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Abstract.

We introduce a natural way to define Selmer groups and p-adic
L-functions for modular forms of weight 1. The corresponding Galois
representation ρ of Gal(Q/Q) is a 2-dimensional Artin representation
with odd determinant. Thus, the dimension d+ of the (+1)-eigenspace
for complex conjugation is 1. Choose a prime p such that the restric-
tion of ρ to the local Galois group Gal(Qp/Qp) has a 1-dimensional
constituent ε with multiplicity 1. If we fix the choice of such an ε, we
can define a Selmer group and a p-adic L-function. On the algebraic
side, we prove that the Selmer group over the cyclotomic Zp-extension
of Q is a cotorsion module over the Iwasawa algebra Λ. That result
is valid for an Artin representation of arbitrary dimension d under the
assumption that d+ = 1 and that such an ε can be chosen. On the an-
alytic side, the corresponding complex L-function has no critical values
and the definition of the p-adic L-function depends on deforming the
Galois representation ρ by Hida theory.

§1. Introduction

Suppose that K is a finite Galois extension of Q. Let ∆ denote the
Galois group Gal(K/Q). Consider an irreducible representation

ρ : ∆ → GLd(Q) ,

where Q is an algebraic closure of Q and d ≥ 1. Let χ denote the char-
acter of ρ. If we fix an embedding σ∞ of Q into C, then we obtain a
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d-dimensional representation of ∆ over C. One can then define the cor-
responding Artin L-function L∞(s, χ). It is defined by an Euler product
for Re(s) > 1 and can be analytically continued as a meromorphic func-
tion on the complex plane. Conjecturally, L∞(s, χ) is an entire function
if χ is nontrivial. We will assume that χ is nontrivial throughout this
paper.

Now suppose that p is a prime and that we fix an embedding σp of

Q into Qp, an algebraic closure of the field Qp of p-adic numbers. Then

ρ becomes a d-dimensional representation of ∆ over Qp. Its character

χ now has values in Qp. One can ask whether there is a natural way to
define a function Lp(s, χ) attached to ρ and the fixed embedding, where
s is now a p-adic variable.

This question has been studied previously when K is totally real.
In that case, the values of L∞(s, χ) at negative odd integers are nonzero
algebraic numbers. Using the fixed embeddings σ∞ and σp, one can

regard those values as elements of Q and then as elements of Qp. Such
a p-adic L-function Lp(s, χ) can then be defined by an interpolation

property involving those elements of Qp. First of all, if d = 1, then χ
can be identified with an even Dirichlet character and the construction
of such a function Lp(s, χ) was done by Kubota and Leopoldt [24]. If
d > 1, then there is a definition described in [11] which is based on the
Deligne-Ribet construction of p-adic L-functions for Hecke characters of
the intermediate fields for the extension K/Q given in [6]. Furthermore,
still assuming that K is totally real, one can give a precise interpretation
of the zeros of Lp(s, χ). This is a generalization of a famous conjecture
of Iwasawa (for the case where d = 1) and has been proven by Wiles
[34].

Let v denote an archimedian prime of K and let Kv denote the v-
adic completion of K, which we identify with either R or C. As usual,
we identify Gal(Kv/R) with a subgroup ∆v of ∆. Let d+ denote the
multiplicity of the trivial character of ∆v in ρ|∆v

. This does not depend
on the choice of v. Of course, if K is totally real, then d+ = d. Our main
objective in this paper is to study the case where d+ = 1 and d ≥ 1.
Under certain assumptions, we will define certain p-adic L-functions and
discuss a conjectural interpretation of the zeros of those functions. Our
theory reduces to the classical case where d+ = d when d = 1.

We will usually make the following three-part assumption. In the
last part, ∆p denotes the decomposition subgroup of ∆ for a prime p
lying over p.
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Hypothesis A: The degree [K : Q] is not divisible by p. Also, d+ = 1.
Furthermore, there exists a 1-dimensional representation εp of ∆p which
occurs with multiplicity 1 in ρ|∆p

.

Our theory depends on choosing one such character εp of ∆p. Also, if
d > 1, then K must be totally complex and hence of even degree. We
will therefore assume that p is odd from here on.

Since d+ = 1, Frobenius Reciprocity implies that ρ occurs with
multiplicity 1 in the Q-representation of ∆ induced from the trivial
representation of ∆v for any archimedian prime v of K. It follows that ρ
itself can be realized by matrices with entries inQ(χ), the field generated
by the values of χ . Let F be the field generated over Qp by the values
of χ and of εp. We can then regard ρ as a representation of ∆ over
F (via σp). Let V denote the underlying representation space. Thus,
dimF (V ) = d. Also, the last part of Hypothesis A means that the
maximal F-subspace V (εp) of V on which ∆p acts by the character εp
has dimension 1.

The theory described in this paper depends not just on χ, but also
on the choice of the character εp of ∆p satisfying Hypothesis A. Suppose
that p′ is another prime of K lying over p. Then p′ = δ(p) for some δ ∈
∆. Thus, ∆p = δ−1∆p′δ. Conjugation by δ−1 defines an isomorphism
∆p′ → ∆p. One then obtains a character εp′ of ∆p′ from εp by composing
with this isomorphism. One sees easily that εp′ is well-defined and occurs
with multiplicity 1 in ρ|∆p′ . In effect, we have a family of characters

{εp}p|p for the decomposition subgroups which are compatible under
conjugation.

Let K denote the completion of K at p. Then K is a certain finite
Galois extension of Qp. Consider the restriction map Gal(K/Qp)→ ∆p.
It is an isomorphism. Composing this map with the character εp of ∆p

determines a character ε of Gal(K/Qp). It has values in F . If p′ is
another prime of K lying over p, then the completion Kp′ is isomorphic
to K. The character ε then determines a character of ∆p′ . In fact, this
character does not depend on the isomorphism and is just εp′ as defined
above. Thus, the family {εp}p|p is determined by the single character ε
of Gal(K/Qp).

We will first describe the algebraic side of our theory. We assume
that Hypothesis A is satisfied. Let O denote the ring of integers in F .
Let T denote an O-lattice in V which is invariant under the action of
∆. Since |∆| is prime to p and ρ is irreducible over F , T is determined
up to multiplication by an element of F×. Let D = V/T . Thus, D is
isomorphic to (F/O)d as an O-module and has an O-linear action of
∆. Furthermore, for every prime p of K lying above p, we will denote
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the image of V (εp) in D by D(εp). It is the maximal ∆p-invariant O-
submodule of D on which ∆p acts by εp and is isomorphic to F/O as
an O-module.

We now define a “Selmer group” associated to χ and ε which we
denote by Sχ,ε(Q). It will be a certain subgroup of H1(GQ, D), where

GQ = Gal(Q/Q). We will write H1(Q, D) instead of H1(GQ, D), as
usual. A similar notation will be used for other fields and Galois mod-
ules. Suppose that ℓ is a prime. Let Qℓ be an algebraic closure of Qℓ.
Pick (arbitrarily) an embedding of Q into Qℓ. We can then identify
GQℓ

= Gal(Qℓ/Qℓ) with a subgroup of GQ. Let Qunr
ℓ be the maximal

unramified extension of Qℓ in Qℓ. The inertia subgroup of GQℓ
is GQunr

ℓ

and is also identified with a subgroup of GQ.

Note that if ℓ = p, then the chosen embedding of Q into Qp deter-
mines a prime of K lying above p, which we denote simply by p. Our
Selmer group is defined by

Sχ,ε(Q) = ker
(
H1(Q, D)→

∏
ℓ ̸=p

H1(Qunr
ℓ , D)×H1(Qunr

p , D/D(εp))
)
.

The “global-to-local” map occurring in this definition is induced by the
restrictions maps, where we identify the GQunr

ℓ
’s with subgroups of GQ

as above. However, as our notation suggests, Sχ,ε(Q) is completely
determined by the F-valued character χ of ∆ (of degree d) and by the
F-valued character ε of Gal(K/Qp) (of degree 1). It does not depend
on the chosen embeddings and identifications.

The above definition of our Selmer group is suggested by the gen-
eral notion of a Selmer group which was studied in [12] and which also
depends on having a filtration on a representation space V for GQ when
restricted to the local Galois group GQp

. In that paper, the local con-
dition at the prime p is defined in terms of a certain subspace denoted
by F+V . That paper primarily considers the so-called p-critical case in
which the dimension of F+V is equal to d+. And so, if d+ = 1, then
F+V should be of dimension 1. In the definition given above, the role
of F+V is now being played by V (εp).

Now Sχ,ε(Q) is a subgroup ofH1(Q, D). SinceD is an O-module, so
is H1(Q, D). It is clear that Sχ,ε(Q) is an O-submodule. The restriction
map

H1(Q, D) → H1(K,D)∆ = Hom∆(Gal(Kab/K), D)

is an isomorphism. Here Kab is the maximal abelian extension of K in
Q. Also, the notation Hom∆(·, ·) will always denote the group of contin-
uous, ∆-equivariant homomorphisms. The above isomorphism follows
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from the assumption that |∆| is not divisible by p and the fact that GK
acts trivially on D. Thus, we can identify Sχ,ε(Q) with its image under
the restriction map which we will now describe.

Let ξ ∈ Hom∆(Gal(Kab/K), D). Let Kξ be the fixed field for
ker(ξ). Thus, Kξ is a finite, abelian extension of K, Galois over Q, and
ξ defines a ∆-equivariant isomorphism of Gal(Kξ/K) to a subgroup ofD.
For ξ to be in the image of Sχ,ε(Q), the local conditions defining Sχ,ε(Q)
are equivalent to the following conditions on ξ. First of all, the extension
Kξ/K is unramified at all primes of K not dividing p. Furthermore, if p
is a prime of K lying over p, then the image of the corresponding inertia
subgroup of Gal(Kξ/K) under the map ξ is contained in D(εp). By using
the above identification, we will prove the following result.

Theorem 1. Sχ,ε(Q) is finite.

The proof of this theorem uses the Baker-Brumer Theorem concerning
the linear independence over Q of the p-adic logarithms of algebraic
numbers and is reminiscent of the proof of Leopoldt’s conjecture for
abelian extensions of Q. Leopoldt’s conjecture is usually formulated as
a statement about the p-adic independence of units in a number field
K. But, if K is Galois over Q, then it has an equivalent formulation as
a statement about the ρ-components of the unit group, where ρ varies
over the absolutely irreducible Artin representations of Gal(K/Q). As
we will show in Section 2, the Baker-Brumer Theorem provides a proof
of that conjecture when d+ = 1. However, Theorem 1 is a stronger
statement and not just a consequence of Leopoldt’s conjecture for such
a ρ. The proof requires a somewhat more refined application of the
Baker-Brumer Theorem and depends on Hypothesis A.

Let Q∞ be the cyclotomic Zp-extension of Q. For n ≥ 0, let Qn

denote the subfield of Q∞ of degree pn over Q. One can define Selmer
groups Sχ,ε(Qn) for all n ≥ 1 and Sχ,ε(Q∞) in a similar way to the defi-
nition of Sχ,ε(Q) (the case n = 0). We will actually prove that Sχ,ε(Qn)
is finite for all n ≥ 0. Let Γ = Gal(Q∞/Q) and let ΛO = O[[Γ]]. Now
Γ acts naturally on Sχ,ε(Q∞) and the action is O-linear. Thus, we can
regard Sχ,ε(Q∞) as a discrete ΛO-module. Let Xχ,ε(Q∞) denote the
Pontryagin dual of Sχ,ε(Q∞). We can regard Xχ,ε(Q∞) as a compact
ΛO-module. The following result is a straightforward consequence of the
finiteness of the Sχ,ε(Qn)’s.

Theorem 2. The ΛO-module Xχ,ε(Q∞) is finitely-generated and tor-
sion.
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Alternatively, we would say that Sχ,ε(Q∞) is a cofinitely-generated, co-
torsion ΛO-module.

We will next state a result on the algebraic side concerning the char-
acteristic ideal of Xχ,ε(Q∞). We will prove this result in a sequel to this
paper (part II). By definition, the characteristic ideal is a principal ideal
in ΛO. Assume that d = 2. We will then prove that the characteristic
ideal has a generator with an interpolation property of a certain form.
To simplify the statement and explanation, we will assume here that
F = Qp. Thus, we are assuming that both χ and ε have values in Qp.

Let K∞ = KQ∞, the cyclotomic Zp-extension of K. We can iden-
tify Gal(K∞/K) with Γ = Gal(Q∞/Q) by the obvious restriction map,
noting that K∩Q∞ = Q because [K : Q] is prime to p. We may assume
thatK contains µp. ThenK∞ = K(µp∞). The action of Gal(K∞/K) on
µp∞ defines an isomorphism κ : Γ→ 1+pZp (since p is odd). Recall that
K denotes the completion of K at any one of the primes of K lying above
p. We let K∞ denote the cyclotomic Zp-extension of K. We can also
identify Gal(K∞/K) with Γ. For n ≥ 0, the n-th layers in K∞/K and in
K∞/K will be denoted by Kn and Kn, respectively. We also will identify
Gal(K∞/Q∞) with ∆ by the restriction map. We then have a canonical
isomorphism Gal(K∞/Q) ∼= ∆ × Γ. Similarly, Gal(K∞/Qp) ∼= G × Γ,
where G = Gal(K/Qp). We will denote Gal(Kn/Q) by ∆n.

For each n ≥ 0, let Un denote the group of principal units in Kn.
Let Un denote the group of units in Kn which are principal in all the
completions of Kn at primes above p. Thus, we can pick embeddings
Kn → Kn in a compatible way and thereby obtain natural injective
homomorphisms Un → Un. The lack of uniqueness will not affect the
statement of the next theorem. Those homomorphisms commute with
the natural global and local norm maps Um → Un and Um → Un for
m ≥ n ≥ 0.

Since we are regarding G as a subgroup of Gal(K∞/Qp), and the
Un’s are abelian pro-p groups and hence Zp-modules, we can consider

the Un’s as Zp[G]-modules. For each n ≥ 0, let U (ε)
n denote the ε-

component of Un. We can then define the projection map Un → U (ε)
n ,

which is a surjective Γ-equivariant map. We will use the somewhat
peculiar notation | · |ε for this projection map. Our motivation for this
notation is to suggest an analogy with the classical Stark conjecture
which involves the complex log of the absolute value of so-called Stark
units. Theorem 3 below involves instead the p-adic log of | · |ε applied
to certain units.

Suppose that φ : Γ → Q
×
p is a continuous group homomorphism.

Then we can extend φ to a continuous Zp-algebra homomorphism from
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Λ to Qp, which we also denote by φ. Thus, its image φ(Λ) is a compact

subring of some finite extension of Qp. The elements of Homcont(Γ,Q
×
p )

of finite order will be of particular interest. If φ has order pn, then

φ(Λ) = Zp[µpn ]. One can also consider the elements of Homcont(Γ,Q
×
p )

of the form κt, where t ∈ Zp. They have values in 1 + pZp and we have
κt(Λ) = Zp.

Now ε factors through the Galois group of a cyclic extension of
Qp of degree prime to p. We have a canonical factorization ε = ωaβ,
where 0 ≤ a < p − 1 and β is unramified. Let b denote the order of
β. Thus, β factors through Gal(Qp(µf )/Qp) where f = pb − 1 and is a
faithful character of that Galois group. Also, ω denotes the Teichmüller
character and factors through Gal(Qp(µp)/Qp). If φ is a character of
Γ of order pn, then ωaφ factors through Gal(Qp(µpn+1)/Qp). Thus,
εφ can be regarded as a character of Gal(Qp(µfpn+1)/Qp). We choose

a generator ζf for µf so that its image ζ̃f in the residue field Fpb for
Qp(µf ) is part of a normal basis for Fpb/Fp. Of course, this just means

that {ζ̃p
j

f }0≤j<b is linearly independent over Fp. The existence of such

an element ζf is a theorem of Lenstra and Schoof (in [25]). For n ≥ 0,
we choose generators ζfpn+1 for µfpn+1 such that ζpfpn+1 = ζfpn . We

define a “Gaussian sum” by

s(εφ) =
∑
σ

εφ(σ−1)σ(ζfpn+1)

where σ varies over Gal(Qp(µfpn+1)/Qp). The nonvanishing of s(εφ)
can be proved using our choice of ζf . We cannot say much else about
s(εφ). One can extend ε (noncanonically!) to a global character ε′.
Then ε′φ can be regarded as a character of Gal(Q(µfpn+1)/Q). The
sum

∑
σ ε′φ(σ−1)σ(ζfpn+1), where σ now varies over that global Galois

group, would give a standard Gaussian sum (namely, for the inverse of
ε′φ) and s(εφ) would just be part of that sum.

The next theorem will not be proven here, but will be the main
result in the sequel. It gives an interpolation property for a generator
of the characteristic ideal. As we will discuss in the sequel, we can also
give an interpolation property for φ

0
(θχ,ε) in most cases, where φ

0
is

the trivial character of Γ.

Theorem 3. Suppose that d = 2 and that assumption A is satisfied.
Then the characteristic ideal of Xχ,ε(Q∞) has a generator θχ,ε with the
following property. There exists a norm-compatible sequence {ηn}, where
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ηn ∈ Un for all n ≥ 0, such that

φ
(
θχ,ε

)
=

1

s(εφ)
·
∑
δ∈∆n

χφ(δ−1) logp
(
|δ(ηn)|ε

)
for all n ≥ 1 and all φ ∈ Homcont(Γ,Q

×
p ) of order p

n.

The proof of this theorem involves extending a classical result of
Iwasawa to this setting. Indeed, we prove a certain four-term exact
sequence involving the module Xχ,ε(Q∞) and certain inverse limits of
local unit groups and global unit groups. The sequence {ηn} defines an
element η∞ in the Λ-module U∞ = lim←− Un. The ε-component U (ε)

∞ has
Λ-rank 1, and is usually just isomorphic to Λ. The projection of η∞
to U (ε)

∞ generates a Λ-submodule of U (ε)
∞ of rank 1. The corresponding

quotient module has the same characteristic ideal as Xχ,ε(Q∞). All of
this will be discussed in the sequel. The arguments work for arbitrary d
if we make some additional assumptions concerning ρ.

We are not entirely satisfied with the interpolation property in The-
orem 3. For one thing, it depends on the choice of ζf . However, since
we are free to multiply θχ,ε by an arbitrary unit in ΛO, we are hoping
to find more natural interpolation factors, perhaps depending on χ and
ε in some canonical way. One simple (and canonical) choice would be
τ(ωaφ)/pn+1 in place of 1/s(εφ), where τ(ωaφ) is the standard Gaussian
sum. However, that choice does not involve the unramified character β
and corresponds to multiplying by a unit in a possibly larger ring ΛO′ ,
instead of in ΛO, where O′ is the ring of integers in a certain unramified
extension F ′ of F .

Now we will discuss the analytic side of our theory. Recall that d+

denotes the multiplicity of the trivial character in ρ|∆v
, where v is any

archimedean prime of K and ∆v is the corresponding decomposition
subgroup of ∆. The multiplicity of the nontrivial character of ∆v (if
K is not totally real) is denoted by d−. Of course, d− = d − d+. Our
most general results concern the case where d = 2. Since we assume
that d+ = 1, we have d− = 1 and ρ has odd determinant. The action
of ∆p on V/V (εp) is given by a character ε′p : ∆p → F×. As before,

we can define a character ε′ : Gal(K/Qp) → F×. We assume the Artin
conjecture for ρ and all of its twists by one-dimensional characters so
that we can associate to ρ a certain modular form fρ of weight 1. We
will define a p-adic L-function Lp(s, χ, ε) as the restriction of a 2-variable
p-adic L-function to a certain line.
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For simplicity, we will assume here that ε′ is unramified. In general,
we can reduce to that case by twisting by some power of ω. By using
the fixed embeddings σ∞ and σp, we can regard the q-expansion of fρ
as having coefficients in F . One can then apply a theorem of Wiles to
prove the existence of a Hida family of modular forms with the following
property (which we describe here under a certain simplifying assump-
tion). The modular forms in the family will be given by q-expansions
with coefficients in F . Roughly speaking, in each weight k ≥ 2, the cor-
responding p-adic Galois representation ρk has an unramified quotient
(when considered as a representation of GQp

) and the action on that
quotient is given by a character ε′k of GQp . As the weight k approaches
1 p-adically, ε′k approaches ε′. The q-expansion of the corresponding
modular forms fk in the family approach the q-expansion of f1 (coeffi-
cient by coefficient, as elements in the formal power series ring F [[q]]).

The two-variable p-adic L-function for a Hida family was first con-
structed by Mazur under certain assumptions and then by Kitagawa in
[23], and later by a different method in [19]. As above, we describe this
function under a simplifying assumption which we mention below. Un-
der some mild restrictions on ρ, the Hida family is uniquely determined
by the choice of ε′. However, since ρ is 2-dimensional, the choice of ε
determines ε′, and we will use ε in our notation. The corresponding
two-variable p-adic L-function that we consider here is defined using the
so-called canonical periods, following [7]. One of the variables is the
weight variable k. The second variable is the cyclotomic variable s. If
we restrict that function to a weight k ≥ 2, we essentially obtain the
p-adic L-function Lp(s, fk) attached to the modular form fk (as defined
in [26]). To be precise, the restriction is uk · Lp(s, fk), where the factor
uk is in O×.

If we specialize to k = 1, we obtain a function which we denote
by Lp(s, χ, ε) for s ∈ Zp. It is only well-defined up to a factor in O×.
Furthermore, there is an element θanχ,ε in ΛO such that

(1) Lp(s, χ, ε) = κ1−s(θanχ,ε)

for all s ∈ Zp. We now denote the element θχ,ε occurring in Theorem 3
by θalχ,ε. With this notation, we make the following conjecture:

Conjecture The principal ideals in ΛO generated by θalχ,ε and θanχ,ε are
equal.

That is, θanχ,ε is a generator for the characteristic ideal of Xχ,ε(Q∞).
This conjecture is partly inspired by the fact that, when d = 1, one
of the equivalent forms of Iwasawa’s classical Main Conjecture can be
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formulated in precisely this way. (See the introduction of [10].) In that
case, one has εp = χ|∆p

and Lp(s, χ, ε) should be taken to be Lp(s, χ),
the Kubota-Leopoldt p-adic L-function for χ. Furthermore, under some
restrictive assumptions, the above conjecture for d = 2 can be deduced
from the usual main conjecture for ordinary modular forms of weight
k ≥ 2, first by deducing the so-called two-variable main conjecture for
the Hida family and then using a specialization argument at weight
k = 1. The work of Ochiai in [28] is highly relevant here. We will
discuss this approach fully in the sequel. However, at present, although
it is clear that θalχ,ε is nonzero, we cannot prove in general that θanχ,ε is
nonzero.

We have made one simplifying assumption in the above description.
LetN denote the level of the weight 1 modular form fρ. WriteN = paM ,
where p ∤M . Let h∞ denote Hida’s universal ordinary Hecke algebra of
level M . One can view h∞ in a natural way as a finite flat algebra over
a certain subring Λ′. The subring Λ′ is isomorphic to a formal power
series ring Zp[[T ]] in one variable. As we explain in Section 5 (using the
theorem of Wiles mentioned previously), the form fρ together with the
choice of ε singles out a certain domain R which is a quotient of the
ring h∞ and which is a finite integral extension of Λ′. Our simplifying
assumption is that R = Λ′. However, we do not make this assumption
in Section 5.

Acknowledgements: The first author would like to thank the NSF
and the second author would like to thank NSERC for grants over the
years supporting this research.

§2. Galois cohomology for Artin representations

We will be quite general at first. Suppose that K is a finite Galois
extension of Q, that ∆ = Gal(K/Q), and that ρ : ∆ → GLd(F) is any
absolutely irreducible representation over F . We even allow [K : Q] to
be divisible by p. Let χ denote the character of ρ. We use χ consistently
in our notation. We assume that F is a finite extension of Qp. Let O
be the ring of integers in F . Let D = V/T , where V is the underlying
F-vector space for ρ and T is a ∆-invariant O-lattice in V .

Let Σ be any finite set of primes containing p, ∞, and the primes
which are ramified in K/Q. Thus, K ⊂ QΣ, where QΣ is the maximal
extension of Q unramified outside of Σ. We can regard D as a discrete
O-module with an O-linear action of Gal(QΣ/Q). We denote d by d(χ)
in this section and write d(χ) = d+(χ) + d−(χ), reflecting the action of
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the decomposition subgroup ∆v for an archimedean prime v of K. Note
that if one assumes that the residual representation for ρ is irreducible,
then D is determined up to isomorphism as a Gal(QΣ/Q)-module by χ.

We first discuss the Galois cohomology groups Hi(QΣ/Q, D) for
i ≥ 0. They are discrete O-modules. Let hi = corankO

(
Hi(QΣ/Q, D)

)
for i ≥ 0. As is well known, if p ≥ 3, then Hi(QΣ/Q, D) = 0 for i ≥ 3.
For p = 2, those cohomology groups are finite and have exponent 2.
Thus, hi = 0 if i ≥ 3, and so we just consider i ∈ {0, 1, 2}. We will
be primarily interested in h1. The Poitou-Tate formula for the Euler-
Poincaré characteristic implies that

h1 = d−(χ) + h2 + h0

If χ is the trivial character, then one sees easily that h0 = h1 = 1 and
hence h − 2 = 0. If we assume that χ is not the trivial character, then
h0 = 0. The following result is an immediate consequence of the above
remarks.

Proposition 2.1. Assume that χ is nontrivial. Then

corankO
(
H1(QΣ/Q, D)

)
≥ d−(χ)

and equality holds if and only if corankO
(
H2(QΣ/Q, D)

)
= 0.

It is reasonable to conjecture that corankO
(
H2(QΣ/Q, D)

)
= 0 for

any nontrivial, irreducible Artin representation. This is closely related
to Leopoldt’s conjecture, as we now explain. Let

Up =
∏
p|p

Up ,

where Up is the group of principal units in the completion Kp. Let UK
consists of the units of K which are principal units at all p|p. Thus,
UK is a subgroup of the unit group of K of finite index. Consider the
natural diagonal map

(2) UK → Up .

The Up’s, and hence Up, are Zp-modules. The map (2) is obviously
injective and extends to a map

(3) λp : UK ⊗Z Zp → Up .
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which is Zp-linear. The image of λp is the closure of the image of the

map (2) and will sometimes be denoted simply by UK , Furthermore, ∆
acts naturally on both UK ⊗Z Zp and Up. The map λp is ∆-equivariant.
Tensoring the above objects with F , we again get a ∆-equivariant map
which we denote by λp,F . Then, restricting to the χ-component, we
obtain a ∆-equivariant map

(4) λ
(χ)
p,F :

(
UK ⊗Z F

)(χ) → (
Up ⊗Zp

F
)(χ)

.

Leopoldt’s conjecture (for K and p) asserts that λp is injective. It is
equivalent to saying that λp,F is injective. For each χ, one can conjecture

that λ
(χ)
p,F is injective. This obviously follows from Leopoldt’s conjecture.

Conversely, if λ
(χ)
p,F is injective for all the absolutely irreducible character

χ of ∆, then Leopoldt’s conjecture holds for K and p. Here one should
choose F so that all of the absolutely irreducible representations of ∆ =
Gal(K/Q) are realizable over F .

Let r(χ) denote the multiplicity of χ in the ∆-representation space
UK⊗ZF . The proof of Dirichlet’s Unit Theorem allows one to determine
r(χ). In fact, if χ is nontrivial, then r(χ) = d+(χ). If χ is trivial, then
r(χ) = 0. On the other hand, the ∆-representation space Up ⊗Zp

F is
isomorphic to the regular representation of ∆ over F and hence χ has

multiplicity d(χ). The image of λ
(χ)
p,F is the χ-component of Im(λp,F ).

Let rp(χ) denote the multiplicity of χ in Im(λp,F ). The conjecture that

λ
(χ)
p,F is injective can be equivalently stated as follows.

LC(χ, p): We have rp(χ) = r(χ).

It is obvious that rp(χ) ≤ r(χ). One can reformulate LC(χ, p) in terms
of Galois cohomology.

Proposition 2.2. The assertion LC(χ, p) holds if and only if the equal-
ity corankO

(
H2(QΣ/Q, D)

)
= 0 holds.

Proof. Consider the restriction map

α : H1(QΣ/Q, D)→ H1(QΣ/K,D)∆ .

Since ∆ is finite, it follows that the kernel and cokernel of α are both
finite. Hence H1(QΣ/Q, D) and H1(QΣ/K,D)∆ have the same O-
corank. Furthermore,

H1(QΣ/K, D)∆ = Hom∆(Gal(M/K), D) ,
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where M is the maximal abelian pro-p extension of K contained in QΣ.
Clearly,M is Galois overQ and so ∆ acts naturally on Gal(M/K). Also,
Gal(M/K) can be considered as a Zp-module and is finitely generated.

Let K̃ denote the compositum of all Zp-extensions of K. Then

K ⊂ K̃ ⊆ M and M/K̃ is a finite extension. Furthermore, K̃ is Galois

over Q and hence ∆ also acts naturally on Gal(K̃/K). These remarks
imply the first of the following equalities. The second equality is easily
verified.

corankO
(
H1(QΣ/Q, D)

)
= corankO

(
Hom∆(Gal(K̃/K)⊗Zp

O, D)
)

= dimF
(
Hom∆(Gal(K̃/K)⊗Zp

F , V )
)
.

Hence, the O-corank of H1(QΣ/Q, D) is just the multiplicity of χ in

the ∆-representation space Gal(K̃/K) ⊗Zp
F . We next describe that

multiplicity in terms of rp(χ).
By class field theory, there is a homomorphism

Up
/
Im(λp) → Gal(K̃/K)

whose kernel and cokernel are finite. The multiplicity of χ in Up ⊗Zp
F

is d(χ). The multiplicity of χ in Im(λp) ⊗Zp F is rp(χ). Hence the

multiplicity of χ in Gal(K̃/K)⊗Zp F is d(χ)− rp(χ).
On the other hand, as mentioned above, if χ 6= χ0, then one has

r(χ) = d+(χ). This follows from the well-known fact that

UK ⊗Z Q ∼= Ind∆∆v
(θ0)

/
V0

where v is an archimedean prime of K, θ0 is the trivial character of the
decomposition subgroup ∆v, and V0 is the underlying Q-representation
space for the trivial character χ0 of ∆ over Q. If χ 6= χ0, then Frobenius
Reciprocity implies that r(χ) is equal to the multiplicity of θ0 in ρ|∆v

,
which is indeed equal to d+(χ). Of course, we have r(χ0) = 0.

Using the formula for the Euler-Poincaré characteristic, we find that

h2 =
(
d(χ)− rp(χ)

)
− d−(χ)− h0 = d+(χ)− rp(χ)− h0

where, as previously, hi denotes the O-corank of Hi(QΣ/Q, D). It
follows that if χ 6= χ0, then r(χ) − rp(χ) = h2. This gives the stated
equivalence in Proposition 2.1. For χ = χ0, the result is obvious. ■

Remark 2.3. If p is an odd prime, then the p-cohomological dimension
of Gal(QΣ/Q) is 2. Hence H3(QΣ/Q, D[p]) = 0. Since D is divisi-
ble by p, it follows that H2(QΣ/Q, D) is also divisible by p. Thus,
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its Pontryagin dual is a finitely-generated, torsion-free Zp-module, and
hence is free. It is free as an O-module. In particular, if the O-corank
of H2(QΣ/Q, D) is 0, then we actually have H2(QΣ/Q, D) = 0. If
p = 2, one can just show that pH2(QΣ/Q, D) is 0.

One useful positive result concerning LC(χ, p) is the following.

Proposition 2.4. If r(χ) ≥ 1, then rp(χ) ≥ 1.

The proof makes use of the following lemma. We regard UK ⊗Z Q as
a module over the group ring Q[∆], where Q is the algebraic closure of
Q in Qp. We regard Im(λp)⊗Zp

Qp as a module over Qp[∆] and hence

over the subring Q[∆].

Lemma 2.5. Suppose that θ ∈ Q[∆] and that θ does not annihilate
UK ⊗Z Q. Then θ does not annihilate Im(λp)⊗Zp

Qp.

Proof. Let F be a finite extension of Qp containing the coefficients of θ.
As before, we let K be the completion of K at one of the primes of K
lying above p. Let U be the group of principal units in K. We consider
the corresponding projection map

pr : Up ⊗Zp
F =

∏
p|p

(
Up ⊗Zp

F
)
→ U ⊗Zp

F

It suffices to show that Im(λp,F )
θ has a nontrivial image under the map

pr.

By assumption, there exists an η ∈ UK such that ηθ is nontrivial
(as an element in UK ⊗Z F). Now θ =

∑
δ∈∆ αδδ, where the αδ’s are in

F ∩Q. The set of conjugates {δ(η)}δ∈∆ generates a subgroup Υ of UK .
Let t denote its rank. One can choose a subset ∆′ of ∆ of cardinality t
so that {δ′(η)}δ′∈∆′ generates a subgroup of finite index in Υ. Viewing
Υ as a Z-module, the set {δ′(η)}δ′∈∆′ is a Z-basis for that subgroup.
Thus, replacing θ by an integral multiple if necessary, we have

ηθ = ηψ

where ψ =
∑
δ′∈∆′ βδ′δ

′ and the βδ′ ’s are in F∩Q. Since ηψ is nontrivial,
the βδ′ ’s are not all zero.

The map logp : U → K extends to an F-linear map from U ⊗Zp
F

to K ⊗Zp F . The image of ηψ under the map

logp ◦ pr ◦ λp,F : UK ⊗Z F → K⊗Zp
F .
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is γ =
∑
δ′∈∆′ logp

(
δ′(η)

)
⊗βδ′ . The inclusions K,F ⊂ Qp induce a map

from K ⊗Zp
F to Qp. The image of γ is

∑
δ′∈∆′ βδ′ logp

(
δ′(η)

)
. The set

{logp
(
δ′(η)

)
}δ′∈∆′ is linearly independent over Q. The Baker-Brumer

Theorem [2] implies that {logp
(
δ′(η)

)
}δ′∈∆′ is linearly independent over

Q. It follows that γ 6= 0. This implies that the image of ηθ under λp,F
is nontrivial. Since λp,F is ∆-equivariant, it indeed follows that θ is not

an annihilator of Im(λp)⊗Zp Qp. ■

Remark 2.6. The proof of the above lemma shows that if θ ∈ F [∆] has
coefficients in F∩Q and doesn’t annihilate UK⊗ZF , then pr

(
Im(λp,F )

θ
)

is a nontrivial F-subspace of U ⊗Zp F . This will be important later.

Proposition 2.4 follows from Lemma 2.5. One takes θ to be the
idempotent for χ in F [∆] which does have coefficients in F ∩ Q. The
following corollary follows immediately since r(χ) = d+(χ) when χ 6= χ0.

Corollary 2.7. If d+(χ) = 1, then LC(χ, p) is true.

A very closely related result is proved in [8]. The above corollary
is implicit in that work. In addition, those authors give an interesting
class of examples where Leopoldt’s conjecture can be proved. In fact,
their examples are an illustration of the above corollary. Suppose that
∆ ∼= A4, the alternating group of order 12. Suppose also that K is not
totally real. Then UK has rank 5. There are four absolutely irreducible
representations of ∆, up to isomorphism, three of dimension 1 and one
of dimension 3. One finds easily that the three nontrivial representations
are the constituents in UK ⊗Z F as a representation space for ∆, two
of dimension 1 and the one of dimension 3, and that they all satisfy
d+ = 1. And so Leopoldt’s conjecture for K and p follows from the
above corollary.

The rest of this section concerns the Galois cohomology groups
Hi(QΣ/Q∞, D). They are discrete O-modules with a continuous ac-
tion of Γ = Gal(Q∞/Q) and so can be regarded as discrete ΛO-modules,
where ΛO = O[[Γ]]. They are cofinitely generated as ΛO-modules. Their
ΛO-coranks can be determined without assuming any conjectures. The
results below are essentially consequences of theorems of Iwasawa, no-
tably Theorems 17 and 18 in [22]. We also refer to [12] and [16].

Proposition 2.8. The ΛO-corank of H
1(QΣ/Q∞, D) is equal to d−(χ).

If p is odd, then H2(QΣ/Q∞, D) = 0. If p = 2, then pH2(QΣ/Q∞, D) =
0.
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Proof. The theorems of Poitou and Tate yield a formula for the Euler-
Poincaré characteristic in terms of the ΛO-coranks of the cohomology
groups Hi(QΣ/Q∞, D). The alternating sum of those ΛO-coranks for
0 ≤ i ≤ 2 is −d−(χ). (See Proposition 3 in [12].) Since the ΛO-corank
of H0(QΣ/Q∞, D) is clearly 0, one obtains the formula

corankΛO

(
H1(QΣ/Q∞, D)

)
= d−(χ) + corankΛO

(
H2(QΣ/Q∞, D)

)
.

The proposition amounts to the assertion that H2(QΣ/Q∞, D) has ΛO-
corank 0, the so-called weak Leopoldt conjecture for the Galois module
D.

Let K∞ = KQ∞, the cyclotomic Zp-extension of K. Consider the
restriction map

H2(QΣ/Q∞, D)→ H2(QΣ/K∞, D) .

Note that Gal(QΣ/K∞) acts trivially on D. Thus, as a Gal(QΣ/K∞)-
module, D is isomorphic to (Qp/Zp)

d(χ) where the Galois group acts
trivially. Furthermore, the kernel of the above map has exponent divid-
ing the degree [K∞ : Q∞] and hence has Λ-corank 0. Thus, it suffices
to show that H2(QΣ/K∞, Qp/Zp) has Λ-corank 0.

Now H1(QΣ/K∞, Qp/Zp) = Hom(Gal(MΣ
∞/K∞),Qp/Zp). Here

MΣ
∞ denotes the maximal, abelian pro-p extension of K∞ contained in

QΣ. One can regard Gal(MΣ
∞/K∞) as a Λ-module. According to a

well-known theorem of Iwasawa, the Λ-rank of Gal(MΣ
∞/K∞) is equal

to r2(K), the number of complex primes of K. (See Theorem 17 in [22]
for the case where Σ is the set of primes Σ0 lying above p or ∞. For
larger Σ, one can use the fact that there are only finitely many primes
of K∞ lying above primes in Σ − Σ0 to show that Gal(MΣ

∞/M
Σ0
∞ ) has

finite Zp-rank and hence is a torsion Λ-module.) Thus, the ΛO-corank
of H1(QΣ/K∞, Qp/Zp) is r2(K). Again, the Poitou-Tate Duality The-
orems imply that the Euler-Poincaré characteristic (which is defined as
the alternating sum of the ΛO-coranks of the H

i(QΣ/K∞,Qp/Zp)’s for
0 ≤ i ≤ 2) is equal to −r2(K). It follows that H2(QΣ/K∞, Qp/Zp)
indeed has ΛO-corank 0.

If p is odd, then Proposition 4 in [12] asserts that the Pontryagin
dual of H2(QΣ/Q∞, D) is a free Λ-module. Since its rank is 0, it must
vanish. Hence H2(QΣ/Q∞, D) = 0. By considering the restriction map
to an imaginary quadratic extension of Q∞, the argument in [12] shows
that H2(QΣ/Q∞, D) has exponent 1 or 2 when p = 2. ■
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One other basic result about the structure of H1(QΣ/Q∞, D) and
a ΛO-modulec oncerns the phenomenon of purity, namely that the tor-
sion submodule of the Pontryagin dual of that ΛO-module has support
which is purely of codimension 1. This is the content of the following
proposition.

Proposition 2.9. Assume that p is odd. Then the Pontryagin dual of
H1(QΣ/Q∞, D) has no nontrivial, finite ΛO-submodules.

Proof. This follows immediately from Proposition 5 in [12], the crucial
assumption being that H2(QΣ/Q∞, D) vanishes. If the image of ρ has
order prime to p, one could alternatively use the fact that the Λ-module
Gal(MΣ

∞/K∞) has no nontrivial, finite Λ-submodules. This is a con-
sequence of Theorem 18 in [22]. See also Theorem 11.3.11, part (i), in
[27], where the assertion is formulated equivalently in terms of projective
dimension.

■

§3. Selmer groups for Artin representations 1

We will prove Theorem 1 in this section. More generally, we prove
the finiteness of the Selmer group over Qn for all n ≥ 0. Suppose that ρ
is an irreducible Artin representation of GQ over F satisfying Hypothesis
A in the introduction. Since d+ = 1, one sees easily that ρ is absolutely
irreducible. We assume that ρ factors through ∆ = Gal(K/Q), where
K is a finite Galois extension of Q of degree prime to p. We consider
the Selmer groups Sχ,ε(Qn) for all n ≥ 0. The definition of the above
Selmer groups can be described as follows. As usual, the description
of the local condition at a prime ν of a number field of residue field
characteristic ℓ always implicitly involves choosing a fixed embedding of
Q into Qℓ which induces the prime ν on the number field. The Selmer
group is independent of those choices.

If ℓ is any finite prime and ν is a prime of Qn lying over ℓ, we denote
the completion of Qn at ν by Qn,ν . If ν is a prime of Q∞ lying over ℓ,
then we let Q∞,ν =

⋃
n≥0 Qn,ν . Note that if ℓ 6= p, then Q∞,ν ⊂ Qunr

ℓ .
For such a prime ℓ, we define

Hℓ(Qn, D) =
∏
ν|ℓ

Im
(
H1(Qn,ν , D)→ H1(Qunr

ℓ , D)
)
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for all n ≥ 0. There is a unique prime π of Q∞ lying over p. Thus, our
chosen embedding of Q into Qp induces π on Q∞. Let p be the prime
of K induced by that embedding. We then define

(5) Hp(Qn, D) = Im
(
H1(Qn,π, D)→ H1(Qunr

n,π , D/D
(εp)

)
.

We can then define the Selmer groups to be considered by

(6) Sχ,ε(Qn) = Ker
(
H1(QΣ/Qn, D) →

∏
ℓ∈Σ

Hℓ(Qn, D)
)
.

for any n ≥ 0. Here Σ is a finite set of primes of Q containing p and
∞ chosen so that K ⊂ QΣ. The global-to-local map occurring in this
definition is defined by the various restriction maps. Since we are taking
p to be odd, the 1-cocycle classes are certainly trivial at the archimedean
primes of Qn. And so the product in (6) is just over the nonarchimedean
primes in Σ.

Note that if χ is trivial, then εp is trivial and D(εp) = D. It is then
obvious that

(7) Hom(Gal(Q∞/Qn), D) ⊆ Sχ,ε(Qn)

and this Selmer group is therefore infinite. Actually, one can easily show
that equality holds in (7). However, as we stated in the introduction, we
are assuming throughout this paper that χ is nontrivial. We will now
prove the following result.

Proposition 3.1. Assume that Hypothesis A holds. Then Sχ,ε(Qn) is
finite for all n ≥ 0.

Proof. Since p ∤ [K : Q], we have K ∩Qn = Q. Let Kn = KQn, the
n-th layer of the cyclotomic Zp-extension of K. Then we can identify
Gal(Kn/Qn) with ∆ and Gal(Kn/K) with Gal(Qn/Q), which in turn
can be identified with Γ/Γn. Here Γn = Γp

n

= Gal(Q∞/Qn). Let
∆n = Gal(Kn/Q). We have a canonical isomorphism ∆n

∼= ∆× Γ/Γn.
Each prime p of K lying over p is totally ramified in Kn/K. Let pn
be the unique prime of Kn lying over p and let Un,p denote the group
of principal units in the completion of Kn at pn. The decomposition
subgroups of Gal(Kn/Qn) and ∆n for pn are then identified with ∆p

and ∆p × Γ/Γn, respectively. Both of these decomposition groups act
on Un,p. There is a natural action of ∆n on

Un,p =
∏
p|p

Un,p .
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As in Section 2, we have a natural ∆n-equivariant map

λn,p : Un ⊗Z Zp → Un,p ,

where Un is the group of units of Kn which are principal units at pn for
all p|p. The image of λn,p will be denoted by Un,p. It is just the closure
of the image of Un under the natural diagonal map from Un into Un,p.

We consider the Selmer groups Sχ,ε(Qn) for n ≥ 0. The restriction
map

H1(Qn, D) → H1(Kn, D)∆ = Hom∆(G
ab
Kn
, D) ,

is an isomorphism and the image of Sχ,ε(Qn) under that map is con-
tained in Hom∆(Gal(Mn/Kn), D), where Mn is the maximal abelian
pro-p extension of Kn unramified outside of the set of primes lying over
p. This assertion captures the local conditions defining Sχ,ε(Qn) at all
primes ℓ 6= p. Suppose that ξ ∈ Hom∆(Gal(Mn/Kn), D). Noting that
the local degree [Kn,pn

: Qn,π] is prime to p, one sees that ξ is in the
image of Sχ,ε(Qn) if and only if the image of the inertia subgroup In,p
of Gal(Mn/Kn) for pn under ξ is contained in D(εp). Note that if this
condition is satisfied for one p|p, it is satisfied for all those p’s. Also,
In,p is ∆p-invariant. Now we can extend the map ξ to a ∆-equivariant
map

ξO : Gal(Mn/Kn)O → D ,

where the subscript O here (and elsewhere) denotes the tensor product
over Zp with O, a ring which is finite and flat over Zp. The map ξO
is continuous and O-linear. Furthermore, with this notation, we have a
∆p-decomposition

In,p,O = I
(εp)
n,p,O × Jn,p,O

where Jn,p,O is the direct product of all of the ∆p-components of In,p,O
apart from the εp-component. In terms of this decomposition, ξ is in the
image of Sχ,ε(Qn) under the restriction map if and only if ξO

(
Jn,p,O

)
= 0

for one (and hence for all) primes p lying over p. Thus, the Selmer condi-
tion for ξ is that ξO factors through the quotient Gal(Mn/Kn)O

/
Jn,p,O,

where Jn,p,O denotes the O-submodule of Gal(Mn/Kn)O generated by
all the Jn,p,O’s for p|p.

For each p|p, we have Un,p,O = U (εp)
n,p,O × Vn,p,O, where the second

factor is the direct product of the ∆p-components of Un,p,O apart from

the εp-component. We then have Un,p,O = U [ε]
n,p,O × Vn,p,O, where we
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use the following notation:

U [ε]
n,p,O =

∏
p|p

U (εp)
n,p,O , Vn,p,O =

∏
p|p

Vn,p,O

The projection map from Un,p,O to U [ε]
n,p,O will be denoted by πn,ε. We

should point out that ∆n acts naturally on Un,p,O and that both U [ε]
n,p,O

and Vn,p,O are invariant under the action of ∆n. The map πn,ε is ∆n-
equivariant and O-linear.

Let Ln denote the p-Hilbert class field of Kn, the maximal, abelian,
unramified p-extension of Kn. We have Kn ⊆ Ln ⊂ Mn. Class field
theory gives an exact sequence

(8) 1→ Un,p → Un,p
α→Gal(Mn/Kn)→ Gal(Ln/Kn)→ 1 .

The image of Un,p (as a factor in Un,p) under the reciprocity map α
is In,p. Tensoring the above exact sequence with O, the O-submodule
Jn,p,O of Gal(Mn/Kn)O is the image of Vn,p,O under the map αO . The
above observations then give us the obvious inclusion

H1
unr(Qn, D) ⊆ Sχ,ε(Qn)

as well as the following canonical isomorphism

Sχ,ε(Qn)
/
H1
unr(Qn, D) ∼= HomO[∆]

(
Un,p,O

/
Vn,p,OUn,p,O, D

)
.

Note that Gal(Qn/Q) = Γ/Γn acts naturally on H1
unr(Qn, D) and

Sχ,ε(Qn). Also, since ∆n is identified with ∆ × Γ/Γn, there is also
an action of Γ/Γn on the second group. The isomorphism is Γ/Γn-
equivariant.

The restriction map defines an isomorphism

H1
unr(Qn, D) ∼= Hom∆(Gal(Ln/Kn), D)

and this group is finite. We also have a canonical isomorphism

Un,p,O
/
Vn,p,OUn,p,O ∼= U [ε]

n,p,O

/
πn,ε

(
Un,p,O

)
as O[∆n]-modules. For brevity, we will denote πn,ε

(
Un,p,O

)
by U

[ε]

n,p,O.
Thus,

U
[ε]

n,p,O = Im
(
πn,ε ◦ λn,p,O

)
.

It is an O[∆n]-submodule of U [ε]
n,p,O.
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In summary, Sχ,ε(Qn) contains the finiteO-submoduleH1
unr(Qn, D)

and the corresponding quotient is HomO[∆]

(
U [ε]
n,p,O

/
U

[ε]

n,p,O, D
)
. In par-

ticular, Sχ,ε(Qn) is finite if and only if (U
[ε]

n,p,O)
(χ) has finite index in(

U [ε]
n,p,O

)(χ)
. We will verify this by showing that both O-modules have

the same O-rank. To have a more compact notation, we will denote the

χ-components (U
[ε]

n,p,O)
(χ) and

(
U [ε]
n,p,O

)(χ)
by U

[ε](χ)

n,p,O and U [ε](χ)
n,p,O , respec-

tively.

Let µn,p denote the torsion subgroup of Un,p. The p-adic log map
on Un,p is Gal(Kn/Qp)-equivariant and its image is open in the additive
group of Kn. Its kernel is µn,p. Thus, Un,p ⊗Zp

Qp is isomorphic to the
regular representation of Gal(Kn/Qp) over Qp. Recall that Gal(Kn/Qp)
is identified with ∆p × Γ/Γn. Since εp is 1-dimensional, it follows that

U (εp)
n,p,O⊗OF is isomorphic to the regular representation of Γ/Γn over F .

In particular, one sees that the rankO
(
U (εp)
n,p,O

)
= pn.

A subscript F will indicate tensoring over O with F . For example,
we denote Un,p,O ⊗O F by Un,p,F . With this notation, we have

U [ε]
n,p,F =

∏
p|p

U (εp)
n,p,F .

As a representation space for ∆n = ∆ × Γ/Γn over F , one can view

U [ε]
n,p,F as an induced representation. For this purpose, we single out

one choice of p|p as in the introduction. The decomposition subgroup of

∆n for p is ∆p × Γ/Γn, which we denote by ∆n,p. Furthermore, U (εp)
n,p,F

is a representation space for ∆n,p of dimension pn and is isomorphic
to εp ⊗F σn, where σn denotes the regular representation of Γ/Γn over
F . We denote this representation of ∆n,p more briefly by εpσn. We
can also regard σn as a representation of ∆n over F factoring through
∆n/∆. Then we have

U [ε]
n,p,F

∼= Ind∆n

∆n,p

(
εpσn

) ∼= Ind∆n

∆n,p

(
εp
)
⊗F σn .

One can regard Ind∆n

∆n,p

(
εp
)
as the representation Ind∆∆p

(
εp
)
composed

with the restriction map ∆n → ∆.
Since εp occurs with multiplicity 1 in χ|∆p

, Frobenius Reciprocity

implies that ρ occurs with multiplicity 1 in Ind∆∆p

(
εp
)
. Now F is gen-

erated over Qp by roots of unity of order prime to p and hence is un-
ramified. The irreducible representations of Γ/Γn over F are τj for
0 ≤ j ≤ n, where τj has kernel Γj/Γn. Then τj has degree dj = pj−pj−1
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for 1 ≤ j ≤ n and degree d0 = 1 for j = 0. We have

σn ∼=
n⊕
j=0

τj

which has degree pn. These remarks imply that each of the irreducible

representations ρ ⊗ τj occurs in U [ε]
n,p,F with multiplicity 1. These are

precisely the irreducible constituents in U [ε](χ)
n,p,F which therefore has F-

dimension dpn. In contrast, recall that Un,p,F is isomorphic to the regu-
lar representation of ∆n over F . The multiplicity of each ρ⊗τj in Un,p,F
is d and therefore U (χ)

n,p,F has F-dimension d2pn.
Now consider the ∆n-representation space Un,F = Un ⊗Z F . The

absolutely irreducible constituents φ of each σn are 1-dimensional. Since
Qn is totally real, each such φ is an even character. Hence d+(χφ) = 1
and hence χφ occurs with multiplicity 1 in Un⊗ZQp. It follows that χτj
occurs with multiplicity 1 in Un,F for each j, 0 ≤ j ≤ n. Let eχτj be the
idempotent for χτj in F [∆n] (and actually in the center of F [∆n]). Then
eχτj does not annihilate Un,F . Furthermore, if one restricts χτj to ∆,
one obtains a multiple of χ. Suppose that p is a prime of K lying above
p. It follows that εp occurs as a constituent in χτj |∆p

. Let eεp ∈ F [∆p]
be the corresponding idempotent. We can regard eεp as an element of
F [∆n]. For 0 ≤ j ≤ n, let θj = eεpeχτj . Thus θj ∈ F [∆n]. Also, the

coefficients of θj are in Q. Furthermore, the above remarks show that θj
does not annihilate Un,F . According to remark 2.6, it follows that the
projection of Im(λn,p,F )

θj to Un,p.F is nontrivial. Note that the image

of that projection is actually contained in U (εp)
n,p,F .

The above remarks show that, for 0 ≤ j ≤ n, there exists an element
αn,j of Un such that βn,j = λn,p(αn)

θj has the following properties.

Clearly, βj,n is in U (χ)
n,p,F for the action of ∆ and, more precisely, in the

χτj component of Un,p,F for the action of ∆n. Also, the image of βj,n
under the composite map

Un,p,F → U [ε]
n,p,F → U (εp)

n,p,F

is nontrivial. Here the first map is πn,ε,F and the second map is the
obvious projection map. It follows that πn,ε,F (βj,n) is nontrivial. It

must be in the χτj-component of U [ε]
n,p,F . Since χτj has multiplicity

1 in U [ε]
n,p,F , the image of the χτj-component of Un,F under the map

πn,ε,F ◦ λn,p,F must coincide with the χτj-component of U [ε]
n,p,F . Since

this is so for all j, it follows that the image of U
(χ)
n,F under that map is
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precisely U [ε](χ)
n,p,F . This proves that the image of U

(χ)
n,O under πn,ε ◦ λn,p,O

has the same O-rank as U [ε](χ)
n,p,O and hence has finite index. That means

that U
[ε](χ)

n,p,O indeed has finite index in U [ε](χ)
n,p,O . ■

One of the key observations in the proof of Proposition 3.1 is the
following result concerning the structure of Sχ,ε(Qn) as an O[Γ

/
Γn]-

module.

Proposition 3.2. We have an exact sequence of finite O[Γ/Γn]-modules

0→ H1
unr(Qn, D)→ Sχ,ε(Qn)→ HomO[∆]

(
U [ε](χ)
n,p,O

/
U

[ε](χ)

n,p,O, D
)
→ 0 .

In the classical case where d = d+ = 1, χ is just an even character of
Gal(K/Q) of order prime to p, where K is a cyclic extension of Q. One
can omit the ε everywhere in this case because χ determines ε. Note
that χ does not occur as a constituent in Vn,p,F when d = 1. The exact
sequence in Proposition 3.2 follows immediately from (8) by tensoring
with O and taking the χ-component of each term.

§4. Selmer groups for Artin representations 2

We will prove Theorem 2 in this section. Here Q∞ =
⋃
n≥0 Qn is

the cyclotomic Zp-extension of Q and Qn is the subfield of degree pn

over Q. We can define the Selmer group over Q∞ as a direct limit

Sχ,ε(Q∞) = lim−→
n

Sχ,ε(Qn)

where the direct limit is induced by the restriction maps

H1(QΣ/Qn, D)→ H1(QΣ/Qm, D) .

for m ≥ n ≥ 0. Alternatively, we can define this Selmer group as the
kernel of a global-to-local map

Sχ,ε(Q∞) = ker
(
H1(QΣ/Q∞,D)→

∏
ℓ∈Σ

Hℓ(Q∞, D)
)
.

Note that, for ℓ 6= p, Gal(Qunr
∞,ν

/
Q∞,ν) has profinite order prime to p

and so an element in H1(QΣ/Q∞, D) is locally unramified at ν|ℓ if and
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only if it is locally trivial. Thus, we can define

Hℓ(Q∞, D) =
∏
ν|ℓ

H1(Q∞,ν , D)

for ℓ 6= p. For ℓ = p, one defines

Hp(Q∞, D) = Im
(
H1(Q∞,π, D)→ H1(Qunr

∞,π, D/D
(εp))

)
= H1(Q∞,π, D)/L(Q∞,π, D)

where L(Q∞,π, D) is a ΛO-submodule of H1(Q∞,π, D) which sits in the
exact sequence

0→ H1(Q∞,π, D
(εp))→ L(Q∞,π, D)→ H1

unr(Q∞,π, D
′)→ 0 .

Here we write D′ for D/D(εp) for brevity and H1
unr(Q∞,π, D

′) denotes
the kernel of the restriction map H1(Q∞,π, D

′)→ H1(Qunr
∞,π, D

′). Also,

since p ∤ |∆p|, we have D ∼= D(εp) ⊕ D′. This implies the injectivity
in the above sequence and also implies that the above sequence splits.
Thus, L(Q∞,π, D) can be identified with

H1(Q∞,π, D
(εp))⊕H1

unr(Q∞,π, D
′) ,

considered in the obvious way as a ΛO-submodule of H1(Q∞,π, D).

Our study of Sχ,ε(Q∞) will be based on the following control theo-
rem.

Proposition 4.1. Assume that Hypothesis A is satisfied and that χ is
not the trivial character. For any n ≥ 0, we have an exact sequence of
O[Γ/Γn]-modules:

0→ Sχ,ε(Qn)→ Sχ,ε(Q∞)Γn → H0(∆p, D/D
(εp))→ 0 .

Note that H0(∆p, D/D
(εp)) ∼=

(
F/O

)t
, where t is the multiplicity of

the trivial representation of ∆p in V/V (εp) and the action of Γ/Γn on(
F/O

)t
is trivial.

Proof. We exclude the case where χ is the trivial character. We apply
the snake lemma to the following commutative diagram.

Sχ,ε(Qn) //

sn

��

H1(QΣ/Qn, D)
ϕn //

hn

��

∏
ℓ∈Σ Hℓ(Qn, D)

rn

��
Sχ,ε(Q∞, D)Γn // H1(QΣ/Q∞,D)Γn // ∏

ℓ∈Σ Hℓ(Q∞, D)Γn
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where the vertical maps are the obvious restriction maps and ϕn is the
global-to-local map defining Sχ,ε(Qn). For our application of the snake
lemma, we need the obvious fact that the first maps on each row are
injective and also the fact that ϕn is surjective, which we prove below.

We first show that the O-corank of H1(QΣ/Qn, D) is equal to
d−pn = (d− 1)pn. To see this, we have an isomorphism

H1(QΣ/Qn, D) ∼= H1(QΣ/Q, Ind
Q
Qn

(D))

by Shapiro’s Lemma. One can identify IndQQn
(D) with D ⊗O O[Γ/Γn]

and its O-corank is dpn. Let Fn = F(µpn) and let On denote the ring
of integers in that local field. Tensoring with On over O, it suffices to
show that H1

(
QΣ/Q, D ⊗O On[Γ/Γn]

)
has On-corank equal to d−pn.

Now IndQQn
(V )⊗F Fn is isomorphic to the direct sum of the irreducible

representations ρ⊗φ over Fn, where φ varies over the characters of Γ/Γn,
all of which are d-dimensional and have d+ = 1, d− = d−1. For brevity,
we let Vφ and Tφ denote the corresponding Fn-representation spaces and
Galois invariant On-lattices. Let Dφ = Vφ/Tφ. Propositions 2.1 and 2.2
and corollary 2.7 imply that the On-corank of H1(QΣ/Q, Dφ) is d

− for
all φ. Hence the On-corank of H1(QΣ/Q,⊕φDφ) is d−pn. There is a
∆-equivariant surjective homomorphism from D ⊗ On[Γ/Γn] to ⊕φDφ

with finite kernel. It follows that the On-corank in question is indeed
equal to d−pn.

We now show that Hp(Qn, D) also has O-corank equal to d−pn

and that Hℓ(Qn, D) is finite for all ℓ ∈ Σ, ℓ 6= p. We use the Poitou-
Tate formulas for local Euler-Poincaré characteristics . Let T ∗ denote
the compact Galois module Hom(D,µp∞). It is free as an O-module.
For any prime ℓ, let L be a finite extension of Qℓ. Then Poitou-Tate
duality implies that H2(L, D) is dual to H0(L, T ∗). Since the action of
GL on D factors through a finite quotient and the action on T ∗ factors
through an infinite quotient, it follows that H0(L, T ∗) = 0 and hence
H2(L, D) = 0. The only assumption we need is that GL acts on D
through a finite quotient group.

Recall that Hp(Qn, D) is the image of the composite map

H1(Qn,π, D) −→ H1(Qn,π, D
′) −→ H1(Qunr

n,π , D
′) ,

where D′ denote D/D(εp) as before. The first map is easily seen to be
surjective and so we must just consider the O-corank of the image of the
second map. Now corankO(D

′) = d − 1 = d−. As above, we also have
H2(L, D′) = 0 for any finite extension L of Qp. The Euler-Poincaré
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characteristic formulas for D′ imply that

corankO
(
H1(Qn,π, D

′)
)
= d−pn + corankO

(
H0(Qn,π, D

′)
)

where π is the unique prime above p in Qn (or Q∞ as before). Here
we are using the vanishing of H2(Qn,π, D

′). For brevity in the following
discussion, if L is any extension of Qp, then we denote H0(L, D′) simply
by D′(L). Since GQp acts on D′ through a finite quotient of order prime
to p, it follows that D′(L) = D′(Qp) whenever L is a finite p-extension
of Qp, or even a pro-p extension of Qp. In particular, we have

D′(Qn,π) = D′(Qp) ∼= (F/O)t

which is O-divisible and has O-corank t. Letting Qunr,p
n,π denote the

unramified Zp-extension of Qn,π, we also have

D′(Qunr,p
n,π ) = D′(Qp) .

One sees easily that the kernels of the maps

H1(Qn,π, D
′)→ H1(Qunr

n,π , D
′), H1(Qn,π, D

′)→ H1(Qunr,p
n,π , D′)

coincide. The inflation-restriction sequence implies that this kernel is
isomorphic to

H1
(
Qunr,p
n,π /Qn,π, D

′(Qunr,p
n,π )

)
= H1

(
Qunr,p
n,π /Qn,π, D

′(Qp)
)

= Hom
(
Gal((Qunr,p

n,π /Qp), D
′(Qp)

)
.

Since Gal((Qunr,p
n,π /Qp) has Zp-rank 1, it follows that this kernel has O-

corank t and therefore that Hp(Qn, D) indeed has O-corank equal to
d−pn.

Now suppose ℓ 6= p and let ν be a prime of Qn above ℓ. In this case,
we have the formula

corankO
(
H1(Qn,ν , D)

)
= corankO

(
H0(Qn,ν , D)

)
.

This O-corank could be positive. But, just as above, the inflation-
restriction sequence shows that the O-corank of the kernel of the re-
striction map H1(Qn,ν , D)→ H1(Qunr

n,ν , D) is the same as the O-corank
of H0(Qn,ν , D) and hence the image of the restriction map is finite. The
finiteness of Hℓ(Qn, D) follows.

Thus, both H1(QΣ/Qn, D) and
∏
ℓ∈Σ Hℓ(Qn, D) have the same

O-corank. Furthermore, the kernel of the global-to-local map ϕn is
Sχ,ε(Qn) which is finite by Proposition 3.1. Therefore, the cokernel
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of ϕn has O-corank 0 and must be finite. This is one of the hypotheses
in Proposition 3.2.1 in [17]. Another hypothesis is called LEO(D) there,
but that follows immediately from corollary 2.7 and Proposition 2.2. A
third hypothesis is that no subquotient of D[p] ∼= T/pT is isomorphic
to µp as a GQn -module. However, this is satisfied because ∆ has order
prime to p, hence the reduction of ρ modulo p is still irreducible as a
representation space over the residue field O/(p), and has no subquo-
tient which is odd. Consequently, Proposition 3.2.1 in [17] implies that
ϕn is surjective.

We can now apply the snake lemma to the commutative diagram at
the beginning of this proof. The exact sequence in Proposition 4.1 is a
statement about ker(sn) and coker(sn). First of all, note that

ker(hn) ∼= H1
(
Γn,H

0(Q∞, D)
)
.

Since the action of GQn
on D factors through a quotient of order prime

to p and χ is nontrivial and irreducible, it follows that

H0(Q∞, D) = H0(Q, D) = 0 .

Therefore, hn is injective, and hence so is sn. Also, since Γn ∼= Zp, it
has p-cohomological dimension 1. This implies that coker(hn) = 0. The
snake lemma then implies that coker(sn) ∼= ker(rn). For each ℓ ∈ Σ,
consider the restriction map

rn,ℓ : Hℓ(Qn, D) → Hℓ(Q∞, D) .

Now, if ℓ 6= p, then ℓ is unramified in Q∞/Q. It follows that, for ν|ℓ,
Qunr
n,ν = Qunr

∞,ν . This implies that rn,ℓ is injective.
We now determine ker(rn,p). We use the notation

Γunrn = Gal(Qunr,p
n,π /Qn,π), Γcycn = Γn = Gal(Q∞,π/Qn,π) .

Just as before, the kernel of the map

H1(Qn,p, D
′) −→ H1(Q∞,πQ

unr
n,π , D

′)

coincides with the kernel of the map

H1(Qn,p, D
′) −→ H1(Q∞,πQ

unr,p
n,π , D′) .

Furthermore, this kernel is isomorphic to the following O-modules

H1
(
Q∞,πQ

unr,p
n,π

/
Qn,π, D

′(Qp)
) ∼= Hom

(
Γcycn × Γunrn , D′(Qp)

)
∼= Hom

(
Γcycn , D′(Qp)

)
×Hom

(
Γunrn , D′(Qp)

)
.
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The second factor is the kernel of the restriction map

H1(Qn,π, D
′)→ H1(Qunr

n,π , D
′)

and therefore ker(rn,p) is isomorphic to the first factor, and hence iso-
morphic (non-canonically) to D′(Qp) = H0(∆p, D

′). It is a cofree
O-module of corank t and Γ/Γn acts trivially. We have proved that sn
is indeed injective and has cokernel as stated in the proposition. ■

As always, we exclude in the above proposition the case where χ is
the trivial character. In that case, one easily shows that Sχ,ε(Q∞) = 0.
This is so even though Sχ,ε(Qn) is infinite for all n ≥ 0 according to (7).
And so, ker(sn) is infinite when χ is the trivial character.

The next result is Theorem 2 in the introduction.

Proposition 4.2. Suppose that Hypothesis A holds. Then Sχ,ε(Q∞) is
a cofinitely generated, cotorsion ΛO-module.

Proof. By definition, Sχ,ε(Q∞) is a ΛO-submodule of H1(QΣ/Q∞, D)
and hence its Pontryagin dual Xχ,ε is a quotient of the Pontryagin
dual of H1(QΣ/Q∞, D) as a ΛO-module. Proposition 3 in [12] as-
serts that H1(QΣ/Q∞, D) is cofinitely generated as a Λ-module, where
Λ = Zp[[Γ]]. Hence its Pontryagin dual is finitely generated as a Λ-
module and hence as a ΛO-module. Therefore, Xχ,ε is also a finitely
generated ΛO-module.

If X is a finitely generated ΛO-module of rank r, then

rankO(XΓn
) = rpn +O(1)

as n→∞. If S is the Pontryagin dual of X, then

corankO(S
Γn) = rankO(XΓn

) .

Thus, r = 0 if and only if corankO(S
Γn) is bounded. Considering S =

Sχ,ε(Q∞), Propositions 3.1 and 4.1 imply the boundedness of these O-
coranks. Hence r = 0 and that means that Sχ,ε(Q∞) is indeed ΛO-
cotorsion. ■

Remark 4.3. This remark concerns so-called trivial zeros or exceptional
zeros. Suppose that the trivial character of ∆p occurs as a constituent
in χ|∆p

with multiplicity t, but that εp is nontrivial. Proposition 4.1

then implies that Sχ,ε(Q∞)Γ is infinite and that its O-corank is equal
to t. Thus, (Xχ,ε)Γ has O-rank t. As in the introduction, let θχ,ε
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be a generator of the characteristic ideal of the ΛO-module Xχ,ε. If

φ : Γ→ Q
×
p is a continuous group homomorphism, then we can extend

φ uniquely to a continuous O-algebra homomorphism φ : ΛO → Qp.
In particular, if φ0 is the trivial character of Γ, then one obtains a
continuous surjective O-algebra homomorphism φ0 : ΛO → O whose
kernel is generated by γ0− 1. Here γ0 is a fixed topological generator of
Γ. The fact that (Xχ,ε)Γ has O-rank t implies that (γ0−1)t divides θχ,ε
in ΛO. Thus, φ0(θχ,ε) = 0. One would say that φ0 is a zero of θχ,ε of
order ≥ t. It seems reasonable to conjecture that the order of vanishing
is exactly t.

As usual in Iwasawa theory, the O-algebra ΛO is isomorphic to the
formal power series ring O[[T ]]. One defines such an isomorphism by
sending γ0 − 1 to T . Thus, θχ,ε corresponds to a power series fχ,ε(T )
in O[[T ]]. Under the above assumption about χ|∆εp

, it follows that

fχ,ε(T ) = T tgχ,ε(T ), where gχ,ε(T ) ∈ O[[T ]]. The conjecture is that
gχ,ε(0) 6= 0.

One interesting example is discussed in detail in [13], pages 227-231.
The representation ρ in that example is the 2-dimensional irreducible
representation of ∆ = Gal(K/Q), where K is the splitting field over Q
for x3 − x + 1. In fact, ∆ ∼= S3 and ρ is realizable over Q. We can
take F = Qp and O = Zp. We take p = 23. Then ∆p is a subgroup
of order 2. In [13], the case where εp is the nontrivial character of ∆p

is discussed. Then ∆p acts trivially on V/V (εp) and t = 1. It is shown
there that Sχ,ε(Q∞) ∼= Qp/Zp. Of course, Γ acts trivially. And so, the
characteristic ideal of Xχ,ε is generated by T . The calculation in [13]
is rather subtle and depends on calculating something which one could
call the L-invariant for the representation ρ and p = 23. In particular,
the L-invariant turns out to be nonzero. It would be tempting to extend
such a calculation to more general ρ’s satisfying Hypothesis A, but we
have done nothing in that direction.

Remark 4.4. One can ask whether H1
unr(Q∞, D)Γ can be infinite. Let

t be as in remark 4.3. If t = 0, then Sχ,ε(Q∞)Γ is finite and hence so
is H1

unr(Q∞, D)Γ. Suppose now that t = 1. Let ε0 denote the triv-
ial character of Gal(K/Qp). Hypothesis A is then satisfied and hence
Sχ,ε0(Q∞) is ΛO-cotorsion by Proposition 4.2. Actually, Proposition 4.1
implies that Sχ,ε0(Q∞)Γ is finite. Since H1

unr(Q∞, D) ⊆ Sχ,ε0(Q∞), it
follows that H1

unr(Q∞, D)Γ is finite in that case too. However, if t ≥ 2,
then it turns out that H1

unr(Q∞, D)Γ is infinite. Its O-corank will be at
least t− 1. We will discuss this in the sequel to this paper.
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Another basic result concerning Sχ,ε(Q∞) is the following purity
result concerning the ΛO-module Xχ,ε and asserts equivalently that
Sχ,ε(Q∞) is an almost divisible ΛO-module in the sense of [16].

Proposition 4.5. Assume that Hypothesis A is satisfied. Then the
Pontryagin dual Xχ,ε(Q∞) of Sχ,ε(Q∞) has no nontrivial, finite ΛO-
submodules.

Proof. This result follows from 4.1.1 in [18]. However, that proposition
is formulated in terms of a Galois representation over ΛO instead of over
O, namely the so-called cyclotomic deformation of ρ discussed in Section
3 of [14]. Proposition 3.2 in that paper provides the ΛO-module isomor-
phism between Sχ,ε(Q∞) and the Selmer group over Q associated to the
cyclotomic deformation of ρ. It is not difficult to verify the hypotheses
(some of which were already discussed in proving the surjectivity of ϕn
in the proof of Proposition 4.1.) One hypothesis is that L(Q∞,π, D)
(which was defined above) is almost divisible as a ΛO-module. This just
means that L(Q∞,π, D) has no proper ΛO-submodules of finite index.
Now H1

unr(Q∞,π, D
′) is isomorphic to (F/O)t and is divisible as an O-

module. Furthermore, H1(Q∞,π, D
(εp)) is also divisible as an O-module

because D(εp) is divisible and GQ∞,π
has p-cohomological dimension 1.

■

Remark 4.6. The conclusion in Proposition 4.5 means that Sχ,ε(Q∞)
is an almost divisible ΛO-module. One variant of the Selmer group
Sχ,ε(Q∞) is the so-called strict Selmer group Sstrχ,ε(Q∞) where we con-

tinue to require elements of H1(QΣ/Q∞, D) to be locally unramified at
all ν|ℓ for ℓ 6= p, but for ℓ = p, we require those elements to have trivial
image in H1(Q∞,π, D

′) (rather than in H1(Qunr
∞,π, D

′)). However, this
just means that we replace

L(Q∞,π, D) = H1(Q∞,π, D
(εp))⊕H1

unr(Q∞,π, D
′)

by Lstr(Q∞,π, D) = H1(Q∞,π, D
(εp)). Since this is an almost divisible

ΛO-module, it again follows that it Sstrχ,ε(Q∞) is almost divisible as a
ΛO-module. In Section 5, it will be useful to know the same thing for
the variant where we replace L(Q∞,π, D) by

L′(Q∞,π, D) = H1(Q∞,π, D
(εp))

ΛO−div
⊕ H1

unr(Q∞,π, D
′) .

Here, for a discrete ΛO-module H, we let H
ΛO−div

denote the max-
imal ΛO-divisible submodule of H. As we point out in Section 5,
H1(Q∞,π, D

(εp)) fails to be ΛO-divisible just in the case where ε = ω.
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We denote the corresponding Selmer group by S′
χ,ε(Q∞). Since the

ΛO-module L′(Q∞,π, D) is almost divisible, it will again follow that
S′
χ,ε(Q∞) is also an almost divisible ΛO-module.

There is one case where one can prove the analogue of Proposition
4.1 even if d+ 6= 1, namely the case where d+ = d − 1. Then d− = 1.
We use the same notation as before, i.e., ρ, V, T,D,F ,O, etc.. Just as in
Hypothesis A, we will assume that V has a ∆p-invariant subspace Wp

such that dimF (W ) = d+ and that the ∆p-representation spaces W and
V/W have no irreducible constituents in common. Now ∆p acts on V/W
by a character ε′p and the assumption means that ε′p has multiplicity 1 in
V . Let εp = χ− ε′p, which is the character of W as a ∆p-representation

space. We will denote W by V (εp) even though εp is not necessarily an
irreducible character of ∆p. We use a similar notation for D. Thus,

D ∼= D(εp) ⊕D(ε′p), where the two summands have O-coranks d− 1 and
1, respectively. With this notation, we can define Sχ,ε(Q∞) exactly as
in the introduction. It turns out that we can use Proposition 4.2 (for a
different Artin representation) to prove the following result.

Proposition 4.7. Keep the above assumptions. Then Sχ,ε(Q∞) is a
cofinitely generated, cotorsion ΛO-module.

Proof. The fact that the Selmer group is cofinitely generated as a ΛO-
module follows from the fact that the same is true for H1(QΣ/Q, D).
We can assume that µp ⊂ K. Let F(ω) be the 1-dimensional F-
representation space where ∆ acts by character ω. Here ω gives the
action of ∆ on µp and its values are the (p− 1)-st roots of unity (which
are in F). We let U = Hom

(
V, F(ω)

)
which is the underlying F-

representation space for an Artin representation σ factoring through ∆.
Let ψ be the character of σ. Note that d+(ψ) = d−(χ) = 1. Further-
more, the orthogonal complement of W is the ∆p-invariant subspace

U (δp) of U where δp = ωε′−1
p . We let δ denote the corresponding charac-

ter of Gal(K/Qp). Both dimF (U
(δp)) and d+(ψ) are equal to 1. Further-

more, δp is not a constituent in U/U (δp). And so we are in the situation
considered previously. Proposition 3.4 implies that Sψ,δ(Q∞) is a cotor-
sion ΛO-module. We will use arguments in [12] to deduce that Sχ,ε(Q∞)
is also ΛO-cotorsion. In fact, there is a close relationship between the
structures of Sψ,δ(Q∞) and Sχ,ε(Q∞) as ΛO-modules.

The action of GQ on µp∞ is given by ωκ, where ω and κ are
as defined in the introduction. The character κ factors through the
group Γ = Gal(Q∞/Q). We have D = V/T as usual. We define
T ∗ = Hom(D,µp∞), which is a free O-module of rank d = dimF (V ).
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Let V ∗ = T ∗ ⊗O F , and let D∗ = V ∗/T ∗. The representation space
V ∗ of GQ is not an Artin representation. However, if we let F(ωκ) and
F(κ) denote the 1-dimensional vector spaces over F on which GQ acts
by the cyclotomic character ωκ and by κ, respectively, then we have

V ∗ ∼= HomF
(
V, F(ωκ)

) ∼= U ⊗F F(κ) .

We will just write V ∗ ∼= U ⊗ κ which we think of as the twist of the
Artin representation U by κ. We have a filtration 0 ⊂ W ⊂ V and the
orthogonal complements give a filtration on U and on U ⊗ κ. Proposi-
tion 11 in [12] deals with an analogous situation, although the filtrations
used there are defined in a different way. The Selmer groups denoted by
SV/T (Q∞) and SV ∗/T∗(Q∞) in that paper are also defined in terms of
the filtrations, completely analogously to the definitions here. Proposi-
tion 11 implies that if one of those Selmer groups is ΛO-cotorsion, then
so is the other. However, κ factors through Γ = Gal(Q∞/Q) and so
V ∗ ∼= U as a representation space for GQ∞ . It would then follow that
SD∗(Q∞) and Sψ,δ(Q∞) are the same as sets. More precisely, for the
action of Γ, one has SD∗(Q∞) ∼= Sψ,δ(Q∞)⊗κ. Therefore, the fact that
Sψ,δ(Q∞) is ΛO-cotorsion implies the same for SD∗(Q∞) and that in
turn implies that SD(Q∞) = Sχ,ε(Q∞) is ΛO-cotorsion. ■

Remark 4.8. With the notation and assumptions as in Proposition
4.7 and its proof, let Xχ,ε(Q∞), XD∗(Q∞), and Xψ,δ(Q∞) denote the
Pontryagin duals of Sχ,ε(Q∞) = SD(Q∞), SD∗(Q∞), and Sψ,δ(Q∞),
respectively. They are finitely generated, torsion ΛO-modules. Let
θχ,ε, θD∗ , and θψ,δ denote generators for the corresponding characteris-
tic ideals in ΛO. The first two are related (up to a unit) by the involution
ι of the O-algebra ΛO induced by the automorphism γ 7→ γ−1 of Γ. This
is the content of Theorem 2 in [12] whose proof applies without change
to the case at hand. Thus, we could simply chose θχ,ε to be θιD∗ . On
the other hand, we have XD∗(Q∞) ∼= Xψ,δ(Q∞)⊗ κ−1. Thus,

Xψ,δ(Q∞) ∼= XD∗(Q∞)⊗ κ

as ΛO-modules. There is an automorphism of ΛO induced by the map
γ 7→ κ(γ)−1γ. If X is any finitely generated, torsion ΛO-module, that
automorphism send the characteristic ideal of X to the characteristic
ideal of X ⊗ κ. It follows that we can choose θψ,δ so that

φ(θψ,δ) = φκ−1(θD∗) = φ−1κ(θχ,ε)

for all φ ∈ Hom(Γ,Q
×
p ). In particular, if taking φ = κs, we have

(9) κ1−s(θχ,ε) = κs(θψ,δ)
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for all s ∈ Zp. One especially interesting case is when d = 2. Then
d+(χ) and d+(ψ) are both equal to 1. Assume that εp = ω. Then ∆p

acts on U/U (δp) trivially. As discussed in remark 4.3, it follows that
φ0(θψ,δ) = 0. Therefore, taking s = 0 in (9), we find that κ(θχ,ω) = 0
too.

Remark 4.9. We return to the case where d+ = 1. The exact sequence
in Proposition 3.2 can be extended to Q∞ by taking direct limits. One
obtains the following exact sequence of discrete ΛO-modules.

0 −→ H1
unr(Q∞, D) −→ Sχ,ε(Q∞)

−→ HomO[∆]

(
U [ε](χ)
∞,p,O

/
U

[ε](χ)

∞,p,O, D
)
−→ 0.

(10)

The intervening ΛO[∆]-modules in the HomO[∆] term are defined by

U [ε]
∞,p,O =

∏
p|p

U (εp)
∞,p,O , U

[ε]

∞,p,O = lim←−
n

U
[ε]

n,p,O,

where the inverse limits are defined by the norm maps. They are finitely
generated ΛO-modules. One can then take the χ-components of those
modules, although that is unnecessary since the χ-component of D is

D itself. Also, U [ε]
∞,p,O is a direct factor in U∞,p,O and U

[ε]

∞,p,O is the

projection of U∞,p,O = lim←−
n

Un,p,O to that factor.

The term H1
unr(Q∞, D) in (10) can be identified with

HomO[∆]

((
Gal(L∞/K∞)O

)(χ)
, D

)
where L∞ is the maximal abelian unramified pro-p-extension of K∞.
Now Gal(L∞/K∞) is a finitely generated, torsion Λ-module, a famous
theorem of Iwasawa. An immediate consequence is that the Pontryagin
dual of H1

unr(Q∞, D) is a finitely generated, torsion ΛO-module. Let
θunr,χ be a generator of its characteristic ideal. It is worth noting that

the characteristic ideal for the ΛO-module
(
Gal(L∞/K∞)O

)(χ)
is then

generated by θdunr,χ.

One can derive another exact sequence which is somewhat simpler
than (10). It will lead to the interpolation property stated in the intro-
duction under certain assumptions. We will discuss this carefully in the
sequel to this paper and just state it here. Choose a prime p lying above
p. We will use the notation

∣∣ · ∣∣
εp

to denote the composite map

U∞,p,O → U∞,p,O → U (εp)
∞,p,O
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where the two maps are the natural projection maps. The exact sequence
is

0→ H1
unr(Q∞, D)→ Sχ,ε(Q∞)

→ HomO

(
U (εp)
∞,p,O

/∣∣U (χ)

∞,p,O
∣∣
εp
, D(εp)

)
→ 0.

(11)

Note that the HomO term in the above exact sequence is isomorphic to

the Pontryagin dual of U (εp)
∞,p,O

/∣∣U (χ)

∞,p,O
∣∣
εp

as a ΛO-module.

§5. The p-adic L-function of an Artin representation

We will discuss the construction of a p-adic L-function for the rep-
resentation ρ in this section. We assume that d = 2. The construction
relies on Hida theory and on the existence of a 2-variable p-adic L-
function. As before, we choose a finite set Σ of primes containing p and
∞ and all the primes ramified in K/Q. We can then regard ρ as a 2-
dimensional representation of Gal(QΣ/Q). The basic idea is to embed ρ
into a p-adic family of 2-dimensional representations ρk of Gal(QΣ/Q)
for which a p-adic L-function is known to exist, and then take the limit
as ρk tends towards ρ. Roughly speaking, for k ≥ 2, ρk will be the p-
adic representation corresponding to a modular form of weight k which
is ordinary at p and the corresponding p-adic L-function is now classical.
(See [26].)

Since d+ = 1, it follows that ρ is odd. The Artin conjecture then
implies that ρ is associated to a modular form f of weight 1 for Γ1(N),
where N is the Artin conductor of ρ. Thus, f is a normalized newform
of weight 1 with q-expansion f =

∑
anq

n and level N . By work of Lang-
lands, Tunnell, Weil, and Hecke, this is known whenever the image of ρ
inside GL2(O) is a solvable group. In the non-solvable case (i.e., when
ρ is icosahedral), there are also partial results of Buzzard, Dickinson,
Sheppard-Barron, and Taylor. For all of this, see [3] and the references
there. We assume from now on that ρ is modular of level N in the above
sense.

Recall that we have fixed embeddings σ∞ and σp of Q into C and

into Qp, respectively. The coefficients an of f are algebraic integers in

C and can be regarded as elements of Qp. In addition, if q is any prime
and q is a prime of K lying above q, and ∆q denotes the correspond-
ing decomposition subgroup of ∆, then the restriction of a Frobenius
automorphism for q to the maximal subspace of V on which the inertia
subgroup for q acts trivially has trace aq. Thus, the aq’s are in O for



Iwasawa theory for Artin representations I 35

all primes q. Furthermore, for q ∤ N , it is clear that det
(
ρ(Frobq)

)
is in

O×. It follows that an ∈ O for all n ≥ 1.
Recall that T denotes a ∆-invariantO-lattice in V . Since Hypothesis

A is assumed to be satisfied, for our fixed prime p of K lying over p and
our choice of εp, there is an exact sequence

(12) 0→ O(εp)→ T → O(ε′p)→ 0,

of O[∆p]-modules, where εp 6= ε′p. As in the introduction, εp and ε′p
are determined by certain characters ε and ε′ of G = Gal(K/Qp). We
assume at first that ρ is ordinary in the sense that ε′ is unramified.
Then there exists a modular eigenform f1 =

∑
bnq

n of weight 1 with
the property that bn = an if (n, p) = 1, but bp = ε′(p). The form f1
will be a p-stabilized newform in the sense of [33], meaning that it has
level N if p|N or level Np otherwise. If p divides N , then f = f1. Since
the values of ε, and hence ε′, are in O, it follows that the bn ∈ O for all
n ≥ 1.

The maximal ideal of O is pO. Since ρ is absolutely irreducible,
and p ∤ |∆|, it follows that the residual representation ρ obtained by
the canonical reduction map GL2(O) → GL2(O/pO) is also absolutely
irreducible. Furthermore, ρ is also p-distinguished (i.e., the reductions
ε, and ε′ are distinct). Using fundamental ideas due to Hida, Wiles
has constructed a deformation of ρ in this setting, whose description we
briefly recall. For background in Hida’s theory, we refer the reader to
[20], [33], and [7].

(a) The local ring hm: Let h∞ denote Hida’s universal ordinary
Hecke algebra of level M , where M is the prime-to-p part of N . It is a
finite flat algebra over the subring Λ′ = Zp[[Γ

′]], where Γ′ ∼= 1 + pZp,
considered as a subgroup of the group of diamond operators, and so Λ′

is isomorphic to a formal power series ring Zp[[T ]]. Now f1 determines
a maximal ideal m of h∞; we write hm for the completion of h∞ at m.
Since the coefficients of f1 generate the ring O and that ring is generated
by roots of unity of order prime to p, one sees that hm contains O as a
subring. Thus, hm also contains the subring Λ′

O
∼= O[[Γ′]].

(b) The Galois representation ρ̆ : Since ρ is irreducible and p-
distinguished, it follows from the work of Mazur, Ribet, Wiles, and oth-
ers (see [35], Corollary 2 to Theorem 2.1 on page 482) that the localiza-
tion hm is a Gorenstein ring. Hida’s construction then implies that there
exists a representation ρ̆ : Gal(QΣ/Q)→ GL2(hm). Wiles has shown in
[33] that there exists a weight-one prime ideal P1 = Pρ ∈ Spec(hm) such
that ρ̆ specializes to ρ at the point Pρ. If q ∤ Np, then the trace of a
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Frobenius element Frob(q) for a prime above q is given by the Hecke op-
erator Tq regarded as an element of hm. Furthermore, we identify GQp

with a subgroup of GQ by the fixed embedding σp (which determines
p). Let T denote a realization of ρ̆. Then T is a free hm-module of
rank 2 and there exists a GQp -stable hm-submodule T0 ⊂ T such that
T/T0 is unramified at p. Both T0 and T/T0 are free hm-modules of
rank 1. The eigenvalue of Frob(p) on T/T0 is given by the Hecke op-
erator Up. Furthermore, the residual representations for T0 and T/T0

are εp and ε′p, respectively. The determinant of ρ̆ is a homomorphism

Gal(QΣ/Q)→ Λ′×
O .

(c) Specialization: Recall that a point ϕ : R→ Cp of a Λ′-algebra
R is said to be arithmetic of weight k ∈ Z if the restriction ϕ|Λ′ is the O-
algebra homomorphism induced by a character Z×

p → Q
×
p of the form

a 7→ ψ(a)ak, where ψ is a finite-order character. Note that if ϕ has
values in O, then ψ must have order prime to p. For each arithmetic
point ϕk ∈ Spec(hm) of weight k ≥ 2, the specialization of ρ̆ to ϕk is
the representation associated by Deligne to a certain p-ordinary modular
form fk = fk(ϕk).

(d) Λ′-adic forms: Finally, we recall that a Λ′-adic form F of tame
levelM with coefficients in a finite Λ′-algebra R is defined to be a formal
power series

F =
∑

an(F)q
n ∈ R[[q]]

such that, for almost all arithmetic points ϕk ∈ Spec(R) with k ≥ 2,
the specialization F(ϕk) is the q-expansion of a p-stabilized newform of
weight k and level Mpr, for suitable r. We say that the form F contains
the classical form fk of weight k ≥ 1 and level Mpr if there exists an
arithmetic point ϕk of weight k such that F(ϕk) is the q-expansion of
fk. The form F is said to be ordinary if eF = F, where e is Hida’s
ordinary projector. From now on, we only consider ordinary forms. In
the ordinary case, a Λ′-adic eigenform with coefficients in R is the same
thing as a Λ′-algebra homomorphism h∞ → R. We will assume that the
homomorphism factors through hm. We can assume that R is generated
by the coefficients of F and hence that the homomorphism is surjective.
We will also generally assume that R is a domain and so R ∼= h∞/a,
where a is a prime ideal in h∞ of height 0 (i.e., a minimal prime ideal
of h∞). Thus, R is an irreducible component in the Λ′-algebra h∞ . It
obviously has characteristic 0 and contains Λ′ as a subring.

We writeMR for the module of ordinary Λ′-adic modular forms with
coefficients in the Λ′-algebra R. Then MR is a finite free R-module, and,
if M = MΛ′ , then there is an isomorphism MR = M ⊗Λ′ R. The ring
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h∞ acts on M, and the module (MR)m is canonically isomorphic to the
hm-module HomR(hm ⊗Λ′ R,R).

With these notions in hand, we can state a key result.

Theorem 5.1. (Wiles) Suppose that f1 is the p-stabilized form associ-
ated to ρ and the unramified character ε′. Then there exists an ordinary
Λ′-adic eigenform F, defined over an extension R of Λ′, which specializes
to f1 in weight 1.

Note that in the above theorem we can assume that R is a domain
and is an irreducible component in the Λ′

O-algebra hm. Now ε 6= ε′

since we are assuming that Hypothesis A holds for ρ. If ε is unramified,
then one can reverse the roles of ε and ε′, obtaining a different Λ′-adic
eigenform (which would correspond to a different choice of m and a
different R). However, for our fixed choice of ε, there is a uniqueness
result which is very important for our purpose.

Theorem 5.2. (Greenberg-Vatsal, Belläiche-Dimitrov) Suppose that a
choice of ε is fixed and that Hypothesis A holds. Then the form F is
unique.

In particular, m and R are uniquely determined by χ and ε. A version
of this theorem was discovered by the authors of this paper in 1997, but
never published. We needed the restrictive assumption that ε′/ε is not
of order 2. It was subsequently rediscovered by Belläiche-Dimitrov [1],
who actually proved the result without that assumption.

It is important to observe that the residue ring of hm at the prime
ideal Pρ is exactly equal to O, rather than some larger ring O′. Recall
that O is generated over Zp by the values of χ and ε, the ring of integers
in F = Qp(χ, ε). We justify the claim as follows. The Hecke algebra
hm is generated by the Hecke operators and the diamond operators. We
must show that the images of these generators are in O.

For the diamond operators, this is clear since the values of det ◦ ρ
are in that ring. Now the image of any Hecke operator modulo Pρ is the
eigenvalue of the corresponding Hecke operator for the weight 1 form
associated to ρ. We have to show that these eigenvalues lie in O. For
any prime q, let q be a prime of K lying over q. For the Hecke operator
Tq with q ∤ Np, the eigenvalue of Tq is the trace of ρ(Frob(q)), which
lies in O by definition. If q divides Np, then we argue as follows. As
explained in the introduction, ρ can be realized in a 2-dimensional vector
space V over the field F . If q ∤ p, let Iq be the inertia subgroup of ∆ for
the prime q. Then V Iq is an F-subspace of V of dimension ≤ 1. If V Iq
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is 1-dimensional, then the eigenvalue of Uq is equal to the eigenvalue of
Frobenius on that subspace. That eigenvalue obviously lies in F , and
hence in O. If that subspace has dimension 0, then the image of Uq is 0.
Finally, Up acts on f1 with eigenvalue ε′p(Frob(p)). Since χ|∆p

= εp+ε
′
p,

it follows that the values of ε′p are in O. Thus, all the eigenvalues of the
Hecke operators are indeed in O.

The above discussion yields a representation

ρ̆ : Gal(QΣ/Q)→ GL2(hm)

which specializes to ρ at an arithmetic specialization of weight 1. We
can compose with the surjective homomorphism hm → R to obtain a
representation

ρ̃ : Gal(QΣ/Q) → GL2(R) .

Furthermore, there is a homomorphism ϕρ : R→ O such that ϕρ◦ ρ̃ = ρ.
Here we are also using the notation ϕρ for the induced continuous group
homomorphism GL2(R) → GL2(O). Such representation ρ̆ and ρ̃ are
called deformation of ρ. The rings hm and R are the corresponding de-
formation rings. Each deformation has infinitely many motivic points,
namely the points corresponding to forms of higher weight. The defor-
mation ρ̃ is the one we will concentrate on. These motivic points have
well-defined p-adic L-functions (up to multiplying by units in the corre-
sponding residue rings of R). We can therefore define a p-adic L-function
for ρ by continuity. We now explain this more precisely.

Thus we are led to describe the p-adic L-function associated to the
representation ρ̃. It will correspond to an element in R[[Γ]], where
Γ = Gal(Q∞/Q) is as in the previous sections. This L-function was
constructed by Kitagawa [23] and by Greenberg-Stevens [19]. We want
to recall the modular-symbol construction of Greenberg-Stevens, as this
is the most convenient for us. Our discussion here is only a summary,
and we refer the reader to the original paper of Greenberg and Stevens
for a detailed exposition. For each positive integer r, let Γr denote
the group Γ1(Np

r). Let M denote the inverse limit of the cohomology
groups eH1

par(Γr,Zp); then M is a module over the Hecke algebra h∞.

The matrix ι =

(
1 0
0 −1

)
induces a Hecke-equivariant involution on

M, and we write M± for the ±-eigenspaces under this action. Evidently
we have the decomposition M = M+⊕M−. Since the maximal ideal m
corresponds to an irreducible representation, it follows from Thm. 4.3
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and Lemma 6.9 of [19] that we have an isomorphism of hm-modules

Mm = SymbΓ1
(D)m,

where D is the space of Zp-valued measures on the set of primitive
elements of Z2

p, and SymbΓ1
(D) denotes the group of modular symbols

over the group Γ1 with values inD. Furthermore, since hm is Gorenstein,
a duality argument shows that, for any choice α = ± of the sign, there
are isomorphisms of Hecke modules Mm = Mα

m = hm.
Now let F be a Λ′-adic eigenform form, defined over the ring R, such

that F specializes to f1 = fρ in weight 1. The choice of ε′p made in (12) is
implicit in the choice of F. Thus we have a homomorphism hm → R such
that the kernel P is a minimal prime contained in the height 1 prime
ideal Pρ of hm. Extending scalars via Λ′ → R, we obtain isomorphisms
Mm ⊗Λ′ R = M±

m ⊗Λ′ R = hm ⊗Λ′ R. Let δα(F) be the image of
F ∈M ⊗Λ′ R in the module M±

m ⊗Λ′ R, and let δ(F) = δ+(F) + δ−(F).
Finally, let L(F) = δ(F)({0} − {∞}) ∈ D ⊗Λ′ R denote the special
value ([19] Sec. 4.10). Then L(F) is an element of D ⊗Λ′ R, and the
construction of [19], equations 5.2a and 5.4, gives an element

(13) Lp(F) ∈ R[[Z×
p ]]

known as the standard two-variable p-adic L-function associated to F.
The terminology is justified as follows. Let Pk denote an arithmetic
point in Spec(R), of weight k ≥ 2. Then Pk induces a specialization
map ϕk : R → O, as explained above. We may specialize Lp(F) via ϕk
to obtain a measure Lp(F)(Pk) on Z×

p ; one sees from the definitions that,
if fk denotes the specialization of F to Pk, then the measure Lp(F)(Pk) is
a p-adic L-function for fk. Specifically, if ψ is any finite order character
of Z×

p , then µk = Lp(F)(Pk) satisfies the property

(14)

∫
Z×

p

ψdµk = ep(fk, ψ)τ(ψ)
L(fk ⊗ ψ−1, 1)

(−2πi)Ωαk

for certain periods Ω±
k . Here τ(ψ) is the standard Gauss sum for ψ and

ep(fk, ψ) = α−n
k (1− α−1

k ψ(p)),

where αk is the (unit) eigenvalue of the Up operator on fk. The quantity
L(fk ⊗ ψ−1, 1) denotes the standard L-function of fk, twisted by the
finite order character ψ−1 and evaluated at s = 1. A similar but more
complicated formula holds for the integral of ψzj−1, where j is any
integer in the critical range 1 ≤ j ≤ k − 1. It is essentially the formula
in the proposition of Section 14 in [26].
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It follows easily from Hida’s control theorems [20] that the periods
Ωαk are the canonical periods of fk introduced in [31]. These periods are
defined up to p-adic units. The sign α = ± in the period is determined
by the parity of ψ.

We can identify Z×
p with Gal(Q(µp∞)/Q) in the usual way. Then

1+ pZp is identified with Γ. The characters ψ of Z×
p can be regarded as

characters of that Galois group. We have ψ = ωtφ where 0 ≤ t ≤ p− 2
and φ is a character of finite order of Γ.

The ring R[[Z×
p ]] has a natural R-algebra involution ι defined by

ι(z) = z−1 for all z ∈ Z×
p . For our purpose, we consider the element

ι
(
Lp(F)

)
in R[[Z×

p ]]. If we specialize via ϕk as above, we obtain a mea-
sure µιk. Integrating ψ against µιk gives a formula like that in (14), but
with ψ replaced by ψ−1 on the right side. In particularly, the L-value
occurring in the formula would now be L(fk ⊗ ψ, 1) = L(fk, ψ, 1). Now
Z×
p
∼= F×

p × (1 + pZp) and so one has the decomposition

R[[Z×
p ]]
∼=

p−2⊕
t=0

eωtR[[Z×
p ]]

where eωt is the idempotent for ωt. Each summand is isomorphic to
R[[1+pZp]] which we identify with R[[Γ]]. If we project ι

(
Lp(F)

)
to the

ωt-component for a fixed t, we get an element Θt ∈ R[[Γ]]. Specializing
via ϕk, we get an element θt,k ∈ (R/Pk)[[Γ]]. If we let ψ = ωtφ, where φ
is a character of Γ, then integrating ψ against µιk gives the value φ(θt,k).
Note that L(fk ⊗ ψ, 1) = L(fk ⊗ ωt, φ, 1).

Recall that we assumed earlier that ρ is ordinary in the sense that
there is an exact sequence (12) with ε′p unramified. However, in gen-
eral, the action of GQp on T/O(εp) might be ramified. One could then
replace ρ by ρ ⊗ ω−t for some t, 0 ≤ t ≤ p − 2, to obtain an ordinary
Artin representation. One can apply Wiles theorem to the correspond-
ing weight 1 form f1 and then tensor by ωt obtaining the family fk⊗ωt
of modular forms which specializes in weight 1 to fρ = f1⊗ωt. With this
motivation in mind, it is natural to define θanχ,ε to be the image of Θt by
the specialization map ϕρ : R[[Γ]] → O[[Γ]] = ΛO. This is the element
alluded to in the introduction and is well-defined up to multiplication
by an element of O×.

Remark 5.3. As we have remarked several times already, the p-adic
L-function Lp(s, χ, ε) depends on the choice of ε, in the case (N, p) = 1.
Furthermore, the L-function is only defined up to a p-adic unit, owing
to the indeterminacy of the complex periods in the definition of the 2-
variable p-adic L-function. Finally, it is not at all clear that Lp(s, χ, ε)
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is nonzero. However, in view of Theorem 3 of the introduction, it seems
reasonable to expect that Lp(s, χ, ε) should be related to the Coleman
series of the norm-compatible family of units given in that theorem, and
that a formula in terms of logarithms of global units similar to the one
in Theorem 3 should hold. We will take up this subject in the sequel to
this paper.

Remark 5.4. The modular cuspforms of weight one may be classified
according to the isomorphism class of the image of the associated rep-
resentation ρ in PGL2(C). The possible image G of ∆ is isomorphic
to one of the following: a dihedral group, A4, S4, or A5. In the event
that G is dihedral, it is induced from a character of a quadratic exten-
sion of Q. Then ρ is called CM (complex multiplication) or RM (real
multiplication), according to whether it is induced from an imaginary
quadratic field or not. An alternative approach to the p-adic L-function
in this case is via the Katz 2-variable p-adic L-function; the connection
with global elliptic units is then given by the p-adic Kronecker limit for-
mula (see [5], Theorem 5.2 and the subsequent discussion). We refer the
reader to Ferrara [9] for more details. When ρ has real multiplication,
Ferrara has also compiled numerical evidence relating ϕ(θanχ,ε) to global
units (in fact, Stark units) in abelian extensions of real quadratic fields
when ϕ has order p. On the other hand, when ρ is an exotic form of
non-dihedral type, absolutely nothing is known.

Remark 5.5. As stated in the introduction, the natural formulation of
an Iwasawa main conjecture is the assertion that θalχ,ε and θ

an
χ,ε generate

the same ideal in ΛO. As mentioned in remark 5.3, we cannot even
rule out the possibility that θanχ,ε = 0. The fact that θalχ,ε 6= 0 is the
content of Proposition 4.2. It seems reasonable to believe that the main
conjecture in weight 1 should follow from the main conjecture in higher
weights. Some ideas in [28] would possibly be useful in proving a result
of that kind. However, regrettably, the proof of the main conjecture in
higher weight by Urban-Skinner [29] does not apply to the case at hand
because those authors require the presence of a prime q|M such that q
is a prime of multiplicative reduction for F. Theorem 5.6 below implies
that the form F admits no such prime q. On the other hand, it appears
that the existence of such a q is only required to ensure that a certain
anticyclotomic µ-invariant vanishes, and this can also be proven when
q is a prime of supercuspidal reduction, so it may be that the result of
Skinner-Urban applies when there exists a prime q such that the image
of a decomposition group at q under ρ is non-abelian and irreducible.
We have not pursued this idea.
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We have assumed d = 2 until now. We close this paper with some
general comments for arbitrary d. Let R be a complete Noetherian
local ring with finite residue field of characteristic p. Assume that we
have a continuous representation ρ̃ : Gal(QΣ/Q) → GLd(R), together
with a continuous, surjective ring homomorphism ϕρ : R → O such
that ϕρ ◦ ρ̃ = ρ. That is, ρ̃ is a deformation of ρ. The ring R is the
corresponding deformation ring. Since O is generated over Zp by roots
of unity of order prime to p, it is easy to see that R contains a subring
which we can identify with O. Therefore, R is an O-algebra and ϕρ is
an O-algebra homomorphism. Furthermore, the residue ring of R is the
same as that of O, namely O/pO.

We write Pρ for the kernel of the ring homomorphism ϕρ, a prime
ideal in R. If P is any other prime ideal of R such that R/P ∼= O′,
where O′ is a finite integral extension of O, then composing ρ̃ with the
group homomorphism GLd(R)→ GLd(O′) defined by reducing modulo
P gives a d-dimensional representation of Gal(QΣ/Q) over O′. Thus,
we get a family of representations indexed by such prime ideals P of R.
Of course, ρ̃ mod P is not necessarily an Artin representation. However,
if R is a domain, then the following proposition implies that it has one
property in common with ρ. Namely, ρ̃ mod P is potentially unramified
at all primes not dividing p. A similar result in the case d = 2 is
contained in Theorem 2.3 in [28].

Proposition 5.6. Let ρ̃ be a deformation of the Artin representation
ρ. Assume that the corresponding deformation ring R is an integral
domain. Suppose that q is a finite prime in Σ and that q 6= p. Let Iv be
the inertia subgroup of Gal(QΣ/Q) for a prime v of QΣ lying over q.
Then the image of Iv under ρ̃ is finite.

Proof. Recall that ρ factors through Gal(K/Q). Thus, the residual
representation for ρ̃ also factors through Gal(K/Q). It follows that the
image of Gal(QΣ/K) under ρ̃ is a pro-p group and hence that ρ̃ fac-
tors through Gal(M/Q), where M is the maximal pro-p-extension of K
contained in QΣ. Therefore, since q 6= p, the restriction ρ̃|GKv

factors
through Gal(Ktr,p

v /Kv), where K
tr,p
v denotes the maximal pro-p tamely

ramified extension of Kv. Enlarging K if necessary, we can assume that
K, and hence Kv, contains µp. Now Ktr,p

v contains the field Kunr,p
v , the

maximal unramified pro-p extension of Kv. In fact, Kunr,p
v = Kv(µp∞)

and Ktr,p
v = Kv(µp∞ , p∞

√
q). Furthermore, both Gal(K

unr,p

v /Kv) and.
Gal(Ktr,p

v /Kunr,p
v ) are isomorphic to Zp. The Frobenius element of

Gal(Kunr,p
v /Kv) acts on Gal(Ktr,p

v /Kunr,p
v ) by conjugation. This action

is given by x 7→ xN (v) for all x ∈ Gal(Ktr,p
v /Kunr,p

v ). Here N (v) = qf ,
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where f is the residue field degree for Kv/Qq. Thus, Gal(Ktr,p
v /Kv) is

an extension of Zp by Zp(1).
Let τ denote a topological generator of Gal(Ktr,p

v /Kunr,p
v ). The

restriction of ρ̃ to the inertia subgroup Gal(Ktr,p
v /Kunr,p

v ) is determined
by the matrix ρ̃(τ). The eigenvalues of this matrix are in some extension
of the fraction field of R. In addition, if α is one of those eigenvalues,

then so is αq
f

. Since the matrix has only finitely many eigenvalues, it
follows that these eigenvalues are roots of unity. Therefore, for some
t ≥ 1, the matrix A = ρ̃(τ t) is unipotent. If we again enlarge the field
K, we can assume that t = 1 i.e., that the eigenvalues of ρ̃(τ) are all
equal to 1. Of course, f may change too.j

Let F denote the fraction field of R. Thus, Gal(QΣ/Q) acts on V =
Fd via ρ̃. LetN = A−Id, a nilpotent matrix with entries in R. There is a
filtration on V defined by the subspaces Wk = Ker(Nk) for k ≥ 0. Here
W0 = 0 and Wt = V if t is sufficiently large. These subspaces are GKv -
invariant. The action of Gal(Ktr,p

v /Kv) on the subquotients Wk+1

/
Wk

factors through Gal(Kunr,p
v /Kv). We will prove that W1 = V, i.e., that

N annihilates V.
Assume to the contrary that W1 is a proper subspace of W2. Then,

NW2 is a nontrivial subspace of W1. We can lift the Frobenius element
of Gal(Kunr,p

v /Kv) to an element of Gal(Ktr,p
v /Kv) which then acts onV

by a matrix B with entries in h. Furthermore, we have BAB−1 = Aq
f

.
It follows that

BNB−1 = qfN + CN2

where C is a matrix with entries in R. One sees easily that W1 and
W2 are invariant under multiplication by B and by N . Denoting the
restrictions of B and N to W2 by B2 and N2, respectively, we have
B2N2 = qfN2B2. One sees from this that if β is an eigenvalue for the
action of B on W2/W1, then q

fβ is an eigenvalue for the action of B
on W1. Thus, B has two eigenvalues whose ratio is qf .

Applying the homomorphism ϕρ to B, we obtain a matrix with
entries in O which again has two eigenvalues whose ratio is qf . However,
this matrix is in the image of ρ, a finite subgroup of GLd(O), and its
eigenvalues are roots of unity. This is a contradiction and so we have
W1 = V. It follows that τ acts trivially on V. Therefore, the image
of the inertia subgroup of GK for v under ρ̃ is trivial. In the proof, we
have possibly replaced K by a finite extension. Hence, for the original
K, the image of Iv is finite. ■

In general, if we try to imitate the d = 2 case, there are some
natural restrictions on the kinds of deformations of ρ we consider. We are
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assuming that ρ satisfies Hypothesis A. The underlying F-representation
space V contains a GQ-invariant O-lattice T . Fix a prime p of K lying

over p. Then T (εp) ∼= O(εp) as O[∆p]-modules. Since p ∤ |∆p|, T/T (εp)

is a free O-module of rank d− 1.
It is natural to consider deformations of T which simultaneously

deform T (εp). To be precise, let p be the prime of K induced by the
fixed embedding of Q into Qp, as in the introduction. We can then
identify GQp

with a subgroup of GQ and restrict ρ̃ to that subgroup. If
T is the underlying free R-module of rank d for ρ̃, we make the following
hypothesis.

Hypothesis Ã: There exists a GQp-invariant R-submodule T0 of T
with the following properties:

(i): T0 is a free R-module of rank 1,

(ii): T/T0 is also a free R-module,

(iii): the image of T0 under the map ϕρ is T (εp).

Note that the residual representations of GQp
for T0 and for T/T0 are

the same as for T (εp) and for T/T (εp), respectively, and that they have
no irreducible constituents in common.

Remark 5.7. Assuming that R is a domain, Hypothesis Ã is not as
stringent as it might seem at first. As mentioned in the proof of Propo-
sition 5.6, the image of Gal(QΣ/K) under ρ̃ is a pro-p group. It fol-
lows that the action of Gal(QΣ/Q) on T factors through a group G
which has a normal pro-p subgroup N and corresponding quotient group
G/N ∼= ∆. Since |∆| is prime to p, this group extension splits and G
has a subgroup D which is mapped isomorphically to ∆ under the map
G → G/N . The subgroup D is not unique, but, for simplicity of no-
tation, we make a choice and identify D with ∆ by that isomorphism.
With this identification, ρ̃|∆ is closely related to ρ. To be precise, the
reduction of ρ̃|∆ modulo Pρ coincides with ρ. We let F be the fraction
field of R (as in the proof of Proposition 5.6) and let V = T ⊗R F.
Since R contains O, F must contain F . The action of ∆ on the F-vector
space V is a d-dimensional representation over F and the character of
that representation must be χ. Now ρ is a representation of ∆ over F
and this F-representation of ∆ must be isomorphic to the extension of
scalars of ρ from F to F.

Hypothesis A (from the introduction) then has the following conse-
quence for the action of ∆p on V: There is a 1-dimensional ∆p-invariant

F-subspace V(εp) on which ∆p acts by εp. Of course, that subspace is



Iwasawa theory for Artin representations I 45

simply eεpV, where eεp ∈ O[∆p] is the idempotent corresponding to εp.

If Hypothesis Ã is satisfied, then it is clear that T0 = eεpT.
These observations lead to the following conclusion. It is sufficient to

just assume that V contains a GQp
-invariant F-subspace V0 of dimen-

sion 1 such that the action of ∆p on V0 is given by εp. That subspace

must be V(εp). Equivalently. it suffices to assume that V(εp) is actually
a GQp

-invariant subspace of V, and not just ∆p-invariant. Let

T0 = T ∩V0 = T(εp) ,

the maximal subset of T on which ∆p acts by εp. Then T0 is a GQp
-

invariant R-submodule of T and has rank 1. Since p ∤ |∆p|, it follows
that T0 = eεpT and that T0 is a direct summand in T as a module over
R[∆p]. Therefore, T0 is a direct summand for T as a module over R.
Since T is a free R-module, any direct summand for T is also free. It
follows that T0 is a free R-module and that the quotient T/T0 is also
free (and has rank d−1). Furthermore, the image of T0 under ϕρ is just

eεpT which is T (εp). Thus, Hypothesis Ã is satisfied.

Assuming that such a GQp -invariant F-subspace V0 does exist, note
that the action of GQp on T0 is given by a continuous homomorphism

ε̃p : GQp → R× .

with the property that ϕρ ◦ ε̃p = εp. In other words, ε̃p is a deformation

of the GQp
-representation εp. It is natural to denote T0 by T(ε̃p). It is

indeed the maximal R-submodule of T on which GQp
acts by ε̃p.

In addition to Hypothesis Ã, we would need to assume that the
deformation ρ̃ of ρ has a rich supply of “motivic” specializations so that
one can reasonably expect the existence of a suitable p-adic L-function.
We have no way to ensure this in general. However, the remark below
describes one case for d = 3 where we do have an ample set of motivic
specializations.

Remark 5.8. Let ρ be the 2-dimensional representation associated
to a modular form of weight 1. Assume that ρ factors through ∆ =
Gal(K/Q) and that p ∤ |∆|. Then Ad0(ρ) = Sym2(ρ)⊗ det(ρ)−1 is a 3-
dimensional representation factoring through ∆ which satisfies d+ = 1.
It may or may not satisfy Hypothesis A; it will do so if and only if
ε/ε′ has order ≥ 3. If it does satisfy Hypothesis A, then one can take
the adjoint of the Λ′-adic Galois representation associated to F to get
a good deformation of Ad0(ρ). The algebraic part of our theory goes
through unchanged. The analytic side also goes through, but there is
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one important difference: the p-adic L-function has to be defined via
continuity from the Schmidt L-function constructed in [4]. The details
require more care, since in the dihedral cases the symmetric square is
reducible, and in the RM case the corresponding deformation space is
not smooth over the weight space at the weight one point of interest.
However, it seems reasonable to expect a relationship with units to hold
in the CM and exotic A4, S4 and A5 cases. We omit the details here.
Regrettably, this example, and the d = 2 example of modular forms, are
the only examples of which we are aware where d+ = 1 and sufficiently
many motivic deformations exist.
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