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Abstract.
For an odd prime number p and a number field k which is an ele-

mentary abelian p-extension of the rationals, we prove the equivalence
between the vanishing of all Iwasawa invariants of the cyclotomic Zp-
extension of k and an arithmetical condition described by the linking
numbers of primes from a viewpoint of analogies between pro-p Ga-
lois groups and link groups. A criterion of Greenberg’s conjecture for
k of degree p is also described in terms of linking matrices.

§1. Introduction

Let p be a fixed prime number. For a number field k, we denote by
kcyc the cyclotomic Zp-extension of k, where Zp denotes (the additive
group of) the ring of p-adic integers. Then kcyc/k has a unique cyclic
subextension kn/k of degree pn for each integer n ≥ 0. Let A(kn) be
the Sylow p-subgroup of the ideal class group of kn, and let en be the
exponent of the order |A(kn)| = pen . The Iwasawa invariants λ(k) ≥ 0,
µ(k) ≥ 0, ν(k) of kcyc/k are defined as integers satisfying Iwasawa’s class
number formula

en = λ(k)n+ µ(k)pn + ν(k)

for all sufficiently large n (cf. e.g. [21]). In case of cyclotomic Zp-
extensions, Iwasawa conjectured that µ(k) = 0, and Ferrero and Wash-
ington [3] proved that µ(k) = 0 if k/Q is an abelian extension. It was
also conjectured by Greenberg [5] that λ(k) = µ(k) = 0 if k is a totally
real number field. Greenberg’s conjecture has been studied in various
situations, in particular when k/Q is an abelian extension. Criteria of
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Greenberg’s conjecture for real abelian p-extensions k/Q are often de-
scribed by pth power residue symbols of ramified prime numbers (e.g.
[4, 22]).

In arithmetic topology (analogies between knot theory and number
theory, cf. [16]), pth power residue symbols are often translated into
analogues of mod p linking numbers of knots. For a pair (`, `′) of distinct
prime numbers, the (pro-p) linking number lk(`, `′) is defined as the
discrete logarithm of ` modulo `′ if `′ ≡ 1 (mod p), and defined as the
p-adic logarithm of ` to base αp if ` ≡ 1 (mod p) and `′ = p, where
αp is a generator of 1 + 2pZp. Based on analogies in linking numbers,
Morishita [15] developed analogies between p-extensions of number fields
and branched Galois coverings of 3-manifolds. In the origin of arithmetic
topology, Mazur [12] pointed out an analogy between Alexander-Fox
theory and Iwasawa theory. The Iwasawa invariants of links are also
defined and studied, regarding a tower of cyclic p-coverings branched
along a link as an analogue of a Zp-extension (cf. [6, 8, 9, 19, 20]).

The purpose of this paper is to study Iwasawa invariants for real
abelian p-extensions k/Q from a viewpoint of arithmetic topology. The
first result is the following theorem.

Theorem 1.1. Assume that p is odd, and put `0 = p. Let S =
{`1, . . . , `d} 6= ∅ be a finite set of d prime numbers `i ≡ 1 (mod p),
and let k/Q be the maximal elementary abelian p-extension unramified
outside S. Then λ(k) = µ(k) = ν(k) = 0 if and only if S satisfies one
of the following two conditions on linking numbers of primes:

1. d = 1, and either lk(`0, `1) 6≡ 0 (mod p) or lk(`1, `0) 6≡ 0
(mod p).

2. d = 2, and

lk(`0, `1)lk(`1, `2)lk(`2, `0) 6≡ lk(`0, `2)lk(`2, `1)lk(`1, `0) (mod p).(1)

In particular, d ≤ 2 if λ(k) = µ(k) = ν(k) = 0.

We prove Theorem 1.1 in §3 via the structure of a certain pro-p
Galois group G̃S(Q) analogous to a link group, which we recall in §2.

The condition (1) is similar to a condition of ‘circular set of primes’
(cf. e.g. [11]). There is also another generalization of (1) for larger d,
which is described by linking matrices Ck of cyclic extensions k/Q of
degree p (cf. Proposition 5.3). The matrix Ck is a modification of the
linking matrix C ′ = (c′ij mod p)1≤i,j≤d of S = {`1, . . . , `d} with entries
satisfying that c′ij = lk(`i, `j) if i 6= j, and that

∑d
j=1 c

′
ij ≡ 0 (mod p).

The matrix C ′ was defined in [16, Example 10.15] as an analogue of the
linking matrix of a link. (See §4 for the definition of Ck.) Using also
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an associated matrix Bk, we obtain the following sufficient condition of
Greenberg’s conjecture as a partial generalization of Theorem 1.1. (See
§5 for the definition of Bk.)

Theorem 1.2 (Theorem 5.1). Suppose `0 = p 6= 2. Let k/Q be a
cyclic extension of degree p unramified at p, and let S = {`1, . . . , `d} be
the set of ramified primes in k/Q. If rankCk = d− 1 and rankBk = d,
and if p is inert in k/Q, then λ(k) = µ(k) = 0.

Theorem 1.2 is proved in §5 by extending an idea of Fukuda [4]
which is based on the capitulation of ideal classes in kcyc/k. In §6, we
also give an infinite family of examples of Theorem 1.2 such that the
p-rank of A(k) is p− 1.

§2. Linking numbers and pro-p Galois groups

First we recall the definition of linking numbers of primes. Suppose
that p 6= 2. For each prime number `′ ≡ 1 (mod p), we fix an integer
α`′ such that α`′ = α`′ + `

′Z generates the cyclic group (Z/`′Z)×. As in
[13], we also choose αp = (1 + p)−1 ∈ Zp as a generator of the procyclic
group 1 + pZp = α

Zp
p . Let ` be a prime number. Put lk(`, `) = 0. If

` 6= `′ ≡ 1 (mod p), then lk(`, `′) is defined as an integer such that

`−1 ≡ αlk(`,`′)
`′ (mod `′)

and 0 ≤ lk(`, `′) < `′ − 1. If ` ≡ 1 (mod p), then lk(`, p) is defined as a
p-adic integer satisfying

`−1 = αlk(`,p)
p .

Remark 2.1. While the definition of lk(`, `′) depends on the choice
of α`′ , the divisibility by p and the validity of (1) are independent of the
choices of α`i .

For a pro-p group G and the closed subgroup H, we denote by
[H,G] (resp. Hp) the minimal closed subgroup containing {[h, g] =
h−1g−1hg | g ∈ G,h ∈ H} (resp. {hp |h ∈ H}), and put G2 = [G,G],
G3 = [G2, G]. Based on the theory of [10], the following theorem has
been obtained in [13] as a partial refinement of Salle’s result [17] (cf. also
[2]).

Theorem 2.2. Assume that p 6= 2, and put `0 = p. Let S =
{`1, . . . , `d} 6= ∅ be a finite set of d prime numbers `i ≡ 1 (mod p).
Let (Qcyc)S be the maximal pro-p-extension of Qcyc which is unramified
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at every primes not lying over any `i ∈ S. Then the Galois group
G̃S(Q) = Gal((Qcyc)S/Q) over Q has a minimal presentation

1 // R // F
π // G̃S(Q) // 1

where F = 〈x0, x1, · · · , xd〉 is a free pro-p group with d+1 generators xi
such that π(xi) generates the inertia group of a prime ˜̀

i of (Qcyc)S lying
over `i, and R = 〈r0, r1, · · · , rd〉F is a normal subgroup of F normally
generated by d+ 1 relations ri of the form

ri =

{
[x−1

0 , y−1
0 ] if i = 0,

x`i−1
i [x−1

i , y−1
i ] if 1 ≤ i ≤ d

with yi ∈ F such that π(yi) is a Frobenius automorphism of ˜̀i in G̃S(Q),
and

yi ≡
d∏

j=0

x
lk(`i,`j)
j mod [F, F ].

Proof. We give a short proof for the convenience of the reader.
For each i, we fix an embedding of the algebraic closure of Q into that
of the `i-adic field Q`i , corresponding to a prime lying over ˜̀

i. Let
Gi ' ZpoZp be the Galois group of the maximal pro-p-extension of Q`i

for i 6= 0, and put G0 = Gal(QcycQur,p
p /Qp) ' Zp × Zp, where Qur,p

p /Qp

is the unramified Zp-extension. Then the image of Gi in G̃S(Q) is the
decomposition group of ˜̀i. By [17, §4] (or [2, Lemma 3.7]), the natural
homomorphism

H2(G̃S(Q),Z/pZ) ↪→
d⊕

i=0

H2(Gi,Z/pZ)

on the second cohomology groups is injective. By the same argument as
in the proof of [10, Theorem 11.10 and Example 11.11], we obtain the
presentation π such that π(xi) mod (G̃S(Q))2 corresponds to the idèle
class of α`i . �

The Galois group G̃S(Q) is considered in [13] (including the case of
p = 2) as an analogue of a link group, which is the fundamental group of
the complement of a link in the 3-sphere. The ‘Koch type’ presentation
of G̃S(Q) in Theorem 2.2 is an analogue of the Milnor presentation of a
link group, where π(xi) (resp. π(yi)) is analogous to the meridian (resp.
longitude) of the tubular neighbourhood V of a component of the link.
In fact, Gi ' Zp o Zp above is an analogue of the fundamental group
π1(∂V ) ' Z × Z of the boundary of V . Hence the linking numbers of
primes are certainly analogous to the linking numbers of knots.
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Remark 2.3. When d = 2, the condition (1) is satisfied if and
only if the closed subgroup GS(Qcyc) = Gal((Qcyc)S/Qcyc) of G̃S(Q) '
GS(Qcyc)o Zp is a prometacyclic pro-p group (cf. [7, 14]).

One can find infinitely many S = {`1, . . . , `d} with prescribed mod
p linking numbers as follows. In particular, there exist infinitely many
sets S = {`1, `2} satisfying (1).

Proposition 2.4. Suppose `0 = p 6= 2 and d ≥ 1. For arbi-
trary integers aij (0 ≤ i, j ≤ d, i 6= j), there exist infinitely many sets
{(`i, α`i) | 1 ≤ i ≤ d} of pairs (`, α`) of prime numbers ` ≡ 1 (mod p)
and the primitive elements α` ∈ (Z/`Z)× such that lk(`i, `j) ≡ aij
(mod p) for all 0 ≤ i, j ≤ d (i 6= j).

Proof. Put ζn = exp 2π
√
−1

n for each 1 ≤ n ∈ Z. We choose
`i and α`i (1 ≤ i ≤ d) by the following recursive step: Put Li =
Q(ζp2 , ζ`j ,

p
√
`j | 0 ≤ j ≤ i − 1). Choose a prime Li of Q(ζp) such that

the Frobenius automorphism σi ∈ Gal(Li/Q(ζp)) of Li satisfies

σi(ζp2) = ζ
(1+p)ai0

p2 , σi(ζ`j ) = ζ
α

−aij
`j

`j
(1 ≤ j < i),

σi(
p
√
`j) = ζ−aji

p
p
√
`j (0 ≤ j < i).

Take `i ∈ Li, and choose α`i ∈ Z such that ζ`i−1 ≡ α`i (mod L̃i), i.e.,

ζp ≡ α
`i−1

p

`i
(mod Li), where L̃i is a prime of Q(ζ`i−1) lying over Li.

Then we have lk(`i, `j) ≡ aij (mod p) for all 0 ≤ i, j ≤ d (i 6= j). By
the Chebotarev density theorem, there exist infinitely many such sets
S = {`1, · · · , `d}. �

§3. Proof of Theorem 1.1 via Theorem 2.2

Recall that `0 = p 6= 2, S = {`1, . . . , `d}, d ≥ 1, Gal(k/Q) '
(Z/pZ)d and that k/Q is unramified outside S. Let K/Q be a cyclic
extension of degree p which is unramified outside S and ramified at
any `i ∈ S. Then K ⊂ k ⊂ (Qcyc)S , and k/K is unramified. Let
H = Ker(|K ◦ π) be the kernel of the surjective homomorphism

F
π−→ G̃S(Q)

|K−→ Gal(K/Q) ' Z/pZ,

where π is the homomorphism obtained in Theorem 2.2. Recall that the
inertia subgroup Ti of G̃S(Q) for ˜̀

i is a procyclic pro-p group generated
by π(xi). Since K/Q is not unramified at `i ∈ S, Ti 6⊂ Gal((Qcyc)S/K),
i.e., π(xi)|K 6= 1 ∈ Gal(K/Q) for i 6= 0. Hence the inertia subgroup
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Ti∩Ker(|K) of Gal((Qcyc)S/K) for ˜̀
i is generated by π(xpi ) if 1 ≤ i ≤ d.

Then π induces an exact sequence

1 // NR // H // Gal((Kcyc)∅/K) // 1 ,

where (Kcyc)∅ is the maximal unramified pro-p-extension of Kcyc, and
N = 〈xp1, . . . , x

p
d〉H is the closed normal subgroup of H which is normally

generated by xp1, . . . , x
p
d. Since (Kcyc)∅/Q is a Galois extension, NR is

a normal subgroup of F . Actually, since g−1xpi g ∈ N for any i 6= 0 and
any g ∈ F =

⋃p−1
j=0 x

j
iH, N is also a normal subgroup of F , and normally

generated by xp1, . . . , x
p
d, i.e.,

N = 〈xp1, . . . , x
p
d〉F .

Since kcyc/Kcyc is unramified, (Kcyc)∅ = (kcyc)∅ is also the maximal
unramified pro-p-extension of kcyc. Then π also induces a presentation

1 // NR // F
$ // G // 1

of
G = Gal((Kcyc)∅/Q) = Gal((kcyc)∅/Q),

where $ = |(Kcyc)∅ ◦ π. Let

R′ = 〈ρ0, . . . , ρd〉F

be the normal subgroup of F normally generated by d+ 1 elements

ρi = [x−1
i , y−1

i ] ≡
d∏

j=0

[xi, xj ]
lk(`i,`j) mod F3.

Then R′ ⊂ F2, NR = NR′, and G ' F/NR′.
The restriction mapping G

|kcyc−→ Gal(kcyc/Q) induces a surjective
homomorphism

ψ : G/G2 −→ Gal(kcyc/Q).

Since NR ⊂ NF2, we have G/G2 ' F/NF2 ' (Z/pZ)d ⊕ Zp. Since
moreover Gal(kcyc/Q) ' (Z/pZ)d ⊕ Zp, ψ must be an isomorphism.
This implies that

G2 = Gal((kcyc)∅/k
cyc).

Recall that
G2/[G2, G2] ' lim←−A(kn),
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where lim←− is the projective limit with respect to the norm mappings.
Then we obtain the following equivalences:

λ(k) = µ(k) = ν(k) = 0 ⇔ G2 ' 1

⇔ G2 = (G2)
pG3

⇔ F2N/(F2)
pF3N = R′(F2)

pF3N/(F2)
pF3N.(2)

Put g = g(F2)
pF3N for g ∈ F .

Lemma 3.1. {[xi, xj ] | 0 ≤ i < j ≤ d} forms a basis of the vector
space F2N/(F2)

pF3N over Fp = Z/pZ.

Proof. Note that the map

F/F2 × F/F2 → F2/F3 : (g1F2, g2F2) 7→ [g1, g2]F3

is a surjective Zp-bilinear homomorphism. Since

[g−1
1 xpi g1, g

−1
2 xpjg2] ≡ [xi, xj ]

p2

≡ 1 mod (F2)
pF3,

(F2)
pF3N/(F2)

pF3 is an abelian group. Suppose that g ∈ (F2)
pF3N∩F2.

Then g ∈ (F2)
pF3N is written in the form g = g′

∏d
i=1 x

zip
i with some

g′ ∈ (F2)
pF3 and zi ∈ Zp. Since

∏d
i=1 x

zip
i ≡ 1 (mod F2) and F/F2 is

a free Zp-module generated by {xjF2 | 0 ≤ j ≤ d}, we have zi = 0 for
all 1 ≤ i ≤ d, i.e., g = g′ ∈ (F2)

pF3. Hence (F2)
pF3N ∩ F2 = (F2)

pF3,
which induces an isomorphism

F2/(F2)
pF3 ' F2N/(F2)

pF3N : g(F2)
pF3 7→ g.

For each pair (i, j) such that 0 ≤ i < j ≤ d, there is a surjective ho-
momorphism ϕi,j : F → F ′ : xi 7→ a, xj 7→ b, xl 7→ 1 (l 6∈ {i, j}),
where F ′ is the free pro-p group with two generators a, b. If g =∏

0≤i<j≤d[xi, xj ]
zi,j ≡ 1 (mod (F2)

pF3) with some zi,j ∈ Zp, then
[a, b]zi,j = ϕi,j(g) ∈ (F ′

2)
pF ′

3, and hence zi,j ≡ 0 (mod p) for any (i, j).
Therefore {[xi, xj ] | 0 ≤ i < j ≤ d} is a basis of the Fp-vector space
F2/(F2)

pF3. This yields the claim of Lemma 3.1. �

If λ(k) = µ(k) = ν(k) = 0, then

d(d+ 1)

2
= dimFp(F2N/(F2)

pF3N)

= dimFp(R
′(F2)

pF3N/(F2)
pF3N) ≤ d+ 1,

i.e., d ≤ 2, by Lemma 3.1 and (2).
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If d = 1, R′(F2)
pF3N/(F2)

pF3N = 〈[x0, x1]
lk(`0,`1)

, [x0, x1]
lk(`1,`0)〉

is a subspace of

F2N/(F2)
pF3N = 〈[x0, x1]〉 ' Fp

(cf. Lemma 3.1). By (2), λ(k) = µ(k) = ν(k) = 0 if and only if
lk(`0, `1) ∈ Z×

p or lk(`1, `0) ∈ Z×
p .

If d = 2, R′(F2)
pF3N/(F2)

pF3N = 〈ρ0, ρ1, ρ2〉 is a subspace of

F2N/(F2)
pF3N = 〈[x0, x1], [x1, x2], [x2, x0]〉 ' F3

p

(cf. Lemma 3.1). Then (ρ0, ρ1, ρ2) = ([x0, x1], [x1, x2], [x2, x0])A with a
matrix

A =

 lk(`0, `1) −lk(`1, `0) 0
0 lk(`1, `2) −lk(`2, `1)

−lk(`0, `2) 0 lk(`2, `0)


having the determinant

detA = lk(`0, `1)lk(`1, `2)lk(`2, `0)− lk(`0, `2)lk(`2, `1)lk(`1, `0).

By (2), λ(k) = µ(k) = ν(k) = 0 if and only if detA ∈ Z×
p .

Thus the proof of Theorem 1.1 is completed.

Remark 3.2. All real abelian p-extensions k/Q such that λ(k) =
µ(k) = ν(k) = 0 have been determined by some conditions on pth power
residue symbols (cf. [18, 22, 23]). One can also obtain Theorem 1.1 by
translating the condition of [22, Theorem 1] into the words of linking
numbers (cf. [24, 25]). Moreover, there is an analogous condition of (1)
in the function field analogue [1, Theorem] of [22, Theorem 1].

§4. Linking matrices of number fields

We define a linking matrix CK for a cyclic extension K/Q of degree
p. Suppose that p 6= 2. We use the same notation as in Theorem 2.2.
Suppose that K/Q is unramified outside {`δ, · · · , `d} and ramified at `i
for any δ ≤ i ≤ d, where δ = δK is either 0 or 1 according to whether
K/Q is ramified at `0 = p or not. Let Kg be the genus class field of
K/Q, i.e., Kg is the maximal unramified abelian extension of K which
is abelian over Q. Then Kg/Q coincides with the maximal elementary
abelian p-extension of Q unramified outside {`δ, · · · , `d}, and hence the
homomorphism

F
π−→ G̃S(Q)

|Kg−→ Gal(Kg/Q) ' (Z/pZ)d+1−δ
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induces a homomorphism

F/F p[F, F ]〈xδ0〉
'−→ Gal(Kg/Q)

|K−→ Gal(K/Q)

: xi 7→ π(xi)|Kg 7→ π(xmi

d )|K

with some integers mi = mK,i 6≡ 0 (mod p) for δ ≤ i ≤ d. Note that
md = 1.

Remark 4.1. The presentation in Theorem 2.2 is constructed to
satisfy π(xi)|Kg = τi|Kg for τi ∈ Gal(Q(ζp2`1···`d)/Q(ζp2`1···`d/`i)) such
that τ0(ζp2) = ζ1+p

p2 and τj(ζ
α`j

`j
) = ζ`j if j 6= 0. Then K is identified as

the fixed field of 〈τ δ0 , τ
p
d , τiτ

−mi

d | δ ≤ i < d〉 in Q(ζp2`1···`d)/Q.

Let lK,i be the prime ideal of K lying over `i for each δ ≤ i ≤ d.
The decomposition group

Gal(Kg/K) ∩ 〈π(xi)|Kg , π(yi)|Kg 〉 = 〈π(yixciii )|Kg 〉

of lK,i in Gal(Kg/K) is generated by the Frobenius automorphism(Kg/K
lK,i

)
= π(yix

cii
i )|Kg with some integer cii. Since

1 = π(yix
cii
i )|K = π(xciii

∏d
j=δ x

lk(`i,`j)
j )|K = π(xd)|

micii+
∑d

j=δ mj lk(`i,`j)

K ,

we have cii ≡ −m−1
i

∑d
j=δmj lk(`i, `j) (mod p). Put cij = lk(`i, `j) if

i 6= j. Then the linking matrix of K is defined as a (d+1−δ)×(d+1−δ)
matrix

CK = (cij mod p)δ≤i,j≤d

with entries in Fp, which satisfies
(Kg/K

lK,δ

)
...(Kg/K

lK,d

)
 = CK

 π(xδ)|Kg

...
π(xd)|Kg

 ,(3)

i.e.,
(Kg/K

lK,i

)
=

∏d
j=δ π(xj)|

cij
Kg for δ ≤ i ≤ d. Note that {π(xj)|Kg}δ≤j≤d

forms a basis of the Fp-vector space Gal(Kg/Q) ' Fd+1−δ
p . Since

Gal(Kg/K) ' Fd−δ
p , we have rankCK ≤ d− δ. The following lemma is

a translation of [4, Lemma 1.1] into the words of a linking matrix. We
denote by [a] the ideal class of an ideal a.

Lemma 4.2. Under the settings above, the following two conditions
are equivalent, where (0, · · · , 0) 6= (bδ, · · · , bd) ∈ Fd+1−δ

p :
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1. A(K) = 〈[lK,δ], · · · , [lK,d]〉 ' (Z/pZ)d−δ and
∏d

i=δ[lK,i]
bi = 1.

2. rankCK = d− δ and (bδ, · · · , bd)CK = (0, · · · , 0).

Proof. The equation (3) implies that Gal(Kg/K) =

〈
(Kg/K

lK,δ

)
, · · · ,

(Kg/K
lK,d

)
〉 if and only if rankCK = d − δ. By [4, Lemma

1.1], A(K) = 〈[lK,δ], · · · , [lK,d]〉 ' Fd−δ
p if and only if rankCK = d − δ.

Then, since A(K)→ Gal(Kg/K) : [lK,i] 7→
(Kg/K

lK,i

)
becomes a Fp-linear

isomorphism, we obtain the equivalence. �

If δ = 1 and mi = 1 for all 1 ≤ i ≤ d, the d× d matrix CK coincides
with the linking matrix C ′ of S (cf. [16, Example 10.15]).

§5. A criterion of Greenberg’s conjecture via capitulation

Using the linking matrices CK , we obtain a criterion of Greenberg’s
conjecture as follows. Recall that `0 = p 6= 2 and `i ≡ 1 (mod p)
for 1 ≤ i ≤ d. Let k/Q be a cyclic extension of degree p which is
unramified outside the set S = {`1, · · · , `d} and ramified at any `i ∈ S.
Then the (Z/pZ)2-extension k1/Q contains p − 1 cyclic subextensions
k(1), · · · , k(p−1) of degree p except for k and Q1. Put k(0) = k, and put

J = {j | rankCK = d− δK for K = k(j)} ⊂ {0, 1, · · · , p− 1}

with the cardinality |J |. For each j ∈ J , let (bδj , · · · , bd j) ∈ Fd+1−δ
p be

a nonzero vector satisfying (bδj , · · · , bd j)Ck(j) = (0, · · · , 0), where δ = 1
if j = 0, and δ = 0 otherwise. Omitting b0j , we define a d× |J | matrix

Bk = (bij)1≤i≤d,j∈J .

Now we shall recall and prove Theorem 1.2.

Theorem 5.1 (Theorem 1.2). Under the settings above, if rankCk=
d − 1 and rankBk = d, then A(k) capitulates in k1. If moreover p is
inert in k/Q, we have λ(k) = µ(k) = 0.

Proof. Suppose that rankCk = d − 1 and rankBk = d. Then
A(k) = 〈[lk,1], · · · , [lk,d]〉 by Lemma 4.2, and there is J ′ ⊂ J such that
B′

k = (bij)1≤i≤d,j∈J′ is a regular d × d matrix. Let Ok1
denote the

ring of algebraic integers in k1, and let p be the prime ideal of Q1

lying over p. For any 1 ≤ j ≤ p − 1, since [p] ∈ A(Q1) ' 1 and
pOk1 = lk(j),0Ok1 , we have [lk(j),0Ok1 ] = [pOk1 ] = 1 ∈ A(k1). More-
over, lk(j),iOk1 = lk,iOk1 for any 1 ≤ j ≤ p − 1 and 1 ≤ i ≤ d. Hence∏d

i=1[lk,iOk1 ]
bij =

∏d
i=1[lk(j),iOk1 ]

bij = 1 for any j ∈ J ′ by Lemma 4.2.
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If we write additively as ‘
∑d

i=1 bij [lk,iOk1
] = 0’, then

([lk,1Ok1
], · · · , [lk,dOk1

]) = (0, · · · , 0)B′
k
−1

= (0, · · · , 0).

This implies that the lift mapping A(k)→ A(k1) : [a] 7→ [aOk1
] is a zero

mapping, i.e., A(k) capitulates in k1. Then, moreover if p is inert in
k/Q, we have λ(k) = µ(k) = 0 by [5, Theorem 1]. �

Remark 5.2. Note that the extensions k(1), · · · , k(p−1) have the
common genus class field which contains k1. For 1 ≤ i ≤ d, since
π1(xi)|k = π1(x

mk,i

d )|k and 〈π1(xi)|k1
〉 = Gal(k1/Q1) = 〈π1(xd)|k1

〉, we
have π1(xi)|k1

= π1(x
mk,i

d )|k1
, and hence mk(j),i ≡ mk,i (mod p) for any

0 ≤ j ≤ p − 1, i.e., mi (1 ≤ i ≤ d) is common for all K = k(j). On
the other hand, we may assume that Gal(k1/k

(j)) = 〈π(x−j
0 xd)|k1

〉, i.e.,
m0 = mk(j),0 ≡ j−1 (mod p) for each K = k(j) (1 ≤ j ≤ p− 1).

Theorem 1.2 is a partial generalization of Theorem 1.1 in the fol-
lowing sense.

Proposition 5.3. If d = 2 under the settings above, rankBk = 2
(and rankCk = 1) if and only if (1) is satisfied.

Proof. Put lK,ij = mK,j lk(`i, `j) (δK ≤ j ≤ 2) for Q1 6= K ⊂ k1,
and put lij = lK,ij if j 6= 0 (cf. Remark 5.2). Since

Ck ∈
(

l12 0
−l21 0

)
GL2(Fp)

and

CK ∈

 0 −l01 −l02
0 lK,10 + l12 −l12
0 −l21 lK,20 + l21

GL3(Fp)

for K 6= k, we have (l21, l12)Ck = (0, 0) and (b0,K , b1,K , b2,K)CK =
(0, 0, 0) with b0,K

b1,K
b2,K

 =

 l12lK,20 + lK,20lK,10 + lK,10l21
lK,20l01 + l01l21 + l21l02
lK,10l02 + l02l12 + l12l01


=

 −l01
lK,10 + l12
−l21

×
 −l02

−l12
lK,20 + l21

 ,

where × denotes the cross product of vectors. For each K = k(j) with
1 ≤ j ≤ p − 1, rankCK ≤ 1 (i.e., j 6∈ J) if and only if b0,K = b1,K =
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b2,K = 0. Note that l21 = l12 = 0 if and only if rankCk = 0 (i.e., 0 6∈ J).
Since ∣∣∣∣ l21 b1,K

l12 b2,K

∣∣∣∣ = −l01l12lK,20 + l02l21lK,10,(4)

we have J = {0, 1, · · · , p−1} (in particular rankCk = 1) if (1) is satisfied.
If 0 ∈ J , then (b10, b20) = (l21, l12). If 0 6= j ∈ J , then (b0j , b1j , b2j) =
(b0,K , b1,K , b2,K). Since the 2× 2 minors of Bk are either (4) or∣∣∣∣ b1,K b1,K′

b2,K b2,K′

∣∣∣∣ = (−l01l12lK,20 + l02l21lK,10)(l01 + l02)(mK′,0m
−1
K,0 − 1)

with some K and K ′, we have (1) if and only if rankBk = 2. �

§6. Examples

Using Theorem 1.2, one can see the detail of an example by Green-
berg [5] as follows.

Example 6.1 ([5, p.283]). If `0 = p = 3, d = 3, (`1, `2, `3) =
(7, 13, 19), α`1 = 3, α`2 = α`3 = 2, we have

(lk(`i, `j))0≤i,j≤3 =


0 5 8 5
2 + z1 0 1 12
1 + z2 3 0 13
0 + z3 1 7 0

≡


0 2 2 2
2 0 1 0
1 0 0 1
0 1 1 0

 mod 3,

with some zi ∈ 3Z3, where we note that (1+p)p ≡ 1 (mod p2). Let k/Q
be the cyclic cubic extension ramified only at S = {7, 13, 19} such that
mk,1 = m1 = 1, mk,2 = m2 = 2 (and mk,3 = m3 = 1). Then

Ck =

 1 1 0
0 1 1
1 1 0

 , rankCk = 2, (1, 0, 2)Ck = (0, 0, 0),

and A(k) ' (Z/3Z)2 by Lemma 4.2. For j ∈ {1, 2}, assuming mk(j),0 =

j ≡ j−1 (mod 3), we have

Ck(j) =


j 2 2 2
2 j + 1 1 0
1 0 j + 1 1
0 1 1 0

 , rankCk(j) = 3,
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and (1, 2, 1, 0)Ck(1) = (0, 0, 0, 0) = (1, 0, 1, 1)Ck(2) . Then J = {0, 1, 2},
and

Bk =

 1 2 0
0 1 1
2 0 1

 , rankBk = 3.

Hence A(k) capitulates in k1 by Theorem 1.2. Since

π(y0)|k =
∏3

j=1 π(xj)|
lk(`0,`j)
k = π(x3)|

∑3
j=1 mj lk(`0,`j)

k = π(x3)|2k 6= 1

by Theorem 2.2, p is inert in k/Q. Therefore λ(k) = µ(k) = 0 by [5,
Theorem 1].

Moreover, we obtain infinitely many examples of Theorem 1.2 as
follows.

Corollary 6.2. If 2 ≤ d ≤ p, there exist infinitely many cyclic ex-
tensions k/Q of degree p such that; p is inert in k/Q, A(k) ' (Z/pZ)d−1,
and λ(k) = µ(k) = 0 (and ν(k) = 1 if d = 2).

Proof. Put `0 = p. By Proposition 2.4, there exist infinitely many
S = {`1, · · · , `d} such that

(lk(`i, `j))0≤i,j≤d ≡


0 0 1 · · · 1
1 0 0 · · · 0
2 −1 0 · · · 0
...

...
...

...
d −1 0 · · · 0

 mod p.

Let k/Q be the Z/pZ-extension ramified only at S such that mk,i =
mi = 1 for all 1 ≤ i ≤ d. Since

π(y0)|k =
∏d

j=1 π(xj)|
lk(`0,`j)
k =

∏d
j=2 π(xj)|k = π(xd)|d−1

k 6= 1

by Theorem 2.2, p is inert in k/Q. (If d = 2, then (1) is satisfied, and
hence Theorem 1.1 yields that λ(kg) = µ(kg) = ν(kg) = 0, which implies
λ(k) = µ(k) = 0, ν(k) = 1 and A(k) ' Z/pZ.) Since

Ck =


0 0 · · · 0
−1 1
...

. . .
−1 1


has rank d − 1, we have A(k) ' (Z/pZ)d−1 by Lemma 4.2. Moreover
0 ∈ J and (b10, · · · , bd0) = (1, 0, · · · , 0) ∈ Fd

p. Suppose that mk(j),0 ≡
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j−1 (mod p) as in Remark 5.2. Then

Ck(j) =


−(d− 1)j 0 1 · · · 1

1 −j−1 0 · · · 0
2 −1 1− 2j−1

...
...

. . .
d −1 1− d j−1


for 1 ≤ j ≤ p − 1. Put J ′ = {0, 2, · · · , d} if d < p, and J ′ =
{0, 1, 2, · · · , p − 1} if d = p. One can easily see that J ′ ⊂ J , i.e.,
rankCk(j) = d if 0 6= j ∈ J ′. If d < p,

B′
k = (bij)1≤i≤d,j∈J′ =


1 −1 · · · −1
0 2−1

...
. . .

0 d−1


and b0j = 0 for any 2 ≤ j ≤ d. If d = p,

B′
k = (bij)1≤i≤d,j∈J′ =



1 0 −1 · · · −1
0 1−1 2−1

0 2−1 . . .
...

... (p− 1)−1

0 (p− 1)−1 0 · · · 0

 ,

b01 = 1, and b0j = 0 for all 2 ≤ j ≤ p − 1. Since detB′
k 6= 0, we have

rankBk = d, and hence λ(k) = µ(k) = 0 by Theorem 1.2. �

Example 6.3. If `0 = p = 3, d = 2, (`1, `2) = (67, 79), α`1 = 12,
α`2 = 53, we have

(lk(`i, `j))0≤i,j≤2 =

 0 57 1
1 + z1 0 48
2 + z2 65 0

 ≡
 0 0 1

1 0 0
2 −1 0

 mod 3

with some zi ∈ 3Z3. Then λ(k) = µ(k) = 0 (and ν(k) = 1) for k with
mk,1 = 1 as in the proof of Corollary 6.2. Since λ(kg) = µ(kg) = ν(kg) =
0 by Theorem 1.1, we have λ(k) = µ(k) = 0 (and ν(k) = 1) also for k
with mk,1 = 2.
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