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Abstract.
In this note, we provide a new proof of the rank 1 Gross–Stark

conjecture for a quadratic extension under the assumption that there
is only one prime in the base field above a rational prime p. The full
Gross–Stark conjecture was proven by the authors in joint work with
Ventullo, building on a prior result in the rank 1 setting by the first
named author in joint work with Darmon and Pollack. The proof
given in this note is much simpler as it does not use the theory of
p-adic Galois cohomology and Galois representations associated to
p-adic modular forms. Instead, the proof relies on a certain explicit
construction using Theta series, congruences with Eisenstein series
and the q-expansion principle of Deligne–Ribet.

§1. Introduction

Fix a rational prime p. In this note, we provide a new proof of
the rank 1 Gross–Stark conjecture for a quadratic extension under the
assumption that there is only one prime above p in the base field. Let
K be a CM field and let F denote the maximal totally real subfield of
K. We assume that there is only one prime p above p in F . Denote by
χ the nontrivial character of G := Gal(K/F ). Write n = [F : Q]. To
ensure we are in a rank 1 setting, we suppose that χ(p) = 1. Fix a prime
P of K above p, and suppose Ph = (x) for some integer h (e.g. the class
number of K) and x ∈ OK . Let u = x/x, where here and throughout,
x denotes the image of x under complex conjugation (i.e. the nontrivial
element of G).
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Let ω denote the Teichmüller character and Lp(χω, s) be the usual
p-adic L-function of Deligne–Ribet [5] and Cassou-Noguès [2]. In this
setting, the Gross–Stark conjecture states:

Theorem 1. We have

(1)
L′
p(χω, 0)

L(χ, 0)
= −

logpNormHP/Qp
(u)

ordP(u)
,

where logp is the Iwasawa branch of the p-adic logarithm satisfying
logp(p) = 0.

Theorem 1 was proven in a more general setting in the papers [3],
[9], and [4]. Our proof here is far simpler in that it does not use the the-
ory of p-adic Galois cohomology or the Galois representations associated
to p-adic modular forms. Instead, we rely on a certain explicit construc-
tion using Theta series, congruences, and the q-expansion principle of
Deligne–Ribet.

Let us briefly comment on our method and our assumptions. In the
article [3], a certain p-adic family of Hilbert modular cusp forms was
constructed specializing in weight 1 to a p-stabilization of the Eisenstein
series E1(1, χ). This family is constructed as a linear combination of
products of Eisenstein series, and is in general not an eigenform. How-
ever, in the case of a quadratic character χ, such a cuspidal eigenfamily
can be constructed explicitly using Theta series. Furthermore, viewed
as analytic functions of the p-adic weight variable k and assuming that
there is only one prime above p, this Theta series is congruent mod-
ulo (k − 1)2 to an explicit linear combination of Eisenstein series. This
allows us to derive a formula for the first derivative at k = 1 for the
function Lp(χω, 1 − k) which appears as the constant term of one of
these Eisenstein series. This explains both of our assumptions that χ
is quadratic and that the rank is equal to 1. The assumption about
only one prime above p is required for the congruence that we construct
between Theta series and a linear combination of Eisenstein series. It
seems possible that this last assumption can be removed by considering
cusps other than the infinity cusp that we consider in this paper (see re-
mark 10). It would be very interesting if our argument could be applied
in a more general setting where our other assumptions are relaxed or
removed. In this regard we remark that in [1] a cuspidal eigenform spe-
cialising in weight 1 to a p-stabilization of the Eisenstein series E1(1, ρ)
is constructed in the case when F = Q and ρ is an odd character.
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§2. Group rings and characters

Let Γ = (1 + 2pZp)
∗ ∼= Zp and denote by x 7→ 〈x〉 = x/ω(x) the

canonical projection Z∗
p → Γ. Let Λ := Zp[[Γ]] ∼= Zp[[T ]]. For each

positive integer k, let Γk be the quotient of Γ of order pk, i.e.

Γk := (1 + 2pZp)
∗/(1 + 2pk+1Zp)

∗.

Write Λk = Zp[Γk]. Evidently Λ = lim←−k Λk and there are natural pro-
jections

µk : Λ→ Λk.

We view the cyclotomic character of F as a homomorphism on the
group IF (p) of fractional ideals of F relatively prime to p, defined by

ε : IF (p) −→ Λ∗, ε(a) := 〈Na〉 ∈ Γ.

Now we define a certain character δ on a group of fractional ideals
of K. Since χ(p) = 1 we have a splitting pOK = PP for the unique
prime p of F above p. We will define δ : IK(P)→ Λ∗. Let h denote the
class number of K. For a ∈ IK(P), write ah = (α) for some α ∈ K. The
generator α is defined up to multiplication by an element of O∗

K , hence
x = αd is well-defined up to multiplication by an element of O∗

F , where
d = [O∗

K : O∗
F ]. We then define

δ : IK(P) −→ Λ∗, δ(a) = 〈NOP/Zp
(x)2〉 ∈ Γ.

It is clear that with respect to the natural inclusion map IF (p) →
IK(P), a 7→ aOK , the restriction of δ to IF (p) is ε2dh.

For each positive integer k, we denote by δk and εk the compositions
µk ◦ δ and µk ◦ ε, respectively.

§3. p-adic L-functions

The Deligne–Ribet, Cassou-Noguès p-adic L-function is the p-adic
analytic function

Lp(χω, s) : Zp −→ Zp

specified uniquely by the interpolation property

(2) Lp(χω, n) = L∗(χωn, n) for all n ∈ Z≤0.

Here L∗ denotes the classical L-value with the Euler factor at the prime
p removed.

Any s ∈ Zp induces a continuous group homomorphism νs : Γ→ Z∗
p,

x 7→ xs, which in turn induces a Zp-algebra homomorphism also denoted
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νs : Λ→ Zp. Deligne–Ribet and Cassou-Noguès showed that there is an
element Lp(χ) ∈ Frac(Λ) such that

(3) Lp(χω,−s) = νs(Lp(χ))

for all s ∈ Zp.
To achieve integrality, let c be an integral ideal relatively prime to

n and p, and define

Lp,c(χ) = (1− χ(c)Nc[〈Nc〉])Lp(χ).

Here [〈Nc〉] denotes the group-ring element in Λ associated to 〈Nc〉 ∈ Γ.
For Nc large enough, we then have Lp,c(χ) ∈ Λ. Since the prime p of F
above p satisfies χ(p) = 1, the Euler factor of L(χ, s) at p vanishes at
s = 0. It follows from the interpolation property (2) that Lp(χω, 0) =
0. In view of (3), this implies that Lp,c(χ) lies in the kernel of the
augmentation map ν0 : Λ → Zp. We denote the augmentation ideal by
IΛ = ker ν0. There is a canonical homomorphism of Zp-modules given
by

D : IΛ/I
2
Λ −→ Zp, [t]− 1 7→ logp(t).

It follows directly from (3) (and the fact that the derivative of t 7→ ts at
s = 0 is logp(t) for t ∈ Γ) that

L′
p(χω, 0)(1− χ(c)Nc) = −D(Lp,c(χ)).

For each ` ∈ Zp, the map Γ → Γ, t 7→ t`, induces a Zp-algebra
homomorphism ν̃` : Λ → Λ. It is clear that if x ∈ IΛ, then ν̃`(x) lies in
IΛ as well, and we have D(ν̃`(x)) = `D(x). For notational simplicity let
L`p,c(χ) := ν̃`(Lp,c(χ)). The following is the form of Theorem 1 that we
will prove.

Proposition 2. Let ` = dh with notation as in §2. Write

Lc(χ, 0) = (1− χ(c)Nc)L(χ, 0) ∈ Zp

with c as above. Theorem 1 is equivalent to the assertion

L`p,c(χ) ≡ 2Lc(χ, 0)(1− δ(P)) (mod I2Λ).

Proof. Suppose the stated congruence holds. Applying D, we ob-
tain

−`L′
p(χω, 0)(1− χ(c)Nc) = −2Lc(χ, 0) logp(δ(P)).

This simplifies to

(4)
L′
p(χω, 0)

L(χ, 0)
=

logp(δ(P))

`/2
.
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Write P
h

= (α) and αd = x. Then we may take u = x/x in the
statement of Theorem 1 with

(5) ordP(u) = dh = `/2.

Meanwhile

logp(δ(P)) = 2 logpNKP/Qp
x

= logpNKP/Qp
x− logpNKP/Qp

x(6)
= − logpNKP/Qp

u.(7)

Note that (6) follows since

logpNKP/Qp
(x) + logpNKP/Qp

(x) = logpNK/Q(x) = 0,

as NK/Q(x) is a power of p up to sign. Combining (7) with (4) and (5)
gives the desired result (1). These steps are reversible. Q.E.D.

We conclude this section by noting that the p-adic L-function Lp(χ)
satisfies another interpolation property in addition to (3). For each
positive integer k, the image of Lp(χ) in Λk actually lies in Q[Γk]. For
any character ψ : Γk → C, it then makes sense to consider ψ(Lp(χ)) ∈ C.
The interpolation property we are interested in is:

(8) ψ(Lp(χ)) = L∗(χεψ, 0),

where εψ = ψ ◦ ε.

§4. Hilbert modular forms

We follow Shimura for the definition of Hilbert modular forms (see
[8] and [3, §4]). This definition is slightly more robust than that of
Deligne–Ribet, in that it allows for an action of Hecke operators. Our
HMFs can be viewed as an hF -tuple of functions on Hn, where hF is
the narrow class number of F . The HMFs of Deligne–Ribet are single
functions on Hn, and can be viewed as the first component of our tuples.

For a ring R, integer k, and ideal n ⊂ OF , we denote by Mk(n, R) =
Mk(n,Z)⊗R the R-module of Hilbert modular forms over F of weight k
and level n over the ring R. A modular form f in this space is determined
by its q-expansion “at infinity”, which we describe conveniently using the
notation of Shimura and Wiles as a collection of elements

cλ(f, 0) ∈ R, λ = 1, 2, . . . , hF ,

c(f,m) ∈ R, m ⊂ OF a nonzero ideal.
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One knows that if the q-expansion coefficients of a form f live in a
subring R0 ⊂ R, then f lies in Mk(n, R0) (see [5, 5.13]).

The simplest example of Hilbert modular forms are the Eisenstein
series. Let n denote the conductor of the quadratic character χ. We fix
fractional ideals t1, . . . , thF

representing the hF distinct classes in the
narrow class group of F .

Proposition 3. There is an element E1(1, χ) ∈ Mk(n,Q) whose
q-expansion coefficients are given by

(9) cλ(E1(1, χ), 0) =

{
2−nL(χ, 0) if n 6= 1

2−n(L(χ, 0) + χ(tλ)L(χ, 0)) if n = 1.

(10) c(E1(1, χ),m) =
∑
a|m

χ(a).

Remark 4. In (10), χ(a) is understood to be 0 if a is divisible by a
prime ramified in K.

For a proof of this proposition, see [3, Proposition 2.1].

§5. Group-ring valued modular forms

We introduce the following definition:
Definition 5. For fixed integer k0, define Mk0(n,Λ) to be the Λ-

module of collections f of elements

cλ(f, 0) ∈ Frac(Λ), λ = 1, 2, . . . , hF ,

c(f,m) ∈ Λ, m ⊂ OF a nonzero ideal

such that for each k large enough, the images of cλ(f, 0), c(f,m) in
Frac(Λk) are the q-expansion coefficients of an element of the space
Mk0(np

k+1,Frac(Λk)).
Simple explicit examples of such modular forms are given by the

Eisenstein series.
Proposition 6. For every integer `, there are Eisenstein series

E1(χ, ε
`), E1(1, χε

`) ∈M1(n,Λ)

given by

(11)
cλ(E1(χ, ε

`), 0) =

{
0 if n 6= 1

2−nχ(tλ)L
`
p(χ) if n = 1

,

c(E1(χ, ε
`),m) =

∑
a|m

χ(a)ε`(m/a)
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(12)
cλ(E1(1, χε

`), 0) = 2−nL`p(χ),

c(E1(1, χε
`),m) =

∑
a|m

χ(a)ε`(a).

Remark 7. In (11) and (12), χ(a) is understood to be zero if a is
divisible by a prime ramified in K, and ε(a) is understood to be zero if
a is divisible by a prime above p.

Proof. Fix a positive integer k large enough to ensure that χεk does
not have trivial conductor (usually this will be true for all k). We need
to show that there exist Eisenstein series in

Mk0(np
k+1,Frac(Λk))

whose q-expansion coefficients are the images of the expressions in (11)
and (12). Yet these images in fact lie in the subring Q[Γk]. By Deligne–
Ribet it suffices to show these are modular forms over

C[Γk] ∼=
∏
ψ

C,

where the product ranges over all pk characters ψ : Γk → C∗ and the
isomorphism is induced by [d]→ (ψ(d))ψ.

For E1(χ, ε
`), we therefore need to show that for each character ψ

of Γk, there is a modular form f ∈M1(np
k+1,C) such that

cλ(f, 0) =

{
0 if n 6= 1

2−nχ(tλ)L
∗(χε∗ψ, 0) if n = 1

,

c(f,m) =
∑
a|m

χ(a)(ε∗ψ)
`(m/a).

Here ε∗ψ is the character εψ viewed as having modulus divisible by all
primes above p. Yet this is just the classical form E1(χ, (ε

∗
ψ)
`) (see

for instance [3, Proposition 2.1]). For the form E1(1, χε
`), the image

under ψ is the classical form E1(1, χ(ε
∗
ψ)
`). For the constant terms, the

verification of this follows from (8). Q.E.D.

§6. Theta series

Another class of modular forms that can be written down explicitly
are the Theta series.

Proposition 8. There is an element θδ ∈M1(n,Λ) given by

cλ(θδ, 0) = 0, c(θδ,m) =
∑

a⊂OK ,(a,P)=1,aa=m

δ(a).
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Proof. As in the proof of Proposition 6, we need to show that for
each character ψ of Γk there is a modular form f ∈M1(np

k+1,C) whose
q-expansion is given by

cλ(f, 0) = 0, c(f,m) =
∑

a⊂OK ,(a,P)=1,aa=m

δψ(a),

where δψ := ψ ◦ δ. This the usual theta series associated to the ray class
character δψ; see for example [7, Theorem 2.72]. Q.E.D.

§7. A congruence of modular forms

As in §2 and §3, write ` = 2dh. We define two elements F ,G in
M1(n,Λ):

F = δ(P)θδ + (1− δ(P))E1(1, χ),(13)

G = (E1(χ, ε
`) + E1(1, χε

`))/2.(14)

Proposition 9. The non-constant q-expansion coefficients of F and
G lie in Λ and satisfy the congruence

c(F ,m) ≡ c(G,m) (mod I2Λ) for all nonzero ideals m.

Proof. First we verify the result for m of the form pm,m ≥ 0. We
have:

c(θδ, p
m) = δ(P)m,

c(E1(1, χ), p
m) = m+ 1,

c(E1(χ, ε
`), pm) = c(E1(1, χε

`), pm) = 1.(15)

Then our desired congruence reads

δ(P)m+1 + (1− δ(P))(m+ 1) ≡ 1 (mod I2Λ).

This indeed holds, since δ(P)− 1 ∈ IΛ, hence

δ(P)m+1 − 1 = (δ(P)− 1)(1 + δ(P) + · · ·+ δ(P)m)

≡ (δ(P)− 1)(m+ 1) (mod I2Λ).
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For the remaining coefficients, we can argue inductively using the Hecke
operators. Break up F and G as sums F = F1+F2, G = G1+G2, where

F1 = δ(P)θδ,

F2 = (1− δ(P))E1(1, χ),

G1 =
1

2
E1(χ, ε

`),

G2 =
1

2
E1(1, χε

`).

Each of these forms F1,F2,G1,G2 is an eigenform for the Hecke operators
at all primes l of F not equal to p, i.e. for the operators Ul for l | n, and
Tl for l - np. Furthermore, we will show that the following congruences
hold for the corresponding Hecke eigenvalues:

(A) λl(F1) ≡ λl(F2) ≡ λl(G1) ≡ λl(G2) (mod IΛ).
(B) 2λl(F1) ≡ λl(G1) + λl(G2) (mod I2Λ).

We also have
(C) c(F2,m) ∈ IΛ.
(D) c(G1,m) ≡ c(G2,m) (mod IΛ).
Let us now explain why these congruences give the desired result.

Suppose that we have the congruence

(16) c(F1,m) + c(F2,m) ≡ c(G1,m) + c(G2,m) (mod I2Λ),

as well as, if l | m, the congruence

c(F1,m/l) + c(F2,m/l) ≡ c(G1,m/l) + c(G2,m/l) (mod I2Λ).

Using the formulae for the action of the Hecke operator Ul or Tl in the
cases l | n and l - np, respectively, the same congruence (16) will hold for
m replaced by ml if we can show that

(17)
λl(F1)c(F1,m) + λl(F2)c(F2,m)

≡λl(G1)c(G1,m) + λl(G2)c(G2,m) (mod I2Λ).

In view of (16), the congruence (17) is equivalent to
(18)

(λl(F2)− λl(F1))c(F2,m)

≡(λl(G1)− λl(F1))c(G1,m) + (λl(G2)− λl(F1))c(G2,m) (mod I2Λ).

Applying (A) and (C), the left side of (18) lies in I2Λ. Meanwhile, in view
of (B), the right side is congruent modulo I2Λ to

(19) (λl(G1)− λl(F1))(c(G1,m)− c(G2,m)).
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Applying (A) and (D), the expression (19) lies in I2Λ as well. This proves
the congruence (16) for m replaced by ml, and hence concludes the proof
of the theorem up to verifying the congruences (A)–(D).

The Hecke eigenvalues of the forms are given below.

Form Ul, lOK = q2 Tl, lOK = qq Tl, lOK = q
F1 ∼ θδ [δ(q)] [δ(q)] + [δ(q)] 0

F2 ∼ E1(1, χ) 1 2 0
G1 ∼ E1(χ, ε

`) [ε`(l)] 1 + [ε`(l)] −1 + [ε`(l)]
G2 ∼ E1(1, χε

`) 1 1 + [ε`(l)] 1− [ε`(l)]

The verification of (A) from the table is trivial. For (B), one uses the
fact that δ(lOK) = ε`(l). For example, for lOK = q2, we calculate

2λl(F1)− λl(G1)− λl(G2) = 2[δ(q)]− [ε`(l)]− 1

= 2[δ(q)]− [δ(q2)]− 1

= −(1− [δ(q)])2 ∈ I2Λ.

The other cases are similar.
(C) is immediate since F2 contains a factor of (1 − δ(P)) ∈ IΛ.

(D) follows immediately from the last congruence in (A), as long as we
verify the base cases m = pm. But this was already observed in (15).
This concludes the proof. Q.E.D.

Remark 10. Here we remark about the case when there are primes
in F above p other than p. To ensure that we are in rank 1 situation
we still assume that p is the only prime above p such that χ(p) = 1. If
there are primes other than p over p in F , then the congruence in the
above theorem does not hold at these primes (the definition of δ must be
modified to even make sense of this statement). The congruence can be
“reinstated” if all the Eisenstein series in the theorem are “q-depleted”
for all primes q | p and q 6= p. However, the constant terms of these
Eisenstein series at infinity are zero. It may be possible to establish the
main theorem by looking at q-expansions at different cusps. We leave
this as an open problem.

§8. The Deligne–Ribet q-expansion principle

We may now prove Theorem 1 by applying the following q-expansion
principle of Deligne–Ribet. Let x be a finite idele of F . If F is a modular

form, then we denote by Fx the form F
∣∣∣∣( x 0

0 x−1

)
(for explanation

see [5, page 262 and proposition 5.8]). In view of [5, proposition 5.8] the
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q-expansion of F at “cusps determined by x” is the q-expansion of Fx
at infinity.

Proposition 11. Let R be a p-adic ring, i.e. such that the natural
map R→ lim←−R/p

n is an isomorphism. Suppose that F ∈Mk(n, R⊗Qp)

has non-constant q-expansion coefficients c(m,F) lying in an ideal I ⊂ R.
Then for every λ the difference cλ(F , 0)− cλ(Fx, 0) also lies in I.

Proof. The proof follows that of [5, Corollary 5.14]. The form
F − (cλ(F , 0))λ can be viewed as a p-adic modular form with constant
terms 0 at infinity and other q-expansion coefficients lying in I ⊂ R.
In particular F − (cλ(F , 0))λ has all Fourier coefficients in R and hence
can be viewed as a p-adic modular form over R. Furthermore, its image
in R/I is 0. Then by [5, (5.13)], it follows that the q-expansion of
F − (cλ(F , 0))λ at cusps determined by x has all coefficients lying in
I. The q-expansion of the weight zero form (cλ(F , 0))λ is the constant
tuple (cλ(F , 0))λ. Therefore the difference cλ(F , 0)− cλ(Fx, 0) lies in I,
for all λ. Q.E.D.

We apply this to the difference between the forms F and G con-
structed in the previous section, or more precisely to their specializations
Fk,Gk ∈M1(n,Λk) for each positive integer k. Let x be a finite idele of
F . It determines an ideal c of F . We assume that c is relatively prime
to np. It follows from Proposition 9 that the difference in the constant
terms of Fk − Gk at infinity and at cusps determined by x lies in I2k ,
where Ik is the augmentation ideal of Λk. Passing to the inverse limit,
it follows that the difference in the constant terms of F − G at infinity
and at cusps determined by x lies in I2Λ.

Now the form θδ is a cusp form, hence the constant terms of F at
infinity are

cλ(F , 0) =
{

2−nL(χ, 0) if n 6= 1
2−n(L(χ, 0) + χ(tλ)L(χ, 0)) if n = 1.

The constant terms of G at infinity are

cλ(G, 0) =
{

2−(n+1)L`p(χ) if n 6= 1

2−(n+1)(L`p(χ) + χ(tλ)L
`
p(χ)) if n = 1.

Now, as calculated in [5, (6.1)], the constant terms of F and G at cusps
determined by x are the above constant terms at infinity multiplied by
χ(c)Nc and χ(c)Nc[〈Nc〉], respectively. We therefore conclude that

L`p,c(χ)/2 ≡ Lc(χ, 0)(1− δ(P)) (mod I2Λ).

In view of Proposition 2, this concludes the proof of Theorem 1.
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