Iwasawa invariants and linking numbers of primes

Yasushi Mizusawa and Gen Yamamoto Dedicated to Professor Keiichi Komatsu

Abstract.

For an odd prime number p and a number field k which is an elementary abelian p-extension of the rationals, we prove the equivalence between the vanishing of all Iwasawa invariants of the cyclotomic \mathbb{Z}_{p} extension of k and an arithmetical condition described by the linking numbers of primes from a viewpoint of analogies between pro-p Galois groups and link groups. A criterion of Greenberg's conjecture for k of degree p is also described in terms of linking matrices.

§1. Introduction

Let p be a fixed prime number. For a number field k, we denote by k^{cyc} the cyclotomic \mathbb{Z}_p -extension of k, where \mathbb{Z}_p denotes (the additive group of) the ring of p-adic integers. Then k^{cyc}/k has a unique cyclic subextension k_n/k of degree p^n for each integer $n \ge 0$. Let $A(k_n)$ be the Sylow p-subgroup of the ideal class group of k_n , and let e_n be the exponent of the order $|A(k_n)| = p^{e_n}$. The Iwasawa invariants $\lambda(k) \ge 0$, $\mu(k) \ge 0, \nu(k)$ of k^{cyc}/k are defined as integers satisfying Iwasawa's class number formula

$$e_n = \lambda(k)n + \mu(k)p^n + \nu(k)$$

for all sufficiently large n (cf. e.g. [21]). In case of cyclotomic \mathbb{Z}_p extensions, Iwasawa conjectured that $\mu(k) = 0$, and Ferrero and Washington [3] proved that $\mu(k) = 0$ if k/\mathbb{Q} is an abelian extension. It was also conjectured by Greenberg [5] that $\lambda(k) = \mu(k) = 0$ if k is a totally real number field. Greenberg's conjecture has been studied in various situations, in particular when k/\mathbb{Q} is an abelian extension. Criteria of

Received December 24, 2017.

Revised August 16, 2018.

²⁰¹⁰ Mathematics Subject Classification. 11R23 (11R18).

 $Key\ words\ and\ phrases.$ Iwasawa invariants, arithmetic topology, linking numbers.

Greenberg's conjecture for real abelian *p*-extensions k/\mathbb{Q} are often described by *p*th power residue symbols of ramified prime numbers (e.g. [4, 22]).

In arithmetic topology (analogies between knot theory and number theory, cf. [16]), pth power residue symbols are often translated into analogues of mod p linking numbers of knots. For a pair (ℓ, ℓ') of distinct prime numbers, the (pro-p) linking number $lk(\ell, \ell')$ is defined as the discrete logarithm of ℓ modulo ℓ' if $\ell' \equiv 1 \pmod{p}$, and defined as the p-adic logarithm of ℓ to base α_p if $\ell \equiv 1 \pmod{p}$ and $\ell' = p$, where α_p is a generator of $1 + 2p\mathbb{Z}_p$. Based on analogies in linking numbers, Morishita [15] developed analogies between p-extensions of number fields and branched Galois coverings of 3-manifolds. In the origin of arithmetic topology, Mazur [12] pointed out an analogy between Alexander-Fox theory and Iwasawa theory. The Iwasawa invariants of links are also defined and studied, regarding a tower of cyclic p-coverings branched along a link as an analogue of a \mathbb{Z}_p -extension (cf. [6, 8, 9, 19, 20]).

The purpose of this paper is to study Iwasawa invariants for real abelian *p*-extensions k/\mathbb{Q} from a viewpoint of arithmetic topology. The first result is the following theorem.

Theorem 1.1. Assume that p is odd, and put $\ell_0 = p$. Let $S = {\ell_1, \ldots, \ell_d} \neq \emptyset$ be a finite set of d prime numbers $\ell_i \equiv 1 \pmod{p}$, and let k/\mathbb{Q} be the maximal elementary abelian p-extension unramified outside S. Then $\lambda(k) = \mu(k) = \nu(k) = 0$ if and only if S satisfies one of the following two conditions on linking numbers of primes:

- 1. d = 1, and either $lk(\ell_0, \ell_1) \not\equiv 0 \pmod{p}$ or $lk(\ell_1, \ell_0) \not\equiv 0 \pmod{p}$.
- 2. d = 2, and

(1) $\operatorname{lk}(\ell_0, \ell_1)\operatorname{lk}(\ell_1, \ell_2)\operatorname{lk}(\ell_2, \ell_0) \not\equiv \operatorname{lk}(\ell_0, \ell_2)\operatorname{lk}(\ell_2, \ell_1)\operatorname{lk}(\ell_1, \ell_0) \pmod{p}.$

In particular, $d \leq 2$ if $\lambda(k) = \mu(k) = \nu(k) = 0$.

We prove Theorem 1.1 in §3 via the structure of a certain pro-pGalois group $\widetilde{G}_S(\mathbb{Q})$ analogous to a link group, which we recall in §2.

The condition (1) is similar to a condition of 'circular set of primes' (cf. e.g. [11]). There is also another generalization of (1) for larger d, which is described by linking matrices C_k of cyclic extensions k/\mathbb{Q} of degree p (cf. Proposition 5.3). The matrix C_k is a modification of the linking matrix $C' = (c'_{ij} \mod p)_{1 \le i,j \le d}$ of $S = \{\ell_1, \ldots, \ell_d\}$ with entries satisfying that $c'_{ij} = \operatorname{lk}(\ell_i, \ell_j)$ if $i \ne j$, and that $\sum_{j=1}^d c'_{ij} \equiv 0 \pmod{p}$. The matrix C' was defined in [16, Example 10.15] as an analogue of the linking matrix of a link. (See §4 for the definition of C_k .) Using also

an associated matrix B_k , we obtain the following sufficient condition of Greenberg's conjecture as a partial generalization of Theorem 1.1. (See §5 for the definition of B_k .)

Theorem 1.2 (Theorem 5.1). Suppose $\ell_0 = p \neq 2$. Let k/\mathbb{Q} be a cyclic extension of degree p unramified at p, and let $S = \{\ell_1, \ldots, \ell_d\}$ be the set of ramified primes in k/\mathbb{Q} . If rank $C_k = d - 1$ and rank $B_k = d$, and if p is inert in k/\mathbb{Q} , then $\lambda(k) = \mu(k) = 0$.

Theorem 1.2 is proved in §5 by extending an idea of Fukuda [4] which is based on the capitulation of ideal classes in k^{cyc}/k . In §6, we also give an infinite family of examples of Theorem 1.2 such that the *p*-rank of A(k) is p-1.

\S 2. Linking numbers and pro-*p* Galois groups

First we recall the definition of linking numbers of primes. Suppose that $p \neq 2$. For each prime number $\ell' \equiv 1 \pmod{p}$, we fix an integer $\alpha_{\ell'}$ such that $\overline{\alpha_{\ell'}} = \alpha_{\ell'} + \ell' \mathbb{Z}$ generates the cyclic group $(\mathbb{Z}/\ell'\mathbb{Z})^{\times}$. As in [13], we also choose $\alpha_p = (1+p)^{-1} \in \mathbb{Z}_p$ as a generator of the procyclic group $1 + p\mathbb{Z}_p = \alpha_p^{\mathbb{Z}_p}$. Let ℓ be a prime number. Put $lk(\ell, \ell) = 0$. If $\ell \neq \ell' \equiv 1 \pmod{p}$, then $lk(\ell, \ell')$ is defined as an integer such that

$$\ell^{-1} \equiv \alpha_{\ell'}^{\mathrm{lk}(\ell,\ell')} \pmod{\ell'}$$

and $0 \le \text{lk}(\ell, \ell') < \ell' - 1$. If $\ell \equiv 1 \pmod{p}$, then $\text{lk}(\ell, p)$ is defined as a *p*-adic integer satisfying

$$\ell^{-1} = \alpha_n^{\operatorname{lk}(\ell,p)}.$$

REMARK 2.1. While the definition of $lk(\ell, \ell')$ depends on the choice of $\alpha_{\ell'}$, the divisibility by p and the validity of (1) are independent of the choices of α_{ℓ_i} .

For a pro-*p* group *G* and the closed subgroup *H*, we denote by [H,G] (resp. H^p) the minimal closed subgroup containing $\{[h,g] = h^{-1}g^{-1}hg | g \in G, h \in H\}$ (resp. $\{h^p | h \in H\}$), and put $G_2 = [G,G]$, $G_3 = [G_2,G]$. Based on the theory of [10], the following theorem has been obtained in [13] as a partial refinement of Salle's result [17] (cf. also [2]).

Theorem 2.2. Assume that $p \neq 2$, and put $\ell_0 = p$. Let $S = \{\ell_1, \ldots, \ell_d\} \neq \emptyset$ be a finite set of d prime numbers $\ell_i \equiv 1 \pmod{p}$. Let $(\mathbb{Q}^{\text{cyc}})_S$ be the maximal pro-p-extension of \mathbb{Q}^{cyc} which is unramified at every primes not lying over any $\ell_i \in S$. Then the Galois group $\widetilde{G}_S(\mathbb{Q}) = \operatorname{Gal}((\mathbb{Q}^{\operatorname{cyc}})_S/\mathbb{Q})$ over \mathbb{Q} has a minimal presentation

$$1 \longrightarrow R \longrightarrow F \xrightarrow{\pi} \widetilde{G}_{S}(\mathbb{Q}) \longrightarrow 1$$

where $F = \langle x_0, x_1, \dots, x_d \rangle$ is a free pro-p group with d+1 generators x_i such that $\pi(x_i)$ generates the inertia group of a prime $\tilde{\ell}_i$ of $(\mathbb{Q}^{cyc})_S$ lying over ℓ_i , and $R = \langle r_0, r_1, \dots, r_d \rangle_F$ is a normal subgroup of F normally generated by d+1 relations r_i of the form

$$r_i = \begin{cases} [x_0^{-1}, y_0^{-1}] & \text{if } i = 0, \\ x_i^{\ell_i - 1} [x_i^{-1}, y_i^{-1}] & \text{if } 1 \le i \le a \end{cases}$$

with $y_i \in F$ such that $\pi(y_i)$ is a Frobenius automorphism of $\tilde{\ell}_i$ in $\tilde{G}_S(\mathbb{Q})$, and

$$y_i \equiv \prod_{j=0}^d x_j^{\operatorname{lk}(\ell_i,\ell_j)} \mod [F,F].$$

Proof. We give a short proof for the convenience of the reader. For each *i*, we fix an embedding of the algebraic closure of \mathbb{Q} into that of the ℓ_i -adic field \mathbb{Q}_{ℓ_i} , corresponding to a prime lying over $\tilde{\ell_i}$. Let $\mathcal{G}_i \simeq \mathbb{Z}_p \rtimes \mathbb{Z}_p$ be the Galois group of the maximal pro-*p*-extension of \mathbb{Q}_{ℓ_i} for $i \neq 0$, and put $\mathcal{G}_0 = \operatorname{Gal}(\mathbb{Q}^{\operatorname{cyc}}\mathbb{Q}_p^{\operatorname{ur},p}/\mathbb{Q}_p) \simeq \mathbb{Z}_p \times \mathbb{Z}_p$, where $\mathbb{Q}_p^{\operatorname{ur},p}/\mathbb{Q}_p$ is the unramified \mathbb{Z}_p -extension. Then the image of \mathcal{G}_i in $\tilde{G}_S(\mathbb{Q})$ is the decomposition group of $\tilde{\ell_i}$. By [17, §4] (or [2, Lemma 3.7]), the natural homomorphism

$$H^2(\widetilde{G}_S(\mathbb{Q}), \mathbb{Z}/p\mathbb{Z}) \hookrightarrow \bigoplus_{i=0}^d H^2(\mathcal{G}_i, \mathbb{Z}/p\mathbb{Z})$$

on the second cohomology groups is injective. By the same argument as in the proof of [10, Theorem 11.10 and Example 11.11], we obtain the presentation π such that $\pi(x_i) \mod (\tilde{G}_S(\mathbb{Q}))_2$ corresponds to the idèle class of α_{ℓ_i} .

The Galois group $\widetilde{G}_S(\mathbb{Q})$ is considered in [13] (including the case of p = 2) as an analogue of a link group, which is the fundamental group of the complement of a link in the 3-sphere. The 'Koch type' presentation of $\widetilde{G}_S(\mathbb{Q})$ in Theorem 2.2 is an analogue of the Milnor presentation of a link group, where $\pi(x_i)$ (resp. $\pi(y_i)$) is analogous to the meridian (resp. longitude) of the tubular neighbourhood V of a component of the link. In fact, $\mathcal{G}_i \simeq \mathbb{Z}_p \rtimes \mathbb{Z}_p$ above is an analogue of the fundamental group $\pi_1(\partial V) \simeq \mathbb{Z} \times \mathbb{Z}$ of the boundary of V. Hence the linking numbers of primes are certainly analogous to the linking numbers of knots.

REMARK 2.3. When d = 2, the condition (1) is satisfied if and only if the closed subgroup $G_S(\mathbb{Q}^{\text{cyc}}) = \text{Gal}((\mathbb{Q}^{\text{cyc}})_S/\mathbb{Q}^{\text{cyc}})$ of $\widetilde{G}_S(\mathbb{Q}) \simeq$ $G_S(\mathbb{Q}^{\text{cyc}}) \rtimes \mathbb{Z}_p$ is a prometacyclic pro-*p* group (cf. [7, 14]).

One can find infinitely many $S = \{\ell_1, \ldots, \ell_d\}$ with prescribed mod p linking numbers as follows. In particular, there exist infinitely many sets $S = \{\ell_1, \ell_2\}$ satisfying (1).

Proposition 2.4. Suppose $\ell_0 = p \neq 2$ and $d \geq 1$. For arbitrary integers a_{ij} $(0 \leq i, j \leq d, i \neq j)$, there exist infinitely many sets $\{(\ell_i, \overline{\alpha_{\ell_i}}) | 1 \leq i \leq d\}$ of pairs $(\ell, \overline{\alpha_{\ell}})$ of prime numbers $\ell \equiv 1 \pmod{p}$ and the primitive elements $\overline{\alpha_{\ell}} \in (\mathbb{Z}/\ell\mathbb{Z})^{\times}$ such that $lk(\ell_i, \ell_j) \equiv a_{ij} \pmod{p}$ for all $0 \leq i, j \leq d$ $(i \neq j)$.

Proof. Put $\zeta_n = \exp \frac{2\pi\sqrt{-1}}{n}$ for each $1 \leq n \in \mathbb{Z}$. We choose ℓ_i and α_{ℓ_i} $(1 \leq i \leq d)$ by the following recursive step: Put $L_i = \mathbb{Q}(\zeta_{p^2}, \zeta_{\ell_j}, \sqrt[p]{\ell_j} | 0 \leq j \leq i-1)$. Choose a prime \mathfrak{L}_i of $\mathbb{Q}(\zeta_p)$ such that the Frobenius automorphism $\sigma_i \in \operatorname{Gal}(L_i/\mathbb{Q}(\zeta_p))$ of \mathfrak{L}_i satisfies

$$\sigma_{i}(\zeta_{p^{2}}) = \zeta_{p^{2}}^{(1+p)^{a_{i0}}}, \ \sigma_{i}(\zeta_{\ell_{j}}) = \zeta_{\ell_{j}}^{\alpha_{\ell_{j}}^{-a_{ij}}} (1 \le j < i),$$

$$\sigma_{i}(\sqrt[p]{\ell_{j}}) = \zeta_{p}^{-a_{ji}} \sqrt[p]{\ell_{j}} \quad (0 \le j < i).$$

Take $\ell_i \in \mathfrak{L}_i$, and choose $\alpha_{\ell_i} \in \mathbb{Z}$ such that $\zeta_{\ell_i-1} \equiv \alpha_{\ell_i} \pmod{\widetilde{\mathfrak{L}}_i}$, i.e., $\zeta_p \equiv \alpha_{\ell_i}^{\frac{\ell_i-1}{p}} \pmod{\mathfrak{L}_i}$, where $\widetilde{\mathfrak{L}}_i$ is a prime of $\mathbb{Q}(\zeta_{\ell_i-1})$ lying over \mathfrak{L}_i .

Then we have $lk(\ell_i, \ell_j) \equiv a_{ij} \pmod{p}$ for all $0 \leq i, j \leq d \ (i \neq j)$. By the Chebotarev density theorem, there exist infinitely many such sets $S = \{\ell_1, \dots, \ell_d\}.$

§3. Proof of Theorem 1.1 via Theorem 2.2

Recall that $\ell_0 = p \neq 2$, $S = \{\ell_1, \ldots, \ell_d\}$, $d \geq 1$, $\operatorname{Gal}(k/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^d$ and that k/\mathbb{Q} is unramified outside S. Let K/\mathbb{Q} be a cyclic extension of degree p which is unramified outside S and ramified at any $\ell_i \in S$. Then $K \subset k \subset (\mathbb{Q}^{\operatorname{cyc}})_S$, and k/K is unramified. Let $H = \operatorname{Ker}(|_K \circ \pi)$ be the kernel of the surjective homomorphism

$$F \xrightarrow{\pi} \widetilde{G}_S(\mathbb{Q}) \xrightarrow{|_K} \operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{Z}/p\mathbb{Z},$$

where π is the homomorphism obtained in Theorem 2.2. Recall that the inertia subgroup T_i of $\widetilde{G}_S(\mathbb{Q})$ for $\widetilde{\ell}_i$ is a procyclic pro-p group generated by $\pi(x_i)$. Since K/\mathbb{Q} is not unramified at $\ell_i \in S$, $T_i \not\subset \text{Gal}((\mathbb{Q}^{\text{cyc}})_S/K)$, i.e., $\pi(x_i)|_K \neq 1 \in \text{Gal}(K/\mathbb{Q})$ for $i \neq 0$. Hence the inertia subgroup $T_i \cap \operatorname{Ker}(|_K)$ of $\operatorname{Gal}((\mathbb{Q}^{\operatorname{cyc}})_S/K)$ for $\widetilde{\ell}_i$ is generated by $\pi(x_i^p)$ if $1 \leq i \leq d$. Then π induces an exact sequence

$$1 \longrightarrow NR \longrightarrow H \longrightarrow \operatorname{Gal}((K^{\operatorname{cyc}})_{\emptyset}/K) \longrightarrow 1 ,$$

where $(K^{\text{cyc}})_{\emptyset}$ is the maximal unramified pro-*p*-extension of K^{cyc} , and $N = \langle x_1^p, \ldots, x_d^p \rangle_H$ is the closed normal subgroup of H which is normally generated by x_1^p, \ldots, x_d^p . Since $(K^{\text{cyc}})_{\emptyset}/\mathbb{Q}$ is a Galois extension, NR is a normal subgroup of F. Actually, since $g^{-1}x_i^pg \in N$ for any $i \neq 0$ and any $g \in F = \bigcup_{j=0}^{p-1} x_i^j H$, N is also a normal subgroup of F, and normally generated by x_1^p, \ldots, x_d^p , i.e.,

$$N = \langle x_1^p, \dots, x_d^p \rangle_F.$$

Since $k^{\text{cyc}}/K^{\text{cyc}}$ is unramified, $(K^{\text{cyc}})_{\emptyset} = (k^{\text{cyc}})_{\emptyset}$ is also the maximal unramified pro-*p*-extension of k^{cyc} . Then π also induces a presentation

$$1 \longrightarrow NR \longrightarrow F \xrightarrow{\varpi} G \longrightarrow 1$$

of

$$G = \operatorname{Gal}((K^{\operatorname{cyc}})_{\emptyset}/\mathbb{Q}) = \operatorname{Gal}((k^{\operatorname{cyc}})_{\emptyset}/\mathbb{Q})$$

where $\varpi = |_{(K^{cyc})_{\emptyset}} \circ \pi$. Let

$$R' = \langle \rho_0, \dots, \rho_d \rangle_F$$

be the normal subgroup of F normally generated by d + 1 elements

$$\rho_i = [x_i^{-1}, y_i^{-1}] \equiv \prod_{j=0}^d [x_i, x_j]^{\operatorname{lk}(\ell_i, \ell_j)} \mod F_3.$$

Then $R' \subset F_2$, NR = NR', and $G \simeq F/NR'$.

The restriction mapping $G \xrightarrow{|_k \text{cyc}} \text{Gal}(k^{\text{cyc}}/\mathbb{Q})$ induces a surjective homomorphism

$$\psi: G/G_2 \longrightarrow \operatorname{Gal}(k^{\operatorname{cyc}}/\mathbb{Q}).$$

Since $NR \subset NF_2$, we have $G/G_2 \simeq F/NF_2 \simeq (\mathbb{Z}/p\mathbb{Z})^d \oplus \mathbb{Z}_p$. Since moreover $\operatorname{Gal}(k^{\operatorname{cyc}}/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^d \oplus \mathbb{Z}_p$, ψ must be an isomorphism. This implies that

$$G_2 = \operatorname{Gal}((k^{\operatorname{cyc}})_{\emptyset}/k^{\operatorname{cyc}}).$$

Recall that

$$G_2/[G_2,G_2] \simeq \varprojlim A(k_n),$$

 $\mathbf{6}$

where \varprojlim is the projective limit with respect to the norm mappings. Then we obtain the following equivalences:

$$\lambda(k) = \mu(k) = \nu(k) = 0 \iff G_2 \simeq 1$$

$$\Leftrightarrow G_2 = (G_2)^p G_3$$

(2)
$$\Leftrightarrow F_2 N / (F_2)^p F_3 N = R' (F_2)^p F_3 N / (F_2)^p F_3 N.$$

Put $\overline{g} = g(F_2)^p F_3 N$ for $g \in F$.

Lemma 3.1. $\{\overline{[x_i, x_j]} | 0 \le i < j \le d\}$ forms a basis of the vector space $F_2N/(F_2)^pF_3N$ over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

Proof. Note that the map

$$F/F_2 \times F/F_2 \to F_2/F_3 : (g_1F_2, g_2F_2) \mapsto [g_1, g_2]F_3$$

is a surjective \mathbb{Z}_p -bilinear homomorphism. Since

$$[g_1^{-1}x_i^p g_1, g_2^{-1}x_j^p g_2] \equiv [x_i, x_j]^{p^2} \equiv 1 \mod (F_2)^p F_3,$$

 $(F_2)^p F_3 N/(F_2)^p F_3$ is an abelian group. Suppose that $g \in (F_2)^p F_3 N \cap F_2$. Then $g \in (F_2)^p F_3 N$ is written in the form $g = g' \prod_{i=1}^d x_i^{z_i p}$ with some $g' \in (F_2)^p F_3$ and $z_i \in \mathbb{Z}_p$. Since $\prod_{i=1}^d x_i^{z_i p} \equiv 1 \pmod{F_2}$ and F/F_2 is a free \mathbb{Z}_p -module generated by $\{x_j F_2 \mid 0 \leq j \leq d\}$, we have $z_i = 0$ for all $1 \leq i \leq d$, i.e., $g = g' \in (F_2)^p F_3$. Hence $(F_2)^p F_3 N \cap F_2 = (F_2)^p F_3$, which induces an isomorphism

$$F_2/(F_2)^p F_3 \simeq F_2 N/(F_2)^p F_3 N : g(F_2)^p F_3 \mapsto \overline{g}.$$

For each pair (i, j) such that $0 \leq i < j \leq d$, there is a surjective homomorphism $\varphi_{i,j} : F \to F' : x_i \mapsto a, x_j \mapsto b, x_l \mapsto 1 \ (l \notin \{i, j\})$, where F' is the free pro-p group with two generators a, b. If $g = \prod_{0 \leq i < j \leq d} [x_i, x_j]^{z_{i,j}} \equiv 1 \pmod{(F_2)^p F_3}$ with some $z_{i,j} \in \mathbb{Z}_p$, then $[a, b]^{z_{i,j}} = \varphi_{i,j}(g) \in (F'_2)^p F'_3$, and hence $z_{i,j} \equiv 0 \pmod{p}$ for any (i, j). Therefore $\{[x_i, x_j] \mid 0 \leq i < j \leq d\}$ is a basis of the \mathbb{F}_p -vector space $F_2/(F_2)^p F_3$. This yields the claim of Lemma 3.1. \Box

If
$$\lambda(k) = \mu(k) = \nu(k) = 0$$
, then

$$\frac{d(d+1)}{2} = \dim_{\mathbb{F}_p}(F_2N/(F_2)^p F_3N)$$
$$= \dim_{\mathbb{F}_p}(R'(F_2)^p F_3N/(F_2)^p F_3N) \le d+1,$$

i.e., $d \leq 2$, by Lemma 3.1 and (2).

If d = 1, $R'(F_2)^p F_3 N/(F_2)^p F_3 N = \langle \overline{[x_0, x_1]}^{\operatorname{lk}(\ell_0, \ell_1)}, \overline{[x_0, x_1]}^{\operatorname{lk}(\ell_1, \ell_0)} \rangle$ is a subspace of

$$F_2 N/(F_2)^p F_3 N = \langle \overline{[x_0, x_1]} \rangle \simeq \mathbb{F}_p$$

(cf. Lemma 3.1). By (2), $\lambda(k) = \mu(k) = \nu(k) = 0$ if and only if
$$\begin{split} & \mathrm{lk}(\ell_0,\ell_1) \in \mathbb{Z}_p^{\times} \text{ or } \mathrm{lk}(\ell_1,\ell_0) \in \mathbb{Z}_p^{\times}. \\ & \mathrm{If} \ d=2, \ R'(F_2)^p F_3 N/(F_2)^p F_3 N = \langle \overline{\rho_0},\overline{\rho_1},\overline{\rho_2} \rangle \text{ is a subspace of} \end{split}$$

$$F_2 N/(F_2)^p F_3 N = \langle \overline{[x_0, x_1]}, \overline{[x_1, x_2]}, \overline{[x_2, x_0]} \rangle \simeq \mathbb{F}_p^3$$

(cf. Lemma 3.1). Then $(\overline{\rho_0}, \overline{\rho_1}, \overline{\rho_2}) = (\overline{[x_0, x_1]}, \overline{[x_1, x_2]}, \overline{[x_2, x_0]})A$ with a matrix

$$A = \begin{pmatrix} lk(\ell_0, \ell_1) & -lk(\ell_1, \ell_0) & 0\\ 0 & lk(\ell_1, \ell_2) & -lk(\ell_2, \ell_1)\\ -lk(\ell_0, \ell_2) & 0 & lk(\ell_2, \ell_0) \end{pmatrix}$$

having the determinant

$$\det A = \mathrm{lk}(\ell_0, \ell_1) \mathrm{lk}(\ell_1, \ell_2) \mathrm{lk}(\ell_2, \ell_0) - \mathrm{lk}(\ell_0, \ell_2) \mathrm{lk}(\ell_2, \ell_1) \mathrm{lk}(\ell_1, \ell_0).$$

By (2), $\lambda(k) = \mu(k) = \nu(k) = 0$ if and only if det $A \in \mathbb{Z}_p^{\times}$. Thus the proof of Theorem 1.1 is completed.

REMARK 3.2. All real abelian *p*-extensions k/\mathbb{Q} such that $\lambda(k) =$ $\mu(k) = \nu(k) = 0$ have been determined by some conditions on pth power residue symbols (cf. [18, 22, 23]). One can also obtain Theorem 1.1 by translating the condition of [22, Theorem 1] into the words of linking numbers (cf. [24, 25]). Moreover, there is an analogous condition of (1)in the function field analogue [1, Theorem] of [22, Theorem 1].

§4. Linking matrices of number fields

We define a linking matrix C_K for a cyclic extension K/\mathbb{Q} of degree p. Suppose that $p \neq 2$. We use the same notation as in Theorem 2.2. Suppose that K/\mathbb{Q} is unramified outside $\{\ell_{\delta}, \cdots, \ell_d\}$ and ramified at ℓ_i for any $\delta \leq i \leq d$, where $\delta = \delta_K$ is either 0 or 1 according to whether K/\mathbb{Q} is ramified at $\ell_0 = p$ or not. Let K^g be the genus class field of K/\mathbb{Q} , i.e., K^g is the maximal unramified abelian extension of K which is abelian over \mathbb{Q} . Then K^g/\mathbb{Q} coincides with the maximal elementary abelian *p*-extension of \mathbb{Q} unramified outside $\{\ell_{\delta}, \cdots, \ell_d\}$, and hence the homomorphism

$$F \xrightarrow{\pi} \widetilde{G}_S(\mathbb{Q}) \xrightarrow{|_{K^g}} \operatorname{Gal}(K^g/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^{d+1-\delta}$$

induces a homomorphism

$$F/F^{p}[F,F]\langle x_{0}^{\delta}\rangle \xrightarrow{\simeq} \operatorname{Gal}(K^{g}/\mathbb{Q}) \xrightarrow{\mid_{K}} \operatorname{Gal}(K/\mathbb{Q})$$
$$: \overline{x_{i}} \mapsto \pi(x_{i})|_{K^{g}} \mapsto \pi(x_{d}^{m_{i}})|_{K}$$

with some integers $m_i = m_{K,i} \not\equiv 0 \pmod{p}$ for $\delta \leq i \leq d$. Note that $m_d = 1$.

REMARK 4.1. The presentation in Theorem 2.2 is constructed to satisfy $\pi(x_i)|_{K^g} = \tau_i|_{K^g}$ for $\tau_i \in \operatorname{Gal}(\mathbb{Q}(\zeta_{p^2\ell_1\cdots\ell_d})/\mathbb{Q}(\zeta_{p^2\ell_1\cdots\ell_d/\ell_i}))$ such that $\tau_0(\zeta_{p^2}) = \zeta_{p^2}^{1+p}$ and $\tau_j(\zeta_{\ell_j}^{\alpha_{\ell_j}}) = \zeta_{\ell_j}$ if $j \neq 0$. Then K is identified as the fixed field of $\langle \tau_0^{\delta}, \tau_d^p, \tau_i \tau_d^{-m_i} | \delta \leq i < d \rangle$ in $\mathbb{Q}(\zeta_{p^2\ell_1\cdots\ell_d})/\mathbb{Q}$.

Let $l_{K,i}$ be the prime ideal of K lying over ℓ_i for each $\delta \leq i \leq d$. The decomposition group

$$\operatorname{Gal}(K^g/K) \cap \langle \pi(x_i) |_{K^g}, \pi(y_i) |_{K^g} \rangle = \langle \pi(y_i x_i^{c_{ii}}) |_{K^g} \rangle$$

of $\mathfrak{l}_{K,i}$ in $\operatorname{Gal}(K^g/K)$ is generated by the Frobenius automorphism $\left(\frac{K^g/K}{\mathfrak{l}_{K,i}}\right) = \pi(y_i x_i^{c_{ii}})|_{K^g}$ with some integer c_{ii} . Since

$$1 = \pi(y_i x_i^{c_{ii}})|_K = \pi(x_i^{c_{ii}} \prod_{j=\delta}^d x_j^{\mathrm{lk}(\ell_i, \ell_j)})|_K = \pi(x_d)|_K^{m_i c_{ii} + \sum_{j=\delta}^d m_j \mathrm{lk}(\ell_i, \ell_j)},$$

we have $c_{ii} \equiv -m_i^{-1} \sum_{j=\delta}^d m_j \operatorname{lk}(\ell_i, \ell_j) \pmod{p}$. Put $c_{ij} = \operatorname{lk}(\ell_i, \ell_j)$ if $i \neq j$. Then the linking matrix of K is defined as a $(d+1-\delta) \times (d+1-\delta)$ matrix

$$C_K = (c_{ij} \bmod p)_{\delta \le i, j \le d}$$

with entries in \mathbb{F}_p , which satisfies

(3)
$$\begin{pmatrix} \left(\frac{K^g/K}{\mathfrak{l}_{K,\delta}}\right)\\ \vdots\\ \left(\frac{K^g/K}{\mathfrak{l}_{K,d}}\right) \end{pmatrix} = C_K \begin{pmatrix} \pi(x_\delta)|_{K^g}\\ \vdots\\ \pi(x_d)|_{K^g} \end{pmatrix},$$

i.e., $\left(\frac{K^g/K}{\mathfrak{l}_{K,i}}\right) = \prod_{j=\delta}^d \pi(x_j)|_{K^g}^{c_{ij}}$ for $\delta \leq i \leq d$. Note that $\{\pi(x_j)|_{K^g}\}_{\delta \leq j \leq d}$ forms a basis of the \mathbb{F}_p -vector space $\operatorname{Gal}(K^g/\mathbb{Q}) \simeq \mathbb{F}_p^{d+1-\delta}$. Since $\operatorname{Gal}(K^g/K) \simeq \mathbb{F}_p^{d-\delta}$, we have rank $C_K \leq d-\delta$. The following lemma is a translation of [4, Lemma 1.1] into the words of a linking matrix. We denote by $[\mathfrak{a}]$ the ideal class of an ideal \mathfrak{a} .

Lemma 4.2. Under the settings above, the following two conditions are equivalent, where $(0, \dots, 0) \neq (b_{\delta}, \dots, b_d) \in \mathbb{F}_p^{d+1-\delta}$:

Y. Mizusawa and G. Yamamoto

1.
$$A(K) = \langle [\mathfrak{l}_{K,\delta}], \cdots, [\mathfrak{l}_{K,d}] \rangle \simeq (\mathbb{Z}/p\mathbb{Z})^{d-\delta} \text{ and } \prod_{i=\delta}^{d} [\mathfrak{l}_{K,i}]^{b_i} = 1.$$

2. rank $C_K = d - \delta$ and $(b_{\delta}, \cdots, b_d) C_K = (0, \cdots, 0).$

Proof. The equation (3) implies that $\operatorname{Gal}(K^g/K) = \langle \left(\frac{K^g/K}{\mathfrak{l}_{K,\delta}}\right), \cdots, \left(\frac{K^g/K}{\mathfrak{l}_{K,d}}\right) \rangle$ if and only if rank $C_K = d - \delta$. By [4, Lemma 1.1], $A(K) = \langle [\mathfrak{l}_{K,\delta}], \cdots, [\mathfrak{l}_{K,d}] \rangle \simeq \mathbb{F}_p^{d-\delta}$ if and only if rank $C_K = d - \delta$. Then, since $A(K) \to \operatorname{Gal}(K^g/K) : [\mathfrak{l}_{K,i}] \mapsto \left(\frac{K^g/K}{\mathfrak{l}_{K,i}}\right)$ becomes a \mathbb{F}_p -linear isomorphism, we obtain the equivalence.

If $\delta = 1$ and $m_i = 1$ for all $1 \leq i \leq d$, the $d \times d$ matrix C_K coincides with the linking matrix C' of S (cf. [16, Example 10.15]).

§5. A criterion of Greenberg's conjecture via capitulation

Using the linking matrices C_K , we obtain a criterion of Greenberg's conjecture as follows. Recall that $\ell_0 = p \neq 2$ and $\ell_i \equiv 1 \pmod{p}$ for $1 \leq i \leq d$. Let k/\mathbb{Q} be a cyclic extension of degree p which is unramified outside the set $S = \{\ell_1, \dots, \ell_d\}$ and ramified at any $\ell_i \in S$. Then the $(\mathbb{Z}/p\mathbb{Z})^2$ -extension k_1/\mathbb{Q} contains p-1 cyclic subextensions $k^{(1)}, \dots, k^{(p-1)}$ of degree p except for k and \mathbb{Q}_1 . Put $k^{(0)} = k$, and put

$$J = \{j \mid \operatorname{rank} C_K = d - \delta_K \text{ for } K = k^{(j)} \} \subset \{0, 1, \cdots, p - 1\}$$

with the cardinality |J|. For each $j \in J$, let $(b_{\delta j}, \dots, b_{d j}) \in \mathbb{F}_p^{d+1-\delta}$ be a nonzero vector satisfying $(b_{\delta j}, \dots, b_{d j})C_{k^{(j)}} = (0, \dots, 0)$, where $\delta = 1$ if j = 0, and $\delta = 0$ otherwise. Omitting b_{0j} , we define a $d \times |J|$ matrix

$$B_k = (b_{ij})_{1 \le i \le d, j \in J}.$$

Now we shall recall and prove Theorem 1.2.

Theorem 5.1 (Theorem 1.2). Under the settings above, if rank $C_k = d - 1$ and rank $B_k = d$, then A(k) capitulates in k_1 . If moreover p is inert in k/\mathbb{Q} , we have $\lambda(k) = \mu(k) = 0$.

Proof. Suppose that rank $C_k = d - 1$ and rank $B_k = d$. Then $A(k) = \langle [\mathfrak{l}_{k,1}], \cdots, [\mathfrak{l}_{k,d}] \rangle$ by Lemma 4.2, and there is $J' \subset J$ such that $B'_k = (b_{ij})_{1 \leq i \leq d, j \in J'}$ is a regular $d \times d$ matrix. Let O_{k_1} denote the ring of algebraic integers in k_1 , and let \mathfrak{p} be the prime ideal of \mathbb{Q}_1 lying over p. For any $1 \leq j \leq p - 1$, since $[\mathfrak{p}] \in A(\mathbb{Q}_1) \simeq 1$ and $\mathfrak{p}O_{k_1} = \mathfrak{l}_{k(j),0}O_{k_1}$, we have $[\mathfrak{l}_{k(j),0}O_{k_1}] = [\mathfrak{p}O_{k_1}] = 1 \in A(k_1)$. Moreover, $\mathfrak{l}_{k(j),i}O_{k_1} = \mathfrak{l}_{k,i}O_{k_1}$ for any $1 \leq j \leq p - 1$ and $1 \leq i \leq d$. Hence $\prod_{i=1}^{d} [\mathfrak{l}_{k,i}O_{k_1}]^{b_{ij}} = \prod_{i=1}^{d} [\mathfrak{l}_{k(j),i}O_{k_1}]^{b_{ij}} = 1$ for any $j \in J'$ by Lemma 4.2.

If we write additively as $\sum_{i=1}^{d} b_{ij}[\mathfrak{l}_{k,i}O_{k_1}] = 0$, then

$$([\mathfrak{l}_{k,1}O_{k_1}],\cdots,[\mathfrak{l}_{k,d}O_{k_1}])=(0,\cdots,0)B'_k^{-1}=(0,\cdots,0).$$

This implies that the lift mapping $A(k) \to A(k_1) : [\mathfrak{a}] \mapsto [\mathfrak{a}O_{k_1}]$ is a zero mapping, i.e., A(k) capitulates in k_1 . Then, moreover if p is inert in k/\mathbb{Q} , we have $\lambda(k) = \mu(k) = 0$ by [5, Theorem 1].

REMARK 5.2. Note that the extensions $k^{(1)}, \dots, k^{(p-1)}$ have the common genus class field which contains k_1 . For $1 \leq i \leq d$, since $\pi_1(x_i)|_k = \pi_1(x_d^{m_{k,i}})|_k$ and $\langle \pi_1(x_i)|_{k_1} \rangle = \operatorname{Gal}(k_1/\mathbb{Q}_1) = \langle \pi_1(x_d)|_{k_1} \rangle$, we have $\pi_1(x_i)|_{k_1} = \pi_1(x_d^{m_{k,i}})|_{k_1}$, and hence $m_{k^{(j)},i} \equiv m_{k,i} \pmod{p}$ for any $0 \leq j \leq p-1$, i.e., m_i $(1 \leq i \leq d)$ is common for all $K = k^{(j)}$. On the other hand, we may assume that $\operatorname{Gal}(k_1/k^{(j)}) = \langle \pi(x_0^{-j}x_d)|_{k_1} \rangle$, i.e., $m_0 = m_{k^{(j)},0} \equiv j^{-1} \pmod{p}$ for each $K = k^{(j)} (1 \leq j \leq p-1)$.

Theorem 1.2 is a partial generalization of Theorem 1.1 in the following sense.

Proposition 5.3. If d = 2 under the settings above, rank $B_k = 2$ (and rank $C_k = 1$) if and only if (1) is satisfied.

Proof. Put $l_{K,ij} = m_{K,j} \operatorname{lk}(\ell_i, \ell_j)$ $(\delta_K \leq j \leq 2)$ for $\mathbb{Q}_1 \neq K \subset k_1$, and put $l_{ij} = l_{K,ij}$ if $j \neq 0$ (cf. Remark 5.2). Since

$$C_k \in \left(\begin{array}{cc} l_{12} & 0\\ -l_{21} & 0 \end{array}\right) GL_2(\mathbb{F}_p)$$

and

$$C_K \in \begin{pmatrix} 0 & -l_{01} & -l_{02} \\ 0 & l_{K,10} + l_{12} & -l_{12} \\ 0 & -l_{21} & l_{K,20} + l_{21} \end{pmatrix} GL_3(\mathbb{F}_p)$$

for $K \neq k$, we have $(l_{21}, l_{12})C_k = (0, 0)$ and $(b_{0,K}, b_{1,K}, b_{2,K})C_K = (0, 0, 0)$ with

$$\begin{pmatrix} b_{0,K} \\ b_{1,K} \\ b_{2,K} \end{pmatrix} = \begin{pmatrix} l_{12}l_{K,20} + l_{K,20}l_{K,10} + l_{K,10}l_{21} \\ l_{K,20}l_{01} + l_{01}l_{21} + l_{21}l_{02} \\ l_{K,10}l_{02} + l_{02}l_{12} + l_{12}l_{01} \end{pmatrix}$$
$$= \begin{pmatrix} -l_{01} \\ l_{K,10} + l_{12} \\ -l_{21} \end{pmatrix} \times \begin{pmatrix} -l_{02} \\ -l_{12} \\ l_{K,20} + l_{21} \end{pmatrix},$$

where \times denotes the cross product of vectors. For each $K = k^{(j)}$ with $1 \leq j \leq p-1$, rank $C_K \leq 1$ (i.e., $j \notin J$) if and only if $b_{0,K} = b_{1,K} =$

 $b_{2,K}=0.$ Note that $l_{21}=l_{12}=0$ if and only if rank $C_k=0$ (i.e., $0\not\in J).$ Since

(4)
$$\begin{vmatrix} l_{21} & b_{1,K} \\ l_{12} & b_{2,K} \end{vmatrix} = -l_{01}l_{12}l_{K,20} + l_{02}l_{21}l_{K,10},$$

we have $J = \{0, 1, \dots, p-1\}$ (in particular rank $C_k = 1$) if (1) is satisfied. If $0 \in J$, then $(b_{10}, b_{20}) = (l_{21}, l_{12})$. If $0 \neq j \in J$, then $(b_{0j}, b_{1j}, b_{2j}) = (b_{0,K}, b_{1,K}, b_{2,K})$. Since the 2×2 minors of B_k are either (4) or

$$\begin{vmatrix} b_{1,K} & b_{1,K'} \\ b_{2,K} & b_{2,K'} \end{vmatrix} = (-l_{01}l_{12}l_{K,20} + l_{02}l_{21}l_{K,10})(l_{01} + l_{02})(m_{K',0}m_{K,0}^{-1} - 1)$$

with some K and K', we have (1) if and only if rank $B_k = 2$.

§6. Examples

Using Theorem 1.2, one can see the detail of an example by Greenberg [5] as follows.

EXAMPLE 6.1 ([5, p.283]). If $\ell_0 = p = 3$, d = 3, $(\ell_1, \ell_2, \ell_3) = (7, 13, 19)$, $\alpha_{\ell_1} = 3$, $\alpha_{\ell_2} = \alpha_{\ell_3} = 2$, we have

$$(\operatorname{lk}(\ell_i,\ell_j))_{0\leq i,j\leq 3} = \begin{pmatrix} 0 & 5 & 8 & 5\\ 2+z_1 & 0 & 1 & 12\\ 1+z_2 & 3 & 0 & 13\\ 0+z_3 & 1 & 7 & 0 \end{pmatrix} \equiv \begin{pmatrix} 0 & 2 & 2 & 2\\ 2 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{pmatrix} \mod 3,$$

with some $z_i \in 3\mathbb{Z}_3$, where we note that $(1+p)^p \equiv 1 \pmod{p^2}$. Let k/\mathbb{Q} be the cyclic cubic extension ramified only at $S = \{7, 13, 19\}$ such that $m_{k,1} = m_1 = 1, m_{k,2} = m_2 = 2$ (and $m_{k,3} = m_3 = 1$). Then

$$C_k = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \operatorname{rank} C_k = 2, \quad (1, 0, 2)C_k = (0, 0, 0),$$

and $A(k) \simeq (\mathbb{Z}/3\mathbb{Z})^2$ by Lemma 4.2. For $j \in \{1, 2\}$, assuming $m_{k^{(j)}, 0} = j \equiv j^{-1} \pmod{3}$, we have

$$C_{k^{(j)}} = \begin{pmatrix} j & 2 & 2 & 2 \\ 2 & j+1 & 1 & 0 \\ 1 & 0 & j+1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad \operatorname{rank} C_{k^{(j)}} = 3,$$

and $(1,2,1,0)C_{k^{(1)}} = (0,0,0,0) = (1,0,1,1)C_{k^{(2)}}$. Then $J = \{0,1,2\}$, and

$$B_k = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad \operatorname{rank} B_k = 3.$$

Hence A(k) capitulates in k_1 by Theorem 1.2. Since

$$\pi(y_0)|_k = \prod_{j=1}^3 \pi(x_j)|_k^{\operatorname{lk}(\ell_0,\ell_j)} = \pi(x_3)|_k^{\sum_{j=1}^3 m_j \operatorname{lk}(\ell_0,\ell_j)} = \pi(x_3)|_k^2 \neq 1$$

by Theorem 2.2, p is inert in k/\mathbb{Q} . Therefore $\lambda(k) = \mu(k) = 0$ by [5, Theorem 1].

Moreover, we obtain infinitely many examples of Theorem 1.2 as follows.

Corollary 6.2. If $2 \le d \le p$, there exist infinitely many cyclic extensions k/\mathbb{Q} of degree p such that; p is inert in k/\mathbb{Q} , $A(k) \simeq (\mathbb{Z}/p\mathbb{Z})^{d-1}$, and $\lambda(k) = \mu(k) = 0$ (and $\nu(k) = 1$ if d = 2).

Proof. Put $\ell_0 = p$. By Proposition 2.4, there exist infinitely many $S = \{\ell_1, \cdots, \ell_d\}$ such that

$$(\operatorname{lk}(\ell_i, \ell_j))_{0 \le i, j \le d} \equiv \begin{pmatrix} 0 & 0 & 1 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ 2 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ d & -1 & 0 & \cdots & 0 \end{pmatrix} \mod p.$$

Let k/\mathbb{Q} be the $\mathbb{Z}/p\mathbb{Z}$ -extension ramified only at S such that $m_{k,i} = m_i = 1$ for all $1 \leq i \leq d$. Since

$$\pi(y_0)|_k = \prod_{j=1}^d \pi(x_j)|_k^{\operatorname{lk}(\ell_0,\ell_j)} = \prod_{j=2}^d \pi(x_j)|_k = \pi(x_d)|_k^{d-1} \neq 1$$

by Theorem 2.2, p is inert in k/\mathbb{Q} . (If d = 2, then (1) is satisfied, and hence Theorem 1.1 yields that $\lambda(k^g) = \mu(k^g) = \nu(k^g) = 0$, which implies $\lambda(k) = \mu(k) = 0$, $\nu(k) = 1$ and $A(k) \simeq \mathbb{Z}/p\mathbb{Z}$.) Since

$$C_k = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ -1 & 1 & & \\ \vdots & \ddots & \\ -1 & & & 1 \end{pmatrix}$$

has rank d-1, we have $A(k) \simeq (\mathbb{Z}/p\mathbb{Z})^{d-1}$ by Lemma 4.2. Moreover $0 \in J$ and $(b_{10}, \cdots, b_{d0}) = (1, 0, \cdots, 0) \in \mathbb{F}_p^d$. Suppose that $m_{k^{(j)}, 0} \equiv$

 $j^{-1} \pmod{p}$ as in Remark 5.2. Then

$$C_{k^{(j)}} = \begin{pmatrix} -(d-1)j & 0 & 1 & \cdots & 1 \\ 1 & -j^{-1} & 0 & \cdots & 0 \\ \hline 2 & -1 & 1 - 2j^{-1} & & \\ \vdots & \vdots & & \ddots & \\ d & -1 & & 1 - dj^{-1} \end{pmatrix}$$

for $1 \leq j \leq p-1$. Put $J' = \{0, 2, \cdots, d\}$ if d < p, and $J' = \{0, 1, 2, \cdots, p-1\}$ if d = p. One can easily see that $J' \subset J$, i.e., rank $C_{k^{(j)}} = d$ if $0 \neq j \in J'$. If d < p,

$$B'_{k} = (b_{ij})_{1 \le i \le d, j \in J'} = \begin{pmatrix} 1 & -1 & \cdots & -1 \\ 0 & 2^{-1} & & \\ \vdots & & \ddots & \\ 0 & & & d^{-1} \end{pmatrix}$$

and $b_{0j} = 0$ for any $2 \le j \le d$. If d = p,

$$B'_{k} = (b_{ij})_{1 \le i \le d, j \in J'} = \begin{pmatrix} 1 & 0 & -1 & \cdots & -1 \\ 0 & 1^{-1} & 2^{-1} & & \\ 0 & 2^{-1} & & \ddots & \\ \vdots & \vdots & & (p-1)^{-1} \\ \hline 0 & (p-1)^{-1} & 0 & \cdots & 0 \end{pmatrix},$$

 $b_{01} = 1$, and $b_{0j} = 0$ for all $2 \le j \le p - 1$. Since det $B'_k \ne 0$, we have rank $B_k = d$, and hence $\lambda(k) = \mu(k) = 0$ by Theorem 1.2.

EXAMPLE 6.3. If $\ell_0 = p = 3$, d = 2, $(\ell_1, \ell_2) = (67, 79)$, $\alpha_{\ell_1} = 12$, $\alpha_{\ell_2} = 53$, we have

$$(\operatorname{lk}(\ell_i, \ell_j))_{0 \le i, j \le 2} = \begin{pmatrix} 0 & 57 & 1\\ 1 + z_1 & 0 & 48\\ 2 + z_2 & 65 & 0 \end{pmatrix} \equiv \begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 2 & -1 & 0 \end{pmatrix} \mod 3$$

with some $z_i \in 3\mathbb{Z}_3$. Then $\lambda(k) = \mu(k) = 0$ (and $\nu(k) = 1$) for k with $m_{k,1} = 1$ as in the proof of Corollary 6.2. Since $\lambda(k^g) = \mu(k^g) = \nu(k^g) = 0$ by Theorem 1.1, we have $\lambda(k) = \mu(k) = 0$ (and $\nu(k) = 1$) also for k with $m_{k,1} = 2$.

ACKNOWLEDGEMENTS. The authors thank the referee and Professor Masato Kurihara for helpful comments for the improvement of this paper. A part of this work was supported by JSPS KAKENHI Grant Numbers JP26800010, JP17K05167.

References

- [1] A. Aiba, On the vanishing of Iwasawa invariants of geometric cyclotomic \mathbb{Z}_p -extensions, Acta Arith. **108** (2003), no. 2, 113–122.
- [2] J. Blondeau, P. Lebacque and C. Maire, On the cohomological dimension of some pro-*p*-extensions above the cyclotomic Z_p-extension of a number field, Mosc. Math. J. **13** (2013), no. 4, 601–619.
- [3] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2) **109** (1979), no. 2, 377–395.
- [4] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 6, 108–110.
- [5] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284.
- [6] J. Hillman, D. Matei and M. Morishita, Pro-p link groups and p-homology groups, Primes and knots, 121–136, Contemp. Math. 416, Amer. Math. Soc., Providence, RI, 2006.
- [7] T. Itoh and Y. Mizusawa, On tamely ramified pro-p-extensions over Z_pextensions of Q, Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 2, 281–294.
- [8] T. Kadokami and Y. Mizusawa, Iwasawa type formula for covers of a link in a rational homology sphere, J. Knot Theory Ramifications 17 (2008), no. 10, 1199–1221.
- [9] T. Kadokami and Y. Mizusawa, On the Iwasawa invariants of a link in the 3-sphere, Kyushu J. Math. 67 (2013), no. 1, 215–226.
- [10] H. Koch, Galois theory of *p*-extensions, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002.
- [11] J. Labute, Linking numbers and the tame Fontaine-Mazur conjecture, Ann. Math. Qué. 38 (2014), no. 1, 61–71.
- [12] B. Mazur, Remarks on the Alexander polynomial, unpublished paper, 1963/1964.
- [13] Y. Mizusawa, On pro-*p* link groups of number fields, Trans. Amer. Math. Soc. **372** (2019), no. 10, 7225–7254.
- [14] Y. Mizusawa and M. Ozaki, On tame pro-p Galois groups over basic \mathbb{Z}_p -extensions, Math. Z. **273** (2013), no. 3–4, 1161–1173.
- [15] M. Morishita, On certain analogies between knots and primes, J. Reine Angew. Math. 550 (2002), 141–167.
- [16] M. Morishita, Knots and Primes An Introduction to Arithmetic Topology, Springer, 2012.
- [17] L. Salle, Sur les pro-*p*-extensions à ramification restreinte au-dessus de la \mathbb{Z}_p -extension cyclotomique d'un corps de nombres, J. Théor. Nombres Bordeaux **20** (2008), no. 2, 485–523.
- [18] H. Taya and G. Yamamoto, Notes on certain real abelian 2-extension fields with $\lambda_2 = \mu_2 = \nu_2 = 0$, Trends in Mathematics, Information Center for Mathematical Sciences **9** (2006), no. 1, 81–89.

- [19] J. Ueki, On the Iwasawa μ -invariants of branched \mathbb{Z}_p -covers, Proc. Japan Acad. Ser. A Math. Sci. **92** (2016), no. 6, 67–72.
- [20] J. Ueki, On the Iwasawa invariants for links and Kida's formula, Int. J. Math. 28 (2017), no. 6, 1750035.
- [21] L. C. Washington, Introduction to cyclotomic fields, Second edition, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997.
- [22] G. Yamamoto, On the vanishing of Iwasawa invariants of absolutely abelian p-extensions. Acta Arith. 94 (2000), no. 4, 365–371.
- [23] G. Yamamoto, Iwasawa invariants of abelian p-extension fields, thesis, Waseda Univ., 2001.
- [24] G. Yamamoto, Linking numbers for primes and \mathbf{Z}_p -extensions of abelian p-extension fields, a talk at Muroran Number Theory Conference, Muroran Institute of Technology, March 2004.
- [25] G. Yamamoto, On linking numbers of primes and \mathbf{Z}_p -extensions (Japanese), Proceedings of the 11th Workshop on Number Theory in Hokuriku, Kanazawa University, December 2012 (2013), 8–20.

Y. Mizusawa

Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showaku, Nagoya 466-8555, Japan.

E-mail address: mizusawa.yasushi@nitech.ac.jp

G. Yamamoto

School of Engineering, Tokyo Denki University, 5 Senju-asahi-cho, Adachi-ku, Tokyo 120-8551, Japan.