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Abstract.
Euler systems are certain norm-compatible families of cohomol-

ogy classes, which play a key role in studying the arithmetic of Ga-
lois representations. We briefly survey the known Euler systems,
and recall a standard conjecture of Perrin-Riou predicting what kind
of Euler system one should expect for a general Galois representa-
tion. Surprisingly, several recent constructions of Euler systems do
not seem to fit the predictions of this conjecture, and we formulate
a more general conjecture which explains these extra objects. The
novel aspect of our conjecture is that it predicts that there should
often be Euler systems of several different ranks associated to a given
Galois representation, and we describe how we expect these objects
to be related.
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§1. Cohomology of Galois representations

The representations of Galois groups of number fields play a central
role in number theory. For instance, if K is a number field and E/K is
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an elliptic curve, one can consider its Tate module

Tp(E) := lim←−
n

E[pn],

for a prime p; this is a free rank 2 Zp-module, with a continuous action of
the group GK := Gal(K/K). The representation Tp(E) contains much
useful arithmetic data about E; for instance, E has good reduction at
a prime ` 6= p if and only if the inertia group I` acts trivially on Tp(E)
(the “Nerón–Ogg–Shafarevich criterion”).

Deeper properties of E are encoded in the (continuous) Galois co-
homology groups Hi(GK , Tp(E)), which we abbreviate as Hi(K,Tp(E))
henceforth. There is a natural injective map, the Kummer map,

κ : E(K)⊗ Zp → H1(K,Tp(E)),

and many of the deepest results we have concerning the Mordell–Weil
groups of elliptic curves – notably Kolyvagin’s theorem that if E is an
elliptic curve over Q and ords=1L(E, s) 6 1, then the Tate–Shafarevich
group of E is finite and the Birch–Swinnerton-Dyer conjecture holds for
E – have been proved by studying the image of E(K) in H1(K,Tp(E)),
using sophisticated techniques in Galois cohomology. So describing and
controlling the cohomology of Galois representations is a deep and fun-
damental problem.

One of the few tools available for controlling global cohomology
groups is the theory of Euler systems, and in this article we shall in-
troduce the theory of Euler systems, and formulate a new conjecture
predicting what sort of Euler systems one might expect for general Ga-
lois representations.

§2. Euler systems

The definition of an Euler system comes in several slightly different
flavours. We shall follow the standard reference, which is [Rub00]. As
above, we fix a number field K, a prime p > 2, and a finite extension
L/Qp with ring of integers O.

Definition 2.1. For an integral ideal m of K, we write K(m) for
the maximal extension of K of p-power degree contained the ray class
field of K modulo m.

Let T be a finite-rank free O-module with a continuous action of
GK , unramified at almost all primes. We write T ∗(1) for the Tate dual
Hom(T,O(1)), and if q is a finite prime of K at which T is unramified,
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we define a local Euler factor Pq ∈ O[X] by

Pq(X) := detO
(
1−X Frob−1

q : T ∗(1)
)
.

We fix an ideal N of K, divisible by p and by all primes at which T is
ramified; and an infinite abelian extension K of K which contains K(q),
for every prime q - N , and the cyclotomic Zp-extension K∞ ⊂ K(p∞).

Definition 2.2 ([Rub00, Definition 2.1.1]). An Euler system for
(T,K,N ) is a collection of cohomology classes

c = {cF ∈ H1(F, T ) : K ⊆f F ⊂ K},

(where the notation K ⊆f F ⊂ K signifies that F runs over the finite
extensions of K contained in K), satisfying the following relation: if
K ⊆f F ⊆f F

′ ⊂ K, then

(?) coresF
′

F (cF ′) =

 ∏
q∈Σ(F ′/F )

Pq

(
σ−1
q

) cF

where Σ(F ′/F ) is the set of (finite) primes of K not dividing N which
ramify in F ′ but not in F , and σq is the image of Frobq in Gal(F/K).

Note that only the local Euler factors at unramified primes appear
in the definition; the Euler factors at the bad primes play no direct role.

Remark 2.3. As noted in [Rub00, §9.4], Kolyvagin’s Euler system of
Heegner points does not actually fit into the definition 2.2, since Heegner
points are always defined over abelian extensions of an imaginary qua-
dratic field K which are anticyclotomic – one cannot find Heegner points
defined over all the fields K(q) in such a way that the Euler system norm
relations are satisfied. There are other examples of anticyclotomic Euler
systems, but we shall not discuss them further in this survey, for reasons
of space.

The basic function of Euler systems is to bound Selmer groups, which
are subgroups of H1(K,T ) defined by local conditions.

Definition 2.4.
(i) If v - p is a (finite) prime of K, we define

H1
f (Kv, T ) := ker

(
H1(Kv, T )→ H1(Knr

v , T ⊗Qp)
)

where Knr
v is the maximal unramified extension of Kv.

(ii) We define the relaxed Selmer group, H1
rel(K,T ), as{

x ∈ H1(K,T ) : locv(x) ∈ H1
f (Kv, T ) for all v - p

}
.
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(iii) We define the strict Selmer group, H1
str(K,T ), as{

x ∈ H1(K,T ) :
locv(x) ∈ H1

f (Kv, T ) for all v - p,
locv(x) = 0 for all v | p.

}
Theorem 2.5 (Rubin, cf. [Rub00, Theorem 2.2.3]). Suppose c is

an Euler system for (T,K,N ), and cK is non-torsion in H1(K,T ); and
suppose that T satisfies a mild “large image” hypothesis. Then the group
H1

str(K,T ∗(1)) is finite.
Remark 2.6. Rubin states his theorem in a somewhat different form,

involving the finiteness of the strict Selmer group of the p-torsion repre-
sentation T ∗(1)⊗Qp/Zp, but this is equivalent to the above statement.

The Poitou–Tate global duality theorem for Galois cohomology, com-
bined with Tate’s Euler characteristic formula, shows that the finiteness
of the strict Selmer group of T ∗(1) implies a bound for the cohomology
of T . This bound involves the following important numerical invariant:

Definition 2.7. We define

d−(T ) :=
∑
v|∞
v real

rankO
(
Tσv=−1

)
+

∑
v|∞

v complex

rankO (T ) ,

where σv denotes complex conjugation at v.
Let us write hi(−) for the rank of the cohomology group Hi(−) as

an O-module.
Proposition 2.8. Suppose H0(K,T ) = H0(K,T ∗(1)) = 0, and

H0(Kv, T
∗(1)) = 0 for all primes v | p. Then we have

h1
rel(K,T ) > d−(T ),

with equality if and only if H1
str(K,T ∗(1)) = 0.

So, by Rubin’s theorem, the existence of a non-trivial Euler system
forces H1

rel(K,T ) to have the minimal possible rank.

Proof. Let V := T ⊗O L, let S be the set of primes dividing N∞,
and let GK,S be the Galois group of the maximal extension of K un-
ramified outside S. Then, for any T unramified outside S, Poitou–Tate
duality gives an exact sequence of finite-dimensional L-vector spaces

0→ H1
rel(K,V )→ H1(GK,S , V )→

⊕
v∈S
v-p

H1
s (Kv, V )→ H1

str(K,V ∗(1))∗

→ H2(GK,S , V )→
⊕
v∈S

H2(Kv, V )→ H0(K,V ∗(1))∗ → 0.
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Here H1
s (Kv, V ) = H1(Kv, V )/H1

f (Kv, V ) = H1
f (Kv, V

∗(1))∗.
We now count dimensions. We have h2(Kv, V ) = h1

s (Kv, V ) for v - p,
so the local terms for v - p cancel out; and h0(GK,S , V )−h1(GK,S , V )+
h2(GK,S , V ) = −d−(T ) by Tate’s global Euler characteristic formula.
Finally, local Tate duality gives h2(Kv, V ) = h0(Kv, V

∗(1)). Collecting
terms therefore gives

h1
rel(K,T )− h0(K,T ) = h1

str(K,T ∗(1))− h0(K,T ∗(1))

+ d−(T ) +
∑
v|p

h0(Kv, T
∗(1)).

Under our simplifying hypotheses, most of these terms are zero and the
formula simplifies to

h1
rel(K,T ) = d−(T ) + h1

str(K,T ∗(1)).

So h1
rel(K,T ) > d−(T ), with equality if and only if h1

str(K,T ∗(1)) =
0. Q.E.D.

§3. The case d−(T ) = 1

One can check that classes forming an Euler system always lie in
H1

rel. Hence, if d−(T ) = 1 and c is an Euler system for T with cK non-
torsion, then one has a rather precise picture of the cohomology of T ,
at least after inverting p; the space H1

rel(K,T ) ⊗ L is one-dimensional,
and cK is an L-basis vector of this space.

This situation, where d−(T ) = 1, may seem rather special, but it in
fact covers several of the most familiar Euler systems:

• The Euler system of cyclotomic units: here K = Q and T =
Zp(1).
• The Euler system of elliptic units: here K is imaginary qua-

dratic and T is again Zp(1).
• The Euler system of Beilinson–Kato elements: here K = Q

and T = T ∗
f (1) where Tf is the representation attached to a

modular form of weight > 2, so that T has rank 2 and σ∞ acts
via a matrix conjugate to

(−1 0
0 1

)
.

However, there are not many more examples beyond these. The
problem is that in practice “most” representations T have approximately
the same number of +1 and −1 eigenvalues for complex conjugation; so
d− is usually about 1

2 [K : Q] rankO(T ), which will be much larger than
1 unless K and T are both small.

In practice, one is usually interested in Selmer groups with more
sophisticated local conditions at p, rather than the (rather crude) strict
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and relaxed local conditions. The “right” local condition was defined by
Bloch and Kato, using p-adic Hodge theory. We impose the assumption
that T is de Rham at the places above p (which is automatically satis-
fied for all representations arising from geometry, by deep comparison
theorems due to Faltings and Tsuji).

Definition 3.1 ([BK90, §3.7]). For each prime v | p, define sub-
modules H1

f (Kv, T ) ⊆ H1
g (Kv, T ) ⊆ H1(Kv, T ) by

H1
f (Kv, T ) = ker

(
H1(Kv, T )→ H1(Kv, T ⊗Bcris)

)
H1

g (Kv, T ) = ker
(
H1(Kv, T )→ H1(Kv, T ⊗BdR)

)
where Bcris and BdR are Fontaine’s p-adic period rings. Define the global
Bloch–Kato Selmer group by

H1
f (K,T ) = {x ∈ H1(K,T ) : locv(x) ∈ H1

f (Kv, T ) for all v}.

From the theorems above, we see that if d−(T ) = 1 and an Euler
system c exists for T with cK non-torsion, then H1

f (K,T ) has rank
either 1 or 0, depending on whether or not locv(cK) ∈ H1

f (Kv, T ) for all
primes v | p.

If V has all Hodge–Tate weights1 > 1 at some prime v | p, then
H1

g (Kv, T ) = H1(Kv, T ) [Ber03, Lemma 6.5]; if we suppose also that
H0(Kv, T

∗(1)) = 0, as in Proposition 2.8, we even have H1
f (Kv, T ) =

H1(Kv, T ), so the condition locv(cK) ∈ H1
f (Kv, T ) is automatically sat-

isfied. For instance, this applies to the Euler system of Beilinson–Kato
elements if the modular form f has level coprime to p.

On the other hand, if the Hodge–Tate weights are not all > 1 at v,
one expects that locv(cK) should only be in H1

f (Kv, T ) if some “unlikely
coincidence” occurs. For instance, in the setting of the Beilinson–Flach
elements one can use a twisting construction to produce an Euler system
c′ for T = T ∗

f (without the twist 1). It follows from Kato’s explicit reci-
procity law that this twisted Euler system has locp(c

′
Q) ∈ H1

f (Qp, T
∗
f )

if and only if L(f, 1) = 0.

§4. Higher rank Euler systems

If d−(T ) > 1, what should one expect? Naively, one might guess
that it would be easier to build Euler systems in this context, since H1

rel

1Our conventions are that the Hodge–Tate weight of the cyclotomic char-
acter is +1. The Hodge–Tate weights of the representation Tf attached to a
weight k modular form f are 0 and 1−k, so the representation T ∗

f (1) appearing
in the Beilinson–Kato Euler system has weights 1 and k.
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is forced to be large by Proposition 2.8. However, this doesn’t seem to
be the case: when d− is large it seems to be hard to construct elements.

An intuitive explanation of this comes from the following observa-
tion: systematic constructions of elements in global cohomology groups
only seem to work well when those groups are 1-dimensional, because
otherwise the class “doesn’t know where to go” within the space, and
collapses to zero. (We shall call this Gross’ trap, since the observation
was apparently first made by Dick Gross in the analogous setting of
Heegner points on elliptic curves of analytic rank > 1.)

One suggestion for solving this problem, due to Perrin-Riou [PR98],
is that the “correct” object to associate to a general T is not a collection
of classes in H1(F, T ), but rather classes in exterior powers of these
modules. She defined a rank r Euler system, for r > 1, to be a collection
of classes

cF ∈
r∧

O[∆F ]

H1(F, T ) for K ⊆f F ⊂ K,

where ∆F = Gal(F/K), satisfying the Euler system norm relations (?).
For simplicity, we shall state Perrin-Riou’s conjecture under an aux-

iliary assumption: that either d−(T ) = d+(T ), or every real place
of K remains real in K. (For example, we could take K = Q and
K =

⋃
m Q(µm)+, where Q(µm)+ is the totally-real subfield of Q(µm).)

This avoids complications with ranks varying between different complex-
conjugation eigenspaces.

Conjecture 4.1 (Perrin-Riou). For any global Galois representa-
tion T arising in geometry, there exists an Euler system of rank d−(T )
for T , satisfying a precise relation to the leading terms at s = 0 of the
L-functions L(T ∗(1), χ, s) for finite-order characters χ of Gal(K/K).

Remark 4.2. The exact relation to L-values is somewhat technical to
state; see Perrin-Riou’s monograph [PR95], or the overview in [Rub00,
Chapter 8].

This notion of higher-rank Euler systems has been extensively stud-
ied since, but it has proved to be rather thorny to work with, for two
reasons.

Firstly, there are serious technical difficulties arising from the com-
plicated algebra of wedge powers of modules over O[∆F ]. This makes it
difficult to prove an analogue of Theorem 2.5 for Euler systems of rank
> 1. Recent work of Burns–Sano [BS16] strongly suggests that a better
theory may be obtained by replacing the wedge power

∧r
O[∆F ] H

1(F, T )

with
⋂r

O[∆F ] H
1(F, T ), where

⋂r denotes the “exterior bi-dual” functor,
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defined for modules M over a ring R by

r⋂
R

M = HomR

(
r∧
R

HomR(M,R), R

)
.

However, another (possibly more serious) stumbling block is that
there are very few interesting examples of rank r Euler systems known
for r > 1 (in particular, none which are known to be related to values
of L-functions). In particular, it is not expected that the Euler systems
predicted by Perrin-Riou’s conjecture should be constructed by building
r invidual elements in some canonical way, and then wedging them to-
gether (except in special cases, such as when T is a direct sum of smaller
representations); such an approach would fall into Gross’ trap.

Remark 4.3. One exception to this gloomy outlook is provided by
ongoing work of Nekovář and Scholl (surveyed in [NS16]). Assuming a
certain conjecture, the plectic conjecture, their method gives a construc-
tion of Euler systems of rank [F : Q] for certain Galois representations
arising in the étale cohomology of Shimura varieties associated to reduc-
tive groups over totally real fields F . However, the plectic conjecture is
currently wide open.

Another, unrelated approach is due to Urban, who has devised a
method of constructing higher-rank Euler systems via Eisenstein con-
gruences; but this approach (as presently formulated) requires one to
assume bounds on congruence ideals as input to the method, and these
congruence ideals are closely related to Selmer groups, so using these
classes as input to a version of Theorem 2.5 would result in a circular
argument.

§5. Euler systems with local conditions

In 2014, in joint work with Lei, we discovered a new example of an
Euler system:

Theorem 5.1 ([LLZ14, Corollary 6.4.5]). Let f, g be two modular
forms of weight 2 and prime-to-p level, and let

T = (Tf ⊗ Tg)
∗,

where Tf and Tg are the Galois representations attached to f and g. Then
there exists a collection of classes cQ(µm) ∈ H1(Q(µm), T ) satisfying
compatibility relations close to (?).



Euler systems with local conditions 9

Remark 5.2. This theorem is, of course, vacuous as stated, since the
cQ(µm) could all be 0; but we can also show in many cases that cQ is
non-torsion.

There are several curious features of the Euler system of Beilin-
son–Flach elements. Firstly, it has the “wrong” rank: T is 4-dimensional
and odd, so d−(T ) = 2. Thus Conjecture 4.1 would predict a rank 2
Euler system, not a rank 1 Euler system.

Secondly, the norm-compatibility relations satsified by the Beilin-
son–Flach elements for ` = p are not the expected ones. If we write
Qr = Q(µpr ), then we obtain formulae of the form

cores
Qr+1

Qr
(cQr+1) = (αfαg) · cQr ,

where αf and αg are some choices of roots of the Hecke polynomials of
f and g at p. If f and g are ordinary, we may choose αf and αg to be
p-adic units; then we can re-normalise by setting c′Qr

= (αfαg)
−rcQr to

obtain the expected Euler system relation. However, if αf and αg are
not p-adic units, then there is no way to re-normalise the elements cQr

to be norm-compatible without introducing denominators.
It turns out that these distorted norm-compatibility relations at p

are unavoidable. The Beilinson–Flach classes are automatically in H1
g ,

since they are constructed geometrically; and T has Hodge–Tate weights
{0, 1, 1, 2}, which are not all > 1. This means there is a local obstruction
to having norm-compatible classes, because of the following theorem of
Berger:

Theorem 5.3 ([Ber05, Theorem A]). Let T be an irreducible O-
linear de Rham representation of GKv

of dimension > 1, for Kv a p-adic
field, and suppose we are given classes xn ∈ H1

g (Kv(µpn), T ) for all n > 1
which are compatible under corestriction.

Then either T has all Hodge–Tate weights > 1, or xn = 0 for all n.

So if T |GQp
is irreducible (which can occur) then any collection of

norm-compatible classes lying in H1
f at p would either have to localise

to 0 at p (which is unlikely, because we expect the strict Selmer group to
be generically 0); or it would have to have a denominator growing in the
cyclotomic tower, at a certain minimum rate determined by the valuation
of αfαg. This is exactly the behaviour one sees for the Beilinson–Flach
classes.

Fortunately, for the machinery of Kolyvagin derivatives, one is main-
ly interested in classes over Q(µm) where m is a squarefree product of
primes coprime to p, so this “distortion” of the p-direction norm relations
does not rule out applications to Selmer groups. One can use this to
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show (under the usual auxillary “big image” hypotheses) that when cQ
is non-torsion, the group H1

str(Q, T ∗(1)) is finite, and H1
f (Q, T ) is of

rank 1 and is spanned by cQ after inverting p.
Remark 5.4. In the three classical examples of Euler systems listed

in the previous section, the cohomology classes are also constructed geo-
metrically, so they likewise lie in H1

g ; but in these examples the Hodge–
Tate weights are all > 1, so H1

g is the whole of the local cohomology
at p and Berger’s theorem is no obstruction. The novel feature of the
Beilinson–Flach classes is that they are in H1

g at p in a situation where
this is a nontrivial condition.

§6. A conjecture

The above properties of the Beilinson–Flach elements suggest that
Perrin-Riou’s conjecture 4.1 is not the whole story. This motivates a
more general Euler system conjecture, which we explain below.

For technical reasons, the conjecture is simplest to state if we aban-
don the assumption that the coefficient field L is a finite extension of
Qp, and instead assume that it is a finite extension of FracW (Fp),
where W (−) denotes Witt vectors. (This base-extension is not needed
if K = Q.) As before, we write O for the ring of integers of L.

Let K, K and T be as in §2 above, and write V = T ⊗O L. We
assume V is unramified almost everywhere and de Rham at the places
above p. We also assume that V is irreducible and that H0(K,V ) =
H0(K,V ∗(1)) = 0.

Definition 6.1. We define

r0(T ) := d−(T )−
∑
v|p

dimL Fil0 DdR(Kv, V ),

r(T ) := max (0, r0(T )) .

One checks easily2 that r0(T
∗(1)) = −r0(T ), so for any T , at least

one of r(T ) and r(T ∗(1)) is zero. An application of Poitou–Tate duality
gives the following relation:

Proposition 6.2. We have

h1
f (K,T )− r(T ) = h1

f (K,T ∗(1))− r(T ∗(1)).

2One has d−(T ) + d−(T
∗(1)) = d−(T ) + d+(T ) = [K : Q] dimV ; while

for each v | p, there is a perfect pairing DdR(Kv, V ) ×DdR(Kv, V
∗(1)) → L,

and the two Fil0’s are orthogonal complements, so their dimensions sum to
[Kv : Qp] dimV .
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In particular, if r(T ∗(1)) = 0, then we have

h1
f (K,T ) > r(T ),

with equality if and only if h1
f (K,T ∗(1)) = 0. Q.E.D.

The significance of r(T ) is as follows. The Bloch–Kato conjecture
predicts that we should have

h1
f (K,T ) = ords=0L(T

∗(1), s).

On the other hand, in [De79] Deligne has defined an archimedean L-
factor L∞(T ∗(1), s), which is a product of Γ-functions depending on
the Hodge–Tate weights of T and the action of complex conjugation on
it. Deligne’s conjectures predict that (under our hypotheses on T ) the
function

Λ(T ∗(1), s) := L(T ∗(1), s)L∞(T ∗(1), s)

should be meromorphic on C, and holomorphic at s = 0. The archime-
dean factor L∞(T ∗(1), s) has no zeroes, but it does have poles, and
r(T ) is exactly the order of the pole of L∞(T ∗(1), s) at s = 0. Hence,
if Λ(T ∗(1), s) is to be holomorphic at s = 0, the function L(T ∗(1), s)
must vanish there to order at least r(T ). In other words, r(T ) is the
“Archimedean contribution” to the order of vanishing of L(T ∗(1), s).

Remark 6.3. It is expected that for almost all values of s (whenever
T does not have “motivic weight −1”) the functional equation will force
Λ(T ∗(1), s) to be non-vanishing at s = 0; so this Archimedean contribu-
tion should actually completely determine the order of vanishing.

Definition 6.4. For an integer r > 0, we say T is r-critical if
r(T ) = r and r(T ∗(1)) = 0.

The second condition is, of course, redundant if r > 0; it is included
only in order to ensure that 0-critical agrees with the usual notion of
critical, which is that neither L∞(T, s) nor L∞(T ∗(1), s) has a pole at
s = 0.

We can now formulate our first conjecture on the existence of Euler
systems. We first consider only fields unramified above p, postponing
discussion of the “p-direction” until later.

Conjecture 6.5 (rough form). If T is r-critical, there exists a
collection of cohomology classes

cF ∈
r∧
H1

f (F, T ),
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where F varies over finite extensions of K inside K that are unramified
above p, satisfying the Euler system compatibility relation (?); and the
bottom class cK is non-zero if and only if L(r)(T ∗(1), 0) 6= 0.

Remark 6.6. This conjecture is not precise, since we have not at-
tempted to formulate a relation to L-functions. This should be roughly
as follows: suppose T is the p-adic realisation of a motive. Then Beilin-
son’s conjecture predicts that L(r)(T ∗(1), 0) should be given by Beilin-
son’s regulator map applied to an element in the r-th wedge power of a
motivic cohomology group, and it is natural to expect that cK should
be the p-adic realisation of this motivic element.

It is also very possible that the conjecture may need some modifi-
cation to account for denominators, replacing

∧r
H1

f (F, T ) with some
larger lattice in

∧r
H1

f (F, V ), such as the exterior bi-dual
⋂r

H1
f (F, T ),

as in the work of Burns–Sano cited above. However, we shall not pursue
this here, since we want to focus primarily on cases where r(T ) = 1;
in this case the “naturally occurring” elements do indeed seem to lie in
H1

f (F, T ).
For instance, if f, g are weight 2 modular forms, then we have

r((Tf ⊗ Tg)
∗(m)) =


2 if m > 1

1 if m = 0

0 if m 6 −1.

Thus our conjecture predicts that there should be Euler systems of mul-
tiple ranks attached to different twists of T = (Tf ⊗ Tg)

∗. There should
be Euler systems of rank 2 attached to T (m) for each m > 1, which
are the objects predicted by Perrin-Riou’s conjecture; but there should
also be a rank 1 Euler system for T itself, which is the Euler system of
Beilinson–Flach elements. We shall consider this example in more detail
below.

It is important to note that this conjecture is not, in itself, partic-
ularly novel; for instance, one can deduce it from Perrin-Riou’s Conjec-
ture 4.1, by applying various linear functionals to the conjectural rank
d− Euler system to move it down to rank 1, as we shall describe in a
later section. The reason why we feel that Conjecture 6.5 is interesting
is that it may be more approachable than Conjecture 4.1. We opti-
mistically hope that when our conjecture predicts a rank 1 Euler system
(i.e. when we have a geometric Galois representation with r(T ) = 1)
then one can reasonably expect to construct the necessary cohomology
classes directly.

Moreover, the lower-rank Euler systems predicted by Conjecture 6.5
still have powerful arithmetic applications. Although they have lower



Euler systems with local conditions 13

ranks than those predicted by Perrin-Riou, this is “compensated for” by
their additional local property at p – namely, they lie in H1

f . As shown
in [LLZ15, Appendix B], when r(T ) = 1 one can adapt the proof of
Theorem 2.5 to make use of this additional information:

Proposition 6.7. Suppose r(T ) = 1 and there exists a rank 1 Euler
system for T such that cF ∈ H1

f (F, T ) for all F and cK is non-torsion.
Under some auxilliary technical hypotheses, then H1

f (K,T ∗(1)) is finite,
H1

f (K,T ) has rank 1 and is spanned by cK , and H1(K,T ) has rank
d−(V ).

The case r = 0 of Conjecture 6.5 is not at all trivial. It predicts the
existence of collections of elements of the group rings O[∆F ] satisfying
some norm-compatibility properties; and the expected relation to L-
values simplifies greatly in this case, predicting that the image of the
element cF ∈ O[∆F ] under evaluation at a character χ of ∆F should
give the critical L-value L(T ∗(1), χ, 0) divided by an appropriate period.

There are several naturally-occurring examples of such elements:
for instance, one has the Stickelberger elements attached to T = O(χ),
where χ is a Dirichlet character with χ(−1) = 1, and the Mazur–Tate
elements for T = Tf (1) where f is a weight 2 modular form.

§7. Ordinarity conditions at p

We now consider the question of norm relations in the p-direction.
If r(T ) < d−(T ), so that our conjecture predicts Euler systems of “non-
optimal” rank, then there must be at least one prime above p at which V
has a Hodge–Tate weight 6 0. So Berger’s theorem shows that there is
an obstruction to having norm-compatible systems of geometric classes
over the p-cyclotomic tower. In other words, we should not expect to
have such an interpolation unless the local representations are reducible.

In fact, it turns out that we need subrepresentations of a very specific
kind:

Definition 7.1. Let v be a prime above p. A Panchishkin subrep-
resentation of V at v is a subspace V +

v ⊆ V such that
• V +

v is stable under GKv
,

• V +
v has all Hodge–Tate weights > 1,

• V/V +
v has all weights 6 0.

Note that V +
v is unique if it exists. If such a V +

v exists, then (up
to minor grains of salt), one sees that H1

f (Kv, V ) is simply the image of
the natural map H1(Kv, V

+
v )→ H1(Kv, V ).
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Definition 7.2. We say V satisfies the rank r Panchishkin con-
dition if r(V ) = r, r(V ∗(1)) = 0, and Panchishkin subrepresentations
V +
v exist for all v | p.

Note that if this holds, we must have
∑

v|p[Kv : Qp] dimL(V
+
v ) =

d+(V ) + r.
This condition was introduced in the case r = 0 by Panchishkin,

who suggested that the rank 0 Panchishkin condition was the “correct”
condition for a (bounded) p-adic L-function to exist – in other words,
for rank 0 Euler systems to interpolate in the p-cyclotomic tower.

Remark 7.3. The Panchishkin condition is closely related to the
notion of ordinarity. This has various formulations, but one flavour is
to require that V |GKv

have a decreasing filtration by subrepresentations
V

(i)
v such that each quotient V

(i)
v /V

(i+1)
v has all Hodge–Tate weights

equal to i. Thus V is ordinary at some prime v | p if and only if
all its Tate twists V (j) have Panchishkin subrepresentations. However,
full ordinarity of this kind is a rather restrictive condition, and (as we
shall see later) it is interesting and instructive to see how much of this
condition is actually relevant in specific situations.

Conjecture 7.4. If T is r-critical and satisfies the rank r Pan-
chishkin condition, then there should be a collection of classes cF ∈∧r

H1(F, T ) as in Conjecture 6.5 for all K ⊆f F ⊂ K (not just those
unramified above p).

Notice that if r = d−(V ), then the rank r Panchishkin condition is
trivially satisfied (since we can take V +

v = V for every v | p). This is
why ordinarity plays no role in the Euler system of Kato, for instance;
but for Euler systems of non-optimal rank, the Panchishkin condition is
a non-trivial restriction.

7.1. Example A: Rankin–Selberg convolutions
Consider the representations T = (Tf ⊗Tg)

∗(m) introduced in The-
orem 5.1, for f, g modular forms of weights k + 2, ` + 2, with k, ` > 0.
Note that d−(T ) = 2. We assume k > ` without loss of generality.

• When m > 1, the representation T is 2-critical; so Conjecture
6.5 predicts a rank 2 Euler system, and the Panchishkin con-
dition is automatic, so this Euler system should extend up the
p-cyclotomic tower without further hypotheses.

• When 0 > m > −`, the representation is 1-critical; in this case,
we need to take V +

v to be a 3-dimensional subrepresentation
of V |GQp

, i.e. the orthogonal complement of a 1-dimensional
subrepresentation of Vf ⊗ Vg of Hodge–Tate weight 0.
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If we assume f and g are both ordinary, then Vf and
Vg both have one-dimensional subrepresentations V +

f and V +
g

(each of which is unramified, with Hodge–Tate weight 0) and
we can take the 1-dimensional sub to be V +

f ⊗ V +
g .

• When−1−` > m > −k, the representation is 0-critical. Hence,
in order to find a rank 0 Euler system in the p-direction –
that is, a p-adic L-function – we require the existence of a 2-
dimensional subrepresentation of Vf ⊗ Vg accounting for the
two highest Hodge–Tate weights {0,−1 − `}. Such a subrep-
resentation exists when f has strictly larger weight, i.e. k > `,
and f is ordinary: we can take V +

f ⊗ Vg. Note that we do not
need to assume any ordinarity condition on g here.

(We do not need to consider m 6 −1− k, since then r(T ∗(1)) is no
longer zero and our conjecture does not apply.)

So we should expect a rank 1 Euler system in the p-direction when
both f and g are ordinary; but to form a p-adic L-function, we only
need to assume ordinarity for whichever of the two forms has the highest
weight. This matches exactly the behaviour one observes for Beilinson–
Flach elements and the Panchishkin–Hida p-adic Rankin–Selberg L-
function.

7.2. Example B: The spin representation for GSp(4)

We now consider a more sophisticated example. We take F a cus-
pidal Siegel modular eigenform of genus 2 and weight 3. By work of
Taylor and Weissauer [Wei05], this gives rise to a Galois representation

ρF : GQ → GSp4(Qp).

Composing this with the canonical inclusion of GSp4 into GL4 gives a
4-dimensional representation of GQ, which we denote by VF .

Remark 7.5. This representation is called the spin representation,
for reasons which only become obvious when one considers more gen-
eral symplectic groups GSp2g. The Langlands dual of GSp2g is the spin
similitude group GSpin2g+1, which acts naturally on a 2g-dimensional
space of “spinors”. However, for g = 2 there is an exceptional isomor-
phism GSpin5

∼= GSp4, and the spinor space is simply the 4-dimensional
defining representation of GSp4.

The spin Galois representation should not be confused with the
standard representation, given by composing ρF with the 5-dimensional
defining representation of SO5

∼= PGSp4.
If p does not divide the level of F , the local behaviour of ρF at p is

determined by the Hecke eigenvalues of F at p. The Hecke algebra has
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two generators, corresponding to the double cosets

T (p) =

[(
1
1
p
p

)]
and T1(p

2) =

[(
1
p
p

p2

)]
.

These correspond, respectively, to the two maximal proper parabolic
subgroups of GSp4: the Siegel and Klingen parabolics. We say F is
Siegel-ordinary if T (p) acts as a p-adic unit, and Klingen-ordinary if
T1(p

2) does so.

Theorem 7.6 ([Urb05, Corollary 1]).
(i) If F is Siegel-ordinary, then ρF (GQp

) stabilises a line in VF .
(ii) If F is Klingen-ordinary, then ρF (GQp

) stabilises a plane in
VF .

Remark 7.7. Urban proves (ii) under an additional technical condi-
tion, that the automorphic representation Π generated by F be “stable
at ∞” (see Remark (i) loc.cit.). This hypothesis can now be removed,
as a consequence of Arthur’s classification of cuspidal automorphic rep-
resentations of GSp4, announced in [Art04] and proved in [GT18].

What does our conjecture say in this case? The representation VF
has d−(V ) = 2, and Hodge–Tate weights {0,−1,−2,−3}. Setting V =
V ∗
F (−j), we expect that:

• when j 6 −1, V is 2-critical, and we expect a rank 2 Euler
system in the p-direction without any ordinarity conditions;

• when j = 0, V is 1-critical, so we expect a rank 1 Euler system,
and if we wish to extend this in the p-direction, we need to
assume F is Siegel-ordinary;

• when j = 1, V is 0-critical (i.e. critical in the sense of Deligne),
so we expect a rank 0 Euler system; and the condition required
to interpolate this into a p-adic L-function is that F should be
Klingen-ordinary.

More generally, this analysis goes over to Siegel modular forms of
any cohomological weight, and one again finds that Siegel-ordinarity is
the condition for a rank 1 Euler system, and Klingen-ordinarity the right
condition for a p-adic L-function. This is exactly what one sees in two
recent papers: our work with Skinner on the construction of a (rank 1)
Euler system for these representations [LSZ17]; and work of Dimitrov,
Januszweski and Raghuram on the construction of a p-adic L-function
[DJR18].
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§8. Iwasawa theory and Greenberg Selmer groups

Let F∞ =
⋃

n>1 Fn be a Zm
p -extension of K contained in K, for some

m > 1. We assume F∞ contains the cyclotomic Zp-extension K∞/K.
Let Γ = Gal(F∞/K), and let Λ(Γ) be the Iwasawa algebra of Γ with
coefficients in O.

8.1. The rank 0 case
For representations V satisfying the rank 0 Panchishkin condition,

we expect that there should be a p-adic L-function, which should be
an element of Λ(Γ) interpolating L-values L(V ∗(1), χ, 0)/(period) as χ
varies over finite-order characters of Γ.

In a ground-breaking paper [Gre89] in Iwasawa’s 70th birthday pro-
ceedings, Greenberg showed how define a Selmer group associated to V
over F∞, and thus formulate an Iwasawa main conjecture. He introduced
the following two objects, known as “Greenberg Selmer groups”:

• a subgroup H1
Gr(F∞, T ) of H1

Iw(F∞, T ) = lim←−n
H1(Fn, T ) de-

fined by local conditions, in which the local condition at v | p
is the image of the cohomology H1

Iw(F∞,v, T ∩ V +
v ) where V +

v

is the Panchishkin subrepresentation;
• a subgroup H1

Gr(F∞, T∨(1)) of H1(F∞, T∨(1)), where T∨ =
Hom(T,Qp/Zp), defined similarly using the orthogonal com-
plement of T ∩ V +

v in T∨.
The compact Greenberg Selmer group H1

Gr(F∞, T ) is a finitely-
generated Λ(Γ)-module, and the discrete version H1

Gr(F∞, T∨(1)) is a
co-finitely-generated one (i.e. its Pontryagin dual X(F∞, T ) is finitely
generated). Moreover, the ranks of H1

Gr(F∞, T ) and X(F∞, T ) are the
same, by a Poitou–Tate duality computation. Greenberg’s main conjec-
ture is that these modules are both torsion, and that the characteristic
ideal of X(F∞, T ) is generated by the p-adic L-function.

8.2. Higher ranks
How should this look for r-critical representations, when r > 0?

If the rank r Panchishkin condition holds, the definitions of the two
Greenberg Selmer groups still make sense; but one finds that their ranks
differ by r. Moreover, if conjecture 7.4 holds, then the Euler system
classes cFn for n > 1 define an element cF∞ of

∧r
H1

Gr(F∞, T ). The
natural conjecture appears to be that the quotient∧r

H1
Gr(F∞, T )

Λ(Γ) · cF∞
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should be torsion as a Λ-module, and that its characteristic ideal should
coincide with that of X(F∞, T ). When r = d−(T ), so that the local
conditions in the Greenberg Selmer groups are the trivial ones, this
conjecture has already been formulated by Perrin-Riou; see chapter 8 of
[Rub00]. However, as explained above, we feel that settings with r = 1
may be more approachable.

§9. Rank-lowering operators and reciprocity laws

There exist “twisting” operators for Euler systems (of any rank): if χ
is a continuous character of Gal(K/K) unramified outside N , then there
is a canonical bijection between Euler systems for T and for T (χ). See
e.g. [Rub00, §6.3]. In particular, if K contains the p-power cyclotomic
extension K(µp∞), then an Euler system for T is also an Euler system
for all of its Tate twists T (n).

How do these twisting maps interact with the predictions of Con-
jecture 7.4? Let us suppose that T is r-critical, and T (χ) is s-critical
for some integers r > s; we would like to compare the conjectured Eu-
ler systems for T and for T (χ). Let us write T+

v for the Panchishkin
subrepresentations for T , and T++

v for those3 of T (χ).
Our assumptions imply that∑

v|p

[Kv : Qp] rank(T
++
v ) 6

∑
v|p

[Kv : Qp] rank(T
+
v ),

and it seems reasonable to expect a relation whenever T++
v ⊆ T+

v for all
v | p.

9.1. The equal-rank case
If r = s, then this condition will force T+

v = T++
v for all v; and one

can reasonably expect that the rank r Euler systems associated to these
two representations by 7.4 should coincide under twisting. This gives
the following refinement of Conjecture 7.4:

Conjecture 9.1. Suppose we are given a collection P of local sub-
representations T+

v ⊆ T |GKv
for all v | p, with r(P) = −d+(T )+

∑
v[Kv :

Qp] rankT
+
v > 0. Let Σ(P) be the set of characters χ : Gal(K/K)→ L

×,
unramified outside N and de Rham above p, such that T (χ) is r-critical
and T+

v (χ) is a Panchishkin subrepresentation of T (χ)|GKv
for all v | p.

3More precisely, T++
v is the subrepresentation of T such that T++

v (χ) is
the Panchishkin subrepresentation of T (χ) at v.
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If Σ(P) is non-empty, there exists an Euler system c(P) for T of
rank r = r(P) such that for every χ ∈ Σ(P) and every field F with
K ⊃ F ⊇f K, the image of c(P) in

∧r
H1(F, T (χ)) is the class cF

predicted by Conjecture 7.4 applied to T (χ).

In other words, the Euler system depends not on the specific twist
χ that we choose, but only on which local subrepresentations are the
Panchishkin subrepresentations for χ.

For r = 0, this is a familiar property of p-adic L-functions – that
a single p-adic L-function will often interpolate critical values of twists
with a range of infinity-types, as long as these twists are all critical
“in the same way”, i.e. they all admit the same Panchishkin subrep-
resentation. For r = 1, the refined conjecture implies compatibilities
under twisting between cohomology classes arising from very different
geometric constructions. In the case of the Beilinson–Flach elements,
this compatibility does indeed hold [KLZ17, Theorem 6.3.4], but it is
far from easy to show; it seems to be a rather deep result, requiring the
full force of Kings’ theory of p-adic interpolation of Eisenstein classes.

9.2. Rank-lowering
We now suppose that T++

v ⊆ T+
v for all v and that we have strict

inequality r > s. Let t = r − s, and for each v set T ]
v = T+

v /T++
v . We

have
∑

v[Kv : Qp] rank(T
]
v) = t > 0, so at least one of the T ]

v is non-
zero. Let F∞ be a p-adic Lie extension of K inside K, chosen such that
F∞ contains the cyclotomic Zp-extension K∞, and χ factors through
Gal(F∞/K). Write H1

+(F∞, T ) for the kernel of the map H1
Iw(F∞, T )→⊕

v|p H
1
Iw(F∞,v, T/T

+
v ), and similary H1

++(F∞, T ). Then there is an
exact sequence

0→ H1
++(F∞, T )→ H1

+(F∞, T )→
⊕
v|p

H1
Iw(F∞,v, T

]
v).

The final group in this sequence, however, is rather simpler than the
previous ones, since it depends only on local information at p; in par-
ticular its rank over the Iwasawa algebra Λ is known – it is exactly t.
Moreover, the local epsilon-isomorphism conjecture of Fukaya and Kato
[FK06, Conjecture 3.4.3] predicts that its top wedge power should be
canonically identified with I ⊗

∧t
O(
⊕

v T
]
v), where I is a certain explicit

fractional ideal in Λ(Γ) (which is the unit ideal unless one of the local
L-factors associated to the T ]

v has an exceptional zero). Note that our
assumption that O contain W (Fp) is essential here.

Sadly, for general T ]
v and F∞ this local conjecture appears to be

out of reach; but it is known in the important special case when Kv is
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unramified over Qp, the local extension F∞,v is abelian over Qp, and
T ]
v is crystalline (see [BB08] or [LVZ15]). In this case, the required

trivialisation is given by the determinant of Perrin-Riou’s regulator map

LV : H1
Iw(F∞,v, T

])→ H⊗Dcris(Kv, V ),

whereH is the algebra of locally-analytic distributions on Gal(F∞,v/Kv).
In cases when we can establish the local ε-isomorphism conjecture,

we obtain a supply of linear functionals
∧t

H1
+(F∞,v, T )→ Λ. Recalling

that t = r − s, these functionals can be regarded as linear maps

r∧
H1

+(F∞,v, T )→
s∧
H1

+(F∞,v, T ),

whose image is actually contained in
∧s

H1
++(F∞,v, T ).

Allowing the field F∞ to vary over p-adic Lie extensions of F inside
K, we obtain a map from Euler systems of rank r for T with local
conditions given by T+

v , to Euler systems of rank s for T (χ) with local
conditions given by T++

v . We can now make the (rather optimistic)
conjecture that the Euler systems predicted by Conjecture 7.4 should
be compatible under these “rank-lowering operators”.

The case s = 0

Let us now home in on the case s = 0 for a moment. We have
already noted that our rank 0 Euler systems for T (χ) should be fami-
lies of elements of group rings O[∆F ], interpolating the critical values
L(T ∗(1)(χ−1), τ, 0) as τ varies over finite-order characters of ∆F . Com-
patible systems of such objects, as F varies over subfields of F∞, can
thus be regarded as p-adic L-functions. So our “rank-lowering” conjec-
ture predicts that a map from rank r Euler systems to rank 0 Euler
systems, given (essentially) by the r-th wedge power of the Perrin-Riou
regulator map, should send the rank r Euler systems predicted by Con-
jecture 7.4 to p-adic L-functions interpolating the critical values of twists
of T .

Results of this kind – relating Euler systems to critical L-values –
are generally known as “explicit reciprocity laws”, such as Kato’s explicit
reciprocity law for the Beilinson–Kato elements [Kat04, Theorem 16.6],
and the explicit reciprocity law of [KLZ17, Theorem B] for Beilinson–
Flach elements. The conjectures of the preceding paragraphs suggest,
at least to the present authors, that one should interpret any result
comparing Euler systems of different ranks as an explicit reciprocity
law.
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§10. Modular forms over an imaginary quadratic field

We now give an extended example showing some of the phenomena
predicted by the conjectures of the previous sections. Many of the most
interesting consequences only appear in situations where K contains a
p-adic Lie extension of dimension > 1; this can only occur, of course,
when K 6= Q (and, subject to Leopoldt’s conjecture, if K is not totally
real).

We shall take K to be an imaginary quadratic field with p = p1p2
split in K, and suppose that K includes the unique Z2

p-extension F∞
of K. We take T = (T ∗

f )|GK
, where Tf is the representation of GQ

associated to a weight 2 modular eigenform f .
If χ is a character of Gal(F∞/K) which is de Rham above p (and

hence corresponds to an algebraic Grössencharacter of K), then χ has
two Hodge–Tate weights (a, b). In Figure 1 on the following page (adapt-
ed from Figure 1 of [LLZ15]), the shaded areas are the regions of the
(a, b) plane for which T (χ−1) is r-critical for some r > 0. Assuming f
is ordinary at p, so there is a 1-dimensional subrepresentation T+ of T ∗

f

at p, we can describe Panchishkin subrepresentations for each of these
regions as in the accompanying table.

So Conjecture 9.1 predicts that we should have six Euler systems in
this setting, one for each region in the diagram: one of rank 2, two of
rank 1, and three of rank 0. Moreover, these should be connected by
explicit reciprocity laws corresponding to the the arrows in Figure 2 on
page 23.

At present, the bottom half of Figure 2 (the part drawn in solid ink)
is firmly established. The three rank 0 Euler systems – or at least their
p-parts, which are measures on Gal(F∞/K) – are familiar objects: they
are the three p-adic L-functions described in [LLZ15, Theorem 6.1.3].
The two rank 1 Euler systems can be constructed using Beilinson–Flach
elements associated to CM families of modular forms; the construction
of the CM family relies on a choice of prime above p, so one obtains
two Euler systems corresponding to the regions Σ(3) and Σ(3′). The
four arrows linking these to the p-adic L-functions are all instances of
the explicit reciprocity law of [KLZ17, Theorem B]. However, the top,
dotted half of the diagram is more mysterious, since we know of no
plausible geometric approach to constructing a rank 2 Euler system for
the twists in Σ(4).

Remark 10.1.

(1) The p-adic L-function associated to Σ(1) can actually be defined
over a finite extension of Qp (instead of the rather large, but still
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Fig. 1. Panchishkin subrepresentations for twists of T

a

b

1

1

2

2

3

3

-1

-1

-2

-2

Σ(4)

Σ(2)

Σ(2′)

Σ(3)

Σ(3′)

Σ(1)

Region Critical? T+
p1

T+
p2

Σ(1) 0-crit T+ T+

Σ(2) 0-crit T 0
Σ(2′) 0-crit 0 T

Σ(3) 1-crit T+ T

Σ(3′) 1-crit T T+

Σ(4) 2-crit T T

discretely-valued, extension L). However, those for Σ(2) and Σ(2′) do
not descend in any canonical way. More subtly, the base extension
to L is also needed in order to define the rank 1 Euler systems for
Σ(3) and Σ(3′): the Beilinson–Flach elements a priori take values in
V ∗
f ⊗ V ∗

g where g is an auxiliary CM Hida family induced from K.
To identify them with classes in V ∗

f alone, we need to find a basis
of V ∗

g in which GK acts diagonally. There is no canonical choice of
such a basis over Qp, but after base-extending to L we can obtain
a canonical basis from Ohta’s Λ-adic comparison isomorphism.

(2) We can obtain a Panchishkin subrepresentation for twists in Σ(1)

without assuming that p is split, but the assumption that f be
ordinary is essential. On the other hand, for Σ(2) and its mirror-
image Σ(2′), the ordinarity of f is not needed, but the splitting of
p is essential; and both conditions are needed simultaneously for
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Fig. 2. Euler systems and explicit reciprocity laws for T

Σ(4)

Σ(3) Σ(3′)

Σ(2) Σ(1) Σ(2′)

rank 2

rank 1

rank 0

Σ(3) or for Σ(3′). These are, of course, special cases of the remarks
about Rankin–Selberg convolutions in section 7.1 above, since the
L-function L(f/K, χ, s) can also be described as the Rankin–Selberg
convolution of f with a CM form induced from χ.

(3) As sketched in §8.2 above, for each node in Figure 2 we can formulate
an Iwasawa main conjecture of Greenberg type for T over F∞. These
conjectures are not independent of each other: an argument using
Poitou–Tate duality shows that whenever two nodes are related by
an explicit reciprocity law, the corresponding main conjectures are
equivalent. It follows, for instance, that the Greenberg–Iwasawa
main conjectures for Σ(1) and Σ(2) are equivalent to each other.
Although there is no direct link between the p-adic L-functions con-
cerned, they are tied together by the explicit reciprocity laws re-
lating both of them to the rank 1 Euler system associated to Σ(3).
This observation is due to Xin Wan, and its generalisations play
a prominent role in recent work of Wan and his coauthors on the
cyclotomic Iwasawa main conjecture and BSD leading term formula
for supersingular elliptic curves over Q [Wan15, JSW17].

(4) The representation Tf |GK
is the Galois representation attached to

the base-change of f to K, which is a cohomological automorphic
form for the group GL2 /K. The conjectural picture of Euler systems
for T described above would apply equally to the GK-representation
attached to any cohomological eigenform F for GL2 /K, whether or
not it arises from base-change, as long as F is ordinary at p1 and p2.
However, in the non-base-change setting we can prove much less; for
instance, we know of no way of p-adically interpolating the values
L(F/K, χ, 0) for χ ∈ Σ(2) if F is a non-base-change form.
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§11. The non-ordinary case

Greenberg’s formulation of Iwasawa theory relies on the existence
of Panchkishkin subrepresentations, but in many interesting cases these
do not exist. A more flexible theory has been developed by Pottharst
[Pot13], based on the observation that for each v | p one can attach to
V |GKv

a semilinear algebra object known as a (ϕ,Γ)-module, denoted
D†

rig(Kv, V ); and there may be interesting subobjects of D†
rig(Kv, V )

which do not come from subrepresentations of V . For instance, if f is
a modular form, one may attach a rank-1 submodule of D†

rig(Qp, Vf ) to
any non-zero root α of the Hecke polynomial X2− ap(f)X + pk−1εf (p),
while this submodule only comes from a subrepresentation if α is a p-adic
unit.

The downside of working with these objects is that one has to give
away some control of denominators: the “analytic Iwasawa cohomology”
modules appearing in Pottharst’s theory are not modules over the Iwa-
sawa algebra Λ(Γ), but over the larger algebra H(Γ) of locally analytic
distributions on Γ, which is a Qp-algebra having no natural Zp-lattice.
So, in translating from the classical language to the new one, we lose
control of the µ-invariants of Selmer groups.

Subject to this caveat, one can generalise the entire conjectural pic-
ture of Euler systems described above assuming only that one has a
“Panchishkin submodule” of D†

rig(Kv, V ) for each v | p, i.e. a subob-
ject which precisely accounts for all the positive Hodge–Tate weights.
When this occurs, we should expect to be able to extend the cohomology
classes of Conjecture 6.5 to elements of Pottharst’s analytic cohomology
modules in the p-direction, and these Euler systems should satisfy main
conjectures, formulated in terms of equalities of characteristic ideals over
H(Γ).

Remark 11.1. One new phenomenon that occurs when one recasts
the theory in Pottharst’s setting is that Panchishkin submodules are no
longer unique. Hence one should formulate Conjecture 7.4 as associating
a family of elements of the r-th powers of Pottharst’s analytic cohomol-
ogy modules to an r-critical GK-representation together with a choice
of Panchishkin submodule at each v | p (which should be understood as
a “p-stabilisation”). For instance, the non-ordinary analogue of Figure 2
consists of 11 objects (one Euler system of rank 2, four of rank 1, and six
of rank 0), with 16 potential explicit reciprocity laws connecting them.
Many, but not all, of these can be constructed using the techniques of
[LZ16].
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