [ € 2(%—1)
in Cases i and ii in the proof of [18], we use Lemma 4.11 instead of [18,
Lemma 1.6.2]. Q.E.D.

By Lemma 4.13 the proof of [18, Theorem 1.6.1] also works in our
case, and we obtain the following theorem.

Theorem 4.14. Under Condition 2.3, if ‘B # pA is a height-
one prime ideal of A such that /@? is not torsion, then the Sy-module

Hi%g(K’ Ty) is free of rank one, rankg, (X 7, (K, Wy)) =1 and

Hl K, T;
2 lengthsq3 (W) > lengthsq3 (Xgm (K, W‘,B)tors)
P

(see Definition 2.1 for the notation on Selmer groups).
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4.6. Twisted Heegner classes and the p-adic L-function

By using the explicit reciprocity law for generalized Heegner classes
explained in §4.2, we construct integral maps relating twisted Heegner
classes with specializations of the p-adic L-function.

Proposition 4.15. Let £ be a generator of the ideal (Z,(f)A")NA
of A. For a height-one prime ideal 3 # pA there exist a homomorphism
of Sy-modules pop H}%3 (Kp, Tig) — Sy and an element by € F* such
that the following assertions hold.

(1) We have

(4.52) o (locy (kT)) = bypxp (L)

up to a unit in Sp.

(2) There exists mog > 1 depending on B such that for m > myg
and for every height-one prime ideal Q # pA of A satisfying
Im(xqugl) C 1+ p™Sy, we have by = by.

Remark 4.16. We recall that for every height-one prime ideal
B # pA, we have fixed an embedding Sy — Oc,, by which the inclusion
Im(xqpxg ) € 1+p™Sy in (2) above is taken in ﬁép.

Proof. Let M be the &-submodule of Derys(Vy|cy, )?~(r) gener-

ated by 7 (cf. §4.2). By (4.33), there exists an element w of H}, (H,,T)®
Hoo(Gpeo ) such that the composite

Uy Ry @ M — O[[Gp]] — O[[T]
sends the element g; to £ € O[[']] up to a unit in O[] (see §4.2 for

the notation), where the first map is given by h — <Q§/7T71(h),w>, and
the second one is the natural projection.

By using Lemma 4.9 with the M fixed above, we put
by = lengthg, (ﬁj@.m (Ky, Tyn)/ByQp (R0 M)) .

We define g as follows. Let z be an element of HE, (Ky, Ty).
Then, there exists an element h, € RV~ ® M such that By Qs (h2)
coincides with the image of p"® z. By denoting by ¢y (2) the specializa-
tion of Wy (h:) € O[[Gp=]] at xy. we obtain g : Hi (Ky, Ty) — Sy
under which the image of s} coincides with PP qng’q}lxqg (&) up to a
unit in Sgz. Hence, if we put by = pbgﬁ gy [3{31, then we have the assertion
(1). The assertion (2) follows from Lemma 4.9 (2) and from that if m

is sufficiently large, then for Q such that Im(xgx%l) C 14 p™Sy, we
have gp = qq. Q.E.D.
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Remark 4.17. If IOCp(H?) is not torsion, then the kernel of ¢y is
Hl(KPa T‘n)tors-

Lemma 4.18. For a height-one prime ideal ¥ # pA of A, if the
localization loc, (kT ) € H'(K,, Tip) is not torsion, then the Sy-module

locy

Coker <Hf% (K, Ty) = Hi, (K, T@)

18 torsion.

Proof. Since 10Cp(l€?3) is not torsion, the lemma follows from the
fact that the rank of H=£/7‘n (K, Tip) is one. Q.E.D.

Lemma 4.19. Suppose that xp(Z) # 0. Then for a height-one
prime ideal P # pA of A, we have

S
lengthg,, <‘B> > Iy + lengthg,, ( Smﬁ?

by xp (L) S
where Iy = lengthg (Coker (H}J,‘JB (K, Ty) — ﬁtl%ﬁ (Kp,Tm))) , and
by € F* is as in Proposition 4.15.

Proof. By our assumption and Proposition 4.15, IOCP(K?) is not a
torsion element. Hence the Sy-module Hﬁ;cp (K, Ty) is free of rank one
by Theorem 4.14, and the restriction map Hi%g (K, Ty) — H-}ffn (Kp, Tp)
is a non-zero map between free modules of rank 1. In particular, its
kernel H gy (I, Tip) is trivial. Then, we have an exact sequence

H}?‘B (K7 T‘ﬁ) H‘lgqg (Kp,Tﬁp)
0— T — bG
(4.53) Sy Syplocy (k1)
— Coker(Hi%} (K, Ty) — ﬁ%ﬁp (Kp, Tp)) = 0.

By Proposition 4.15, the map
Sylocy (KF) bypxp (L) Sy
is injective. Combining this with (4.53) implies the lemma. Q.E.D.

§5. Proof of the main result

The aim of this section is to prove Theorem 2.5. We keep the same
notation as in the previous section. In particular, we assume Condition
2.3.
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5.1. Comparison of Selmer groups

The aim of this subsection is to prove Proposition 5.4, which is
combined with the control theorem in the next subsection to deduce a
comparison between specialization of both sides of Conjecture 2.2 (2).

Lemma 5.1. Let B # pA be a height-one prime ideal of A. Then,
we have

lengthsqB (ngm’@([(, W )tors) = lengthsm (X()’gZ(B (K, Wip)tors)-

Proof. By [27, Lemma 3.5.3 and Theorem 4.1.13], there exists an
integer r > 0 such that for ¢ > 1

(5.54)  Hz, (K, Wy)[p'] = (q/Sq) " [p'] @ H,,, o (K, W )[p']-
By a formula of Wiles (cf. [16, Theorem 2.19]), we have

r = corankg,, (H}/’n (Kp, Was)) + coranksg,, (H' (K5, Wy))
—corankg,, (H*(K ® R, Wy)).

Hence, r = 142 — 2 = 1. Since (5.54) holds with = 1 for all 4 > 0,
by the isomorphism Héw”qu (K, W) = H{;‘BL,O(K, W) induced by the
complex conjugation, we obtain the lemma. Q.E.D.

Lemma 5.2. If B # pA is a height-one prime ideal of A such that
the image of k} in H'(K,, Ty) is not torsion, then
(1) Hy (K.Ty) = Hy, (K. Ty).
(2)  The Syp-module Xo, 7, (K, W) is torsion.
Proof. (1) We consider the exact sequence
(5.55)
0= Hg, (K, Ty) —Hz, (K, Ty)
loc/ 7y .5 Hl(Kﬁ,Tgp)
Hi%;; (K, Tip)

— Coker(loc, 7, 5) — 0,

where loc, gz, p is the natural map induced by the localization map at p.
Since the Syp-modules H' (K5, Ty)/H, (K5, Ty) and Hg, (K, Ty) are
free of rank one (cf. Theorem 4.14), it suffices to show that the rank of
H}%M@(K7 Twy) is one. First note that the rank of H}%ﬁ (Kp,Typ) is one.
Then, by the exact sequence

locy,

0— Hé,@(Kv T‘B) - Hé?qh@(Ka Tq;g) E— g.lﬁ\p (vaTm)a

it is sufficient to show that H&m(lﬂ V) = {0}.
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By Proposition 4.2 (3) and the assumption that loc,(kF) is not

torsion, the localization IOC;‘,(K?L) is also not torsion. Then, by the
exact sequence

0— H}?:mL,O(K’ Tqy) — H}%BL (Ka T‘BL) - ﬁ}@sw (KﬁvT‘ﬁ)

and by Theorem 4.14, we have H(}GIW’O(K, Tiyp.) = {0}. Hence, by the
global duality, we have an exact sequence

Hiy, o(K, Vi) LR 2R = Hj o(K, Vige)™ = 0.

Here * denotes the ®qs.-linear dual, and 2y denotes the Selmer structure
whose local conditions at v | p are given by the subspace 23 generated

by loc,(kF). Since k¥ € H}%@(IQ Vip) and locy(k}) is assumed to
be non-zero, by the exact sequence above we have H(Z%7()(I(7 Vi) = {0}.
Hence by the complex conjugation, the assertion is proved.

(2) By (1) and (5.55), the cokernel of loc,z,, ; is free of rank one.
Hence, by the exact sequence (induced by the global duality and (4.43))

0 — Coker(loc,z,, 5) = Xz (K, W) — Xo, 7y (K, Weg) — 0,
Theorem 4.14 implies the assertion (2). Q.E.D.

Lemma 5.3. If B # pA is a height one prime ideal of A such that
the image of k} in H'(K,, Ty) is not torsion, then
(1)  the Sp-module X ¢(K, W) is torsion,
(2)  lengthg, (Xoo(K, Wy)) = lengthg, (X (K, Wy )tors) + 2lp,
where Iy is as in Lemma 4.19.

Proof. By the global duality, we have an exact sequence

0 — Coker (H;M(K, Ty) - HY, (K., Tm))
— XO’@(K, Wq;;) — Xogzm (K, Wq;;) — 0.

Then, by Lemma 5.2 (1) we have an exact sequence

0 — Coker (Hb,, (K, Ty) = Hb, (K, Ty))
— Xo,p(K, W) = Xo,7, (K, W) — 0.

(5.56)

Hence, since the image of m‘f in Hﬁ}m (Kp,Tip) is not torsion, Lemma
5.2 (2) implies the assertion (1).



52 S. Kobayashi and K. Ota
(2) By the global duality, we have an exact sequence

0 — Coker ((HY, (K, Ty) — i, (K, Ty))

= Xy o(K,\Wy) = Xy (K, Weg) = 0.
By Lemma 4.18 and Theorem 4.14, taking Sqp-torsion in the sequence
above implies that

(5.57)
lengthy,, (X 7, 0 (K, Wi )tors) = lengthg, (X, (K, W )tors) + p.

By (5.56), Lemma 5.1 implies that
lengthg, (X0 (K, Wy)) = lengthg, (Xo 7, (K, W) + Iy
= 1ength5’m (X'g‘ﬁ’@ (K, W‘B)tors) + [gp.
Hence, by (5.57) we obtain the assertion (2). Q.E.D.

By combining Lemmas 4.19 and 5.3, we obtain the following.

Proposition 5.4. Let .Z be a generator of the ideal (£, (f)A™)NA
of A. If B # pA is a height-one prime ideal of A such that x5 (Z,(f)) €
C,, is non-zero, then the Sy-module X o(K, W) is torsion, and

Sp
bypxp (L) S

5.2. Control theorem

2 lengthg,, ( > > lengthg, (Xo,0(K, Wy)).

In this subsection, we prove a certain control theorem (Proposition
5.7), which plays an important role in the gluing up Proposition 5.4 to
deduce the main theorem.

We put T =T ®¢ A and W = Homgeont (T, ptpe). Then, we may
canonically identify

HY(K,W) = lim H' (K, W)
(cf. [18, Definition 2.2.3 and Proposition 2.2.4]). We introduce a Selmer
structure %, on W so that the resulting Selmer group H}%(K, W) is
isomorphic to the Selmer group Hj (Koo, W) in (1.1). In other words,
ngA(Kp,W) = H}%(KP,W), H;A(Kﬁ, W) = {0}, and for v # p,
HY (K,, W) is the kernel of the restriction map from H'(K,, W) to
HY(K™ W). For a height-one prime ideal 8 # pA of A, we denote by
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the same symbol .#, the Selmer structure on W] such that for every
prime v of K,

HY (K, , W[3]) = Ker (HI(KU,W@]) H(K,, W) ) .

T HL (K., W)

We note that unlike in the previous section, the Selmer structure
Fa on W[P] is not given by the image of a Selmer structure on a vector
space. We also note that by the duality, the natural map T/PB* — Ty
induces a homomorphism Wy — W], and we have homomorphisms

sp,o 0 Hy o (Ko, W) = HE (K, W[]),
sy Hy o(K, W) — Hi (K, W)[R].

Lemma 5.5. Let P # pA be a height-one prime ideal of A. Then,
for every prime v # p of K, the kernel and cokernel of sp . are finite,
and their orders are bounded by a constant depending only on T and the
index [Syp : A/B] and independent of v.

Proof. Thisis [27, Lemma 5.3.13]. Although representations of Gg
are considered in loc. cit., the proof also works in our setting. Q.E.D.

Lemma 5.6. Let P # pA be a height-one prime ideal of A. Then,
the modules ker(sqp ) and coker(sy ) are finite, and their orders are
less than a constant which depends only on T, the index [Sy : A/B] and

rank g (A/R).

Proof. By the local duality, it suffices to bound the kernel and
cokernel of the homomorphism

Hl(KP’T‘ﬁL)

HY(K,,T/P") —» —— 0%
( P /%) Hl(Kp,Tq}L)tors

We note that
HY Ky, Top tors = HO (K, Wipi) CHY (Koo p, Wipe) = H* (Koo p, W) @6 Sepe,

where by abuse of notation, we denote by p the prime of K., above
p. Since HY(K p, W) is finite (cf. Lemma 2.7), the order of the group
H'(Ky, Ty )tors is less than a constant depending only on 7, [Sq : A/P]
and ranks(Sy) = ranke (A/9P). Hence, to complete the proof, it suffices
to bound the kernel and cokernel of the homomorphism H'(K,, T/9PB") —
H'(Ky,Ty.). We note that the kernel (resp. cokernel) is bounded by
HO(Ky, T @ (Sy/(A/B))) (vesp. H' (K, T @ (Sp/(A/9)))), and then
we complete the proof. Q.E.D.
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Proposition 5.7. There is a finite set X5 of height-one prime ideals
of A such that for a height-one prime ideal P ¢ Xp U {pA} of A, the
kernel and cokernel of sy are finite, and their orders are less than a
constant which depends only on T, [Sq : A/B] and ranks(A/PB).

Proof. This is an analogue of [27, Proposition 5.3.14]. The differ-
ence is our local condition at p, which is not covered in [27]. However,
thanks to Lemma 5.6, the proposition is deduced from Lemmas 5.5 and
as in the proof of [27, Proposition 5.3.14]. Q.E.D.

5.3. Proof of the main theorem

Proof of Theorem 2.5 (1). Let £ € A be a generator of the ideal
(L (f)IA™) N A. Since Z,(f) is not zero as an element of A" (cf. [12,
Theorem 3.7]), for almost all height-one prime ideals ¥ # pA, we have
xp(Z) #0 € Oc,. Let ¥ be a finite set of height-one prime ideals of A
such that ¥ contains all prime ideals Q which satisfy at least one of the
following conditions:

(1) Q' € ¥, where ¥4 is as in Proposition 5.7,

(2) xa(Z(f)) =0,

(3) Q =pA.
Let 3 be a prime ideal of A which does not lie in 3. Then, Proposi-
tion 5.4 implies that Hé,O(K, W) is finite. Hence, by Proposition 5.7,
H, (K, W)[$'] is finite. Therefore, since H, (K, W) = Hj ((Koo, W),
we have that X o(Ko, W)/% is finite. Then, Xy o(Koo, W) is A-torsion.

Q.E.D.

Proof of Theorem 2.5 (2). As in the proof of [18, Theorem 2.2.10],
we can prove Theorem 2.5 (2) by combining Propositions 5.4 and 5.7.

Let v be a generator of ', and we identify A with O[[S]] viay—1 —
S. We may enlarge & C Q, so that we have

c d
Char(Xp (Koo, W)) = (H(s —~ &)A) . A= [ —n)A |,
i=1 j=1

as ideals of A where & and 7n; are elements of the maximal ideal of .

Let 9 # pA be a height-one prime ideal of A such that 9 divides
Char(Xgp o(Koo, W)) or Z. Then, we may write Q = (S — 0)A, where 6
is an element of {&;,7;} ;, and we have xq(y) = 146 (note that 6 € &
and Sq = A/Q = 0). For m > 1, we put ™ = (S — 0 — p™)A, which
satisfies Im(xgx%(lm)) C 14 p™0. For a sufficiently large m > 0, the
following assertions hold:
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(i) P ¢ ¥, where ¥ is the same as in the proof of Theorem 2.5
(1),

(ii) byem) = ba (cf. Proposition 4.15),
(iii) P does not divide Char(Xyo(Kso, W)) or Z.

We note that as ideals of A we have (P, Q") = (B, p™») for n > 0.
Then,

2 lengthﬁ(s‘n(m /bq}(m,)xmhn) (X)Sm(m)
—2 length,, (A/(z,fp<m>)) +0(1)
=2 length,(A/ (2422 BM)) + 0(1)
(5.58) =2m ordq (Z) + O(1),

where each O(1) is described in terms of bym) = bg and is independent
of m. To simplify the notation, we write Xy = Xy o(Ks, W). By
Proposition 5.7, we have

length, (Hg o(K, Wepom))") = length (Hg (K, Wagom.)")
= length o ((H 5, (K, W)[B™))") + 0(1)
= 1engthﬁ(Xm,o/‘J3(m)) +0(1)
(5.59) = m ordg (Char(Xy)) + O(1),

where each O(1) is independent of m and described in terms of 7. Then
by (5.58), (5.59) and Proposition 5.4, we have

2 ordg () > ordaq(Char(Xy o)) + m~O(1).
Letting m — oo, we obtain
2 ordg (Z) > ordg(Char(Xy ).

Since this inequality holds for every height-one prime ideal Q # pA of
A, we conclude Theorem 2.5 (2). Q.E.D.
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