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Abstract.

For an odd prime number p and a number field k£ which is an ele-
mentary abelian p-extension of the rationals, we prove the equivalence
between the vanishing of all Iwasawa invariants of the cyclotomic Z,-
extension of k and an arithmetical condition described by the linking
numbers of primes from a viewpoint of analogies between pro-p Ga-
lois groups and link groups. A criterion of Greenberg’s conjecture for
k of degree p is also described in terms of linking matrices.

§1. Introduction

Let p be a fixed prime number. For a number field k, we denote by
k¢ the cyclotomic Z,-extension of k, where Z, denotes (the additive
group of) the ring of p-adic integers. Then k°°/k has a unique cyclic
subextension k,/k of degree p" for each integer n > 0. Let A(k,) be
the Sylow p-subgroup of the ideal class group of k,, and let e, be the
exponent of the order |A(ky,)| = p°. The Iwasawa invariants A\(k) > 0,
(k) >0, v(k) of k%°/k are defined as integers satisfying Iwasawa’s class
number formula

en = Mk)n + p(k)p"™ + v(k)

for all sufficiently large n (cf. e.g. [21]). In case of cyclotomic Z,-
extensions, Iwasawa conjectured that pu(k) = 0, and Ferrero and Wash-
ington [3] proved that u(k) = 0 if k/Q is an abelian extension. It was
also conjectured by Greenberg [5] that A(k) = u(k) = 0 if k is a totally
real number field. Greenberg’s conjecture has been studied in various
situations, in particular when k/Q is an abelian extension. Criteria of
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Greenberg’s conjecture for real abelian p-extensions k/Q are often de-
scribed by pth power residue symbols of ramified prime numbers (e.g.
[4, 22]).

In arithmetic topology (analogies between knot theory and number
theory, cf. [16]), pth power residue symbols are often translated into
analogues of mod p linking numbers of knots. For a pair (¢,¢') of distinct
prime numbers, the (pro-p) linking number lk(¢,¢') is defined as the
discrete logarithm of £ modulo ¢ if ¢ =1 (mod p), and defined as the
p-adic logarithm of ¢ to base «, if £ = 1 (mod p) and ¢ = p, where
oy, is a generator of 14 2pZ,. Based on analogies in linking numbers,
Morishita [15] developed analogies between p-extensions of number fields
and branched Galois coverings of 3-manifolds. In the origin of arithmetic
topology, Mazur [12] pointed out an analogy between Alexander-Fox
theory and Iwasawa theory. The Iwasawa invariants of links are also
defined and studied, regarding a tower of cyclic p-coverings branched
along a link as an analogue of a Z,-extension (cf. [6, 8, 9, 19, 20]).

The purpose of this paper is to study Iwasawa invariants for real
abelian p-extensions k/Q from a viewpoint of arithmetic topology. The
first result is the following theorem.

Theorem 1.1. Assume that p is odd, and put by = p. Let S =
{l1,..., €4} # 0 be a finite set of d prime numbers £; = 1 (mod p),
and let k/Q be the mazimal elementary abelian p-extension unramified
outside S. Then \(k) = u(k) = v(k) = 0 if and only if S satisfies one
of the following two conditions on linking numbers of primes:

1. d =1, and either 1k({p,¢1) #Z 0 (mod p) or lk(ly,4y) £ 0
(mod p).
2. d=2, and

(1) k(€o, €1)lk (€1, €2)Ik (L2, L) # k(Lo, £2)Ik(C2, £1)1k(¢1, £o)  (mod p).

In particular, d <2 if A(k) = p(k) = v(k) = 0.

We prove Theorem 1.1 in §3 via the structure of a certain pro-p
Galois group éS(Q) analogous to a link group, which we recall in §2.

The condition (1) is similar to a condition of ‘circular set of primes’
(cf. e.g. [11]). There is also another generalization of (1) for larger d,
which is described by linking matrices C}, of cyclic extensions k/Q of
degree p (cf. Proposition 5.3). The matrix Cy is a modification of the
linking matrix C’ = (cgj mod p)i<; j<a of S = {¢1,...,€q} with entries
satisfying that c; = lk(¢;, ;) if i # j, and that Zj:1 c;; =0 (mod p).
The matrix C’ was defined in [16, Example 10.15] as an analogue of the
linking matrix of a link. (See §4 for the definition of Cj.) Using also
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an associated matrix By, we obtain the following sufficient condition of
Greenberg’s conjecture as a partial generalization of Theorem 1.1. (See
§5 for the definition of By.)

Theorem 1.2 (Theorem 5.1). Suppose by = p # 2. Let k/Q be a
cyclic extension of degree p unramified at p, and let S = {l1,...,04} be
the set of ramified primes in k/Q. If rank Cy = d — 1 and rank By, = d,
and if p is inert in k/Q, then A(k) = u(k) = 0.

Theorem 1.2 is proved in §5 by extending an idea of Fukuda [4]
which is based on the capitulation of ideal classes in k%¢/k. In §6, we
also give an infinite family of examples of Theorem 1.2 such that the
p-rank of A(k) isp— 1.

§2. Linking numbers and pro-p Galois groups

First we recall the definition of linking numbers of primes. Suppose
that p # 2. For each prime number ¢ = 1 (mod p), we fix an integer
oy such that &g = ap + /7 generates the cyclic group (Z/¢'Z)*. As in
[13], we also choose a;, = (1 +p)~! € Z,, as a generator of the procyclic
group 1 + pZ, = a,Z)”. Let ¢ be a prime number. Put 1k(¢,¢) = 0. If
£#£ 0 =1 (mod p), then 1k(¢,¢') is defined as an integer such that

= alélf(e’g/) (mod ¢")

and 0 < 1k(£,¢') < ¢ —1. If £ =1 (mod p), then lk(¢,p) is defined as a
p-adic integer satisfying
1 = oK),

REMARK 2.1. While the definition of 1k(¢, ¢') depends on the choice
of ayr, the divisibility by p and the validity of (1) are independent of the
choices of ay,.

For a pro-p group G and the closed subgroup H, we denote by
[H,G] (resp. HP) the minimal closed subgroup containing {[h,g] =
h=tg=thg|g € G,h € H} (resp. {h?|h € H}), and put Gy = [G,G],
G3 = [G2,G]. Based on the theory of [10], the following theorem has
been obtained in [13] as a partial refinement of Salle’s result [17] (cf. also

2]).
Theorem 2.2. Assume that p # 2, and put by = p. Let S =

{l1,...,44} # O be a finite set of d prime numbers £; = 1 (mod p).
Let (Q%¢) g be the maximal pro-p-extension of Q¥ which is unramified
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at every primes not lying over any ¢; € S. Then the Galois group
Gs(Q) = Gal((Q9%)s/Q) over Q has a minimal presentation

1 R F—"5Gg(Q) —=1

where F = (xg, 21, ,xq) s a free pro-p group with d+1 generators x;
such that w(x;) generates the inertia group of a prime 0 of (Q¥°)g lying
over {;, and R = (ro,r1,--- ,rq)F is a normal subgroup of F normally
generated by d + 1 relations r; of the form

- o5 ug '] ifi=0,
‘ e M by if1<i<d

with y; € F such that w(y;) is a Frobenius automorphism oni in éS(Q),

and
d

v = |1 z;k(é'i’é") mod [F, F].
j=0

Proof. We give a short proof for the convenience of the reader.
For each i, we fix an embedding of the algebraic closure of Q into that
of the ¢;-adic field Qy,, corresponding to a prime lying over ¢;. Let
G; ~ 7, x Zy, be the Galois group of the maximal pro-p-extension of Qp,
for i # 0, and put Go = Gal(Q¥°Q,"?/Qp) =~ Z), X Zyp, where Q"7 /Q,
is the unramified Zpy-extension. Then the image of G; in Gs(Q) is the
decomposition group of l;. By [17, §4] (or [2, Lemma 3.7]), the natural
homomorphism

H*(Gs(Q).Z/pT) — ea H(G:, Z,/pZ)

on the second cohomology groups is injective. By the same argument as
in the proof of [10, Theorem 11.10 and Example 11.11], we obtain the
presentation 7 such that 7(x;) mod (Gs(Q))2 corresponds to the idele
class of oy, . 0

The Galois group G¢(Q) is considered in [13] (including the case of
p = 2) as an analogue of a link group, which is the fundamental group of
the complement of a link in the 3-sphere. The ‘Koch type’ presentation
of CNT'S(@) in Theorem 2.2 is an analogue of the Milnor presentation of a
link group, where 7(z;) (resp. m(y;)) is analogous to the meridian (resp.
longitude) of the tubular neighbourhood V' of a component of the link.
In fact, G; ~ Z, x Z, above is an analogue of the fundamental group
m1(0V) =~ Z x Z of the boundary of V. Hence the linking numbers of
primes are certainly analogous to the linking numbers of knots.



Twasawa invariants and linking numbers 5

REMARK 2.3. When d = 2, the condition (1) is satisfied if and
only if the closed subgroup Gg(Q%°) = Gal((Q%°)s/Q%°) of G5(Q) ~
Gs(Q%°) x Zy is a prometacyclic pro-p group (cf. [7, 14]).

One can find infinitely many S = {4, ..., ¢4} with prescribed mod
p linking numbers as follows. In particular, there exist infinitely many
sets S = {1, 2} satisfying (1).

Proposition 2.4. Suppose by = p # 2 and d > 1. For arbi-
trary integers a;; (0 < 1,5 < d, i # j), there exist infinitely many sets
{s,az,) |1 < i < d} of pairs (¢, ) of prime numbers £ = 1 (mod p)
and the primitive elements o € (Z/UZ)* such that 1k({;,0;) = ajj
(mod p) for all 0 <i,j <d (i #j).

Proof. Put (, = exp% for each 1 < n € Z. We choose
4; and ay, (1 < i < d) by the following recursive step: Put L; =
Q(Gp2, Gy {/E|O < j <i—1). Choose a prime £; of Q((,) such that
the Frobenius automorphism o; € Gal(L; /Q((p)) of £; satisfies

—aij

ag a,. " . .
0i(G) = ¢ ailGy) = ¢ (1< <),

i(3/G) = GG (0< 5 <),

Take ¢; € £;, and choose ay, € Z such that (;,_1 = ay, (mod Ei), ie.,

4=t ~
G = O%-T (mod £;), where £; is a prime of Q({,—1) lying over £;.
Then we have 1k(¢;, ¢;) = a;; (mod p) forall 0 <4,j <d (i # j). By
the Chebotarev density theorem, there exist infinitely many such sets
S ={ly, - ,lg}. 0

83. Proof of Theorem 1.1 via Theorem 2.2

Recall that ¢g = p # 2, S = {l1,..., 44}, d > 1, Gal(k/Q) ~
(Z/pZ)? and that k/Q is unramified outside S. Let K/Q be a cyclic
extension of degree p which is unramified outside S and ramified at
any ¢; € S. Then K C k C (Q¥°g, and k/K is unramified. Let
H = Ker(|g o m) be the kernel of the surjective homomorphism

F s Gg(Q) % Gal(K/Q) ~ Z/pZ,

where 7 is the homomorphism obtained in Theorem 2.2. Recall that the
inertia subgroup T; of Gs (Q) for ;s a procyclic pro-p group generated
by 7(z;). Since K/Q is not unramified at ¢; € S, T; ¢ Gal((Q¥°)g/K),
ie., m(z;)|k # 1 € Gal(K/Q) for ¢ # 0. Hence the inertia subgroup
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T; NKer(| ) of Gal((Q®°)s/K) for £; is generated by m(zF) if 1 < i < d.
Then 7 induces an exact sequence

1 NR H Gal((K°)g/K) —1,

where (K% is the maximal unramified pro-p-extension of K¢, and
N = (af,...,2h) u is the closed normal subgroup of H which is normally
generated by a¥,... 2", Since (K“¢)y/Q is a Galois extension, NR is
a normal subgroup of F. Actually, since g~'2fg € N for any i # 0 and
any g € F = U?;é xf H, N is also a normal subgroup of F', and normally
generated by zf,... 2%, ie.,

N={@l, ... 25)p.

Since k%°¢/K%° is unramified, (K°)y = (k%°)y is also the maximal
unramified pro-p-extension of £¥°. Then 7 also induces a presentation

1 NR F—Zs>¢@ 1

of
G = Gal((K“)g/Q) = Gal((k™)e/Q),

where @ = |(geve), o 7. Let

RI = <p07‘~'7pd>F

be the normal subgroup of F' normally generated by d + 1 elements

pi=lz; y7 ' = T (22" mod Fs.

d
7=0
Then R' C F5, NR=NR', and G~ F/NR'.

|keyve

The restriction mapping G — Gal(k%°/Q) induces a surjective
homomorphism

b1 GGy — Gal(k¢/Q).

Since NR C NFy, we have G/Gy ~ F/NF;, ~ (Z/pZ)* ® Z,. Since
moreover Gal(k®°/Q) ~ (Z/pZ)? ® Z,, ¢ must be an isomorphism.
This implies that

Go = Gal((k“°)g/kY°).

Recall that
GQ/[G27 GQ] = @A(kn)a
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where lim is the projective limit with respect to the norm mappings.
Then we obtain the following equivalences:

ME)=pk)=v(k)=0 & Ga~1
< G = (G2)PGs
(2) & BN/(F)PF3N = R/ (Fy)PF3N/(F»)PF3N.
Put g = g(F»)PF3N for g € F.
Lemma 3.1. {[z;,2;]|0 <i < j < d} forms a basis of the vector
space FoN/(F2)PF3N over F, = Z/pZ.
Proof. Note that the map

F/F2 X F/F2 — FQ/F3 : (glFQ,ggFg) — [gl,gg]F3
is a surjective Z,-bilinear homomorphism. Since
— — 2
l97 a0 g1, 95 "2l go] = [wi, 2] =1 mod (Fy)PF,

(F»)P F3N/(Fy)PF5 is an abelian group. Suppose that g € (Fy)P F3NNFy.
Then g € (F,)PF3N is written in the form g = ¢’ H?Zl z;'"’ with some
g € (F»)PF5 and z; € Zjp. Since Hle z;’” =1 (mod F») and F/F} is
a free Z,-module generated by {z,;F5|0 < j < d}, we have z; = 0 for
all 1 <i<d, ie, g=g¢g € (F2)PF3. Hence (F2)PF3N N Fy = (F3)PF5,
which induces an isomorphism

FQ/(FQ)ng ~ FgN/(FQ)ngN : g(FQ)ng —g.

For each pair (i,7) such that 0 < i < j < d, there is a surjective ho-
momorphism ¢; ; : F — F' 1 z; — a,z; — bz — 1 (I & {i,5}),
where F’ is the free pro-p group with two generators a,b. If g =
[o<icj<al®izj]® = 1 (mod (F2)PF3) with some z;,; € Zp, then
[a,b]% = ; ;(g) € (F3)PF3, and hence z;; = 0 (mod p) for any (i, 7).
Therefore {[z;,z;]|0 < ¢ < j < d} is a basis of the F,-vector space
F,/(F3)PF5. This yields the claim of Lemma 3.1. O

If AX(k) = u(k) = v(k) =0, then

d(d+1)

D) Zdim]pp(FQN/(Fg)ngN)

= dim]pp (R/(Fg)ng,N/(FQ)pF?,N) S d + 1,

ie.,, d <2, by Lemma 3.1 and (2).
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1k(£o,41) 1k(£1,£0)

If d = 1, R/(Fg)ngN/(Fg)ngN = <[$0,.’E1]
is a subspace of

)

3 [$07.'I}1]

FQN/(FQ)ngN = <[$0,$1}> ~ Fp

(cf. Lemma 3.1). By (2), A(k) = p(k) = v(k) = 0 if and only if
lk(go,gl) S Z;: or lk(él,fo) € Z;;
If d =2, R(Fy)PF3N/(F2)PFsN = (pg, p1, p2) is a subspace of

FQN/(FQ)deN = <[~T07=T1]7 [xlaxﬂv [LUQ,LC()D = F;?;

(cf. Lemma 3.1). Then (pg, p1,p2) = ([x0, x1], [*1, 22, [T2, To]) A with a
matrix

k(fo, 01)  —Ik(¢1, o) 0
A= 0 k(tr,02)  —Ik(lo, 1)
—1k(€o, £2) 0 Ik(£a, £o)

having the determinant
det A = 1k(£y, £1)1k (€1, €2)1k(€a, £y) — 1k (Lo, £2)1k(£a, €1)1k (€1, £o).

By (2), A(k) = pu(k) = v(k) = 0 if and only if det A € Z).
Thus the proof of Theorem 1.1 is completed.

REMARK 3.2. All real abelian p-extensions k/Q such that A(k) =
w(k) = v(k) = 0 have been determined by some conditions on pth power
residue symbols (cf. [18, 22, 23]). One can also obtain Theorem 1.1 by
translating the condition of [22, Theorem 1] into the words of linking
numbers (cf. [24, 25]). Moreover, there is an analogous condition of (1)
in the function field analogue [1, Theorem] of [22, Theorem 1].

84. Linking matrices of number fields

We define a linking matrix Cx for a cyclic extension K/Q of degree
p. Suppose that p # 2. We use the same notation as in Theorem 2.2.
Suppose that K/Q is unramified outside {5, - , €4} and ramified at ¢;
for any 6 < i < d, where § = d is either 0 or 1 according to whether
K/Q is ramified at £o = p or not. Let K9 be the genus class field of
K/Q, i.e., K9 is the maximal unramified abelian extension of K which
is abelian over Q. Then K9/Q coincides with the maximal elementary
abelian p-extension of Q unramified outside {/s,--- , ¢4}, and hence the
homomorphism

F s Gs(Q) % Gal(K9)Q) ~ (z/pz)+1—0
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induces a homomorphism

F/FP[F, Fl(a) =5 Gal(K?/Q) % Gal(K/Q)

1Ty = ()| ko = (@) |k
with some integers m; = mg,; # 0 (mod p) for § < i < d. Note that
mqg = 1.

REMARK 4.1. The presentation in Theorem 2.2 is constructed to
satisfy 7(x;)|xo = Ti|ko for 7y € Gal(Q((p2e,...0,)/Q(Cp2ey .04 /2,)) SuCh
that 70(¢p2) = ;jp and Tj(CZej) = (g, if j #0. Then K is identified as
the fixed field of (75,74, 77, ™ |6 < i < d) in Q(Cp2e,...0,)/Q-

Let [x; be the prime ideal of K lying over ¢; for each § < i < d.
The decomposition group

Gal(K?/K) N (m (i) o, 7(yi) | ko) = (m(yizi" ) ko)

of [k, in Gal(K9/K) is generated by the Frobenius automorphism
(“5L5) = i)
K,i

K9 With some integer ¢;;. Since

micii“rE?:& m;lk(€;,6;)

Cid _ Cii d k(4;,4; .
1= m(yiad)|x = m(@f T o ) ke = m(aa)l g :

we have ¢;; = —m; " Z;i:é m;lk(¢4;,¢;) (mod p). Put ¢;; = 1k(¥;,¢;) if
i # j. Then the linking matrix of K is defined as a (d+1—¢) x (d+1—9)
matrix

Cr = (cij mod p)s<i j<d

with entries in F,,, which satisfies

("5 m(@s) i
(3) : =Ck : )
(5E5) e

ie., (K:(/lK) = H?:(; 7T(.rj>|;é]q for § <i < d. Note that {7(x;)|ks }s<j<d
forms a basis of the F,-vector space Gal(K9/Q) =~ Fg-u—&. Since
Gal(K9/K) ~ Fg_5, we have rank Cx < d —§. The following lemma is
a translation of [4, Lemma 1.1] into the words of a linking matrix. We

denote by [a] the ideal class of an ideal a.

Lemma 4.2. Under the settings above, the following two conditions
are equivalent, where (0,---,0) £ (bs, -+ ,bq) € Fg+1_5.'
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1 AK) = ([l [Ucal) = (Z/pZ)%° and [Tl = 1.
2. rankCg =d— ¢ and (bs,--- ,bq)Cx = (0,---,0).

Proof. The equation (3) implies that Gal(K9/K) =
((KQ/K), e ,(KQ/K)> if and only if rank Cx = d — §. By [4, Lemma

[’ IK,a
1.1], A(K) = ([l6], -+ [lx,a]) ~ F&0 if and only if rank Cx = d — 6.
Then, since A(K) — Gal(K9/K) : [lk;] — (K[i/K) becomes a F-linear
isomorphism, we obtain the equivalence. O

If6 =1and m; =1 forall 1 <i<d, the d x d matrix Cg coincides
with the linking matrix C’ of S (cf. [16, Example 10.15]).

85. A criterion of Greenberg’s conjecture via capitulation

Using the linking matrices C'x, we obtain a criterion of Greenberg’s
conjecture as follows. Recall that ¢y = p # 2 and ¢; = 1 (mod p)
for 1 < i < d. Let k/Q be a cyclic extension of degree p which is
unramified outside the set S = {{1,---,£4} and ramified at any ¢; € S.
Then the (Z/pZ)*-extension k1/Q contains p — 1 cyclic subextensions
kM ... k=1 of degree p except for k and Q. Put k(9 =k, and put

J={j|rankCx =d — 0k forK:k(j)}C{O,l,--~ p—1}

with the cardinality |J|. For each j € J, let (bsj,--- ,baq;) € Fg“f‘s be
a nonzero vector satisfying (bs;,- -+ ,b04;)Crn = (0,---,0), where 6 =1
if j =0, and 6 = 0 otherwise. Omitting by;, we define a d x |J| matrix

By, = (bij)i<i<d,jeJ-

Now we shall recall and prove Theorem 1.2.

Theorem 5.1 (Theorem 1.2). Under the settings above, if rank C, =
d — 1 and rank By, = d, then A(k) capitulates in ky. If moreover p is
inert in k/Q, we have A\(k) = p(k) = 0.

Proof. Suppose that rankCy = d — 1 and rank By = d. Then
A(k) = (1), -+, [lk,a]) by Lemma 4.2, and there is J' C J such that
B; = (bij)i<i<d,jes is a regular d x d matrix. Let O, denote the
ring of algebraic integers in kq, and let p be the prime ideal of Q
lying over p. For any 1 < j < p — 1, since [p] € A(Q;) ~ 1 and
pOkl = [k@,OOkl, we have [[k(j)yoOk;l] = [pOkl] =1¢€ A(kl). More-
over, lpi) ;O = lgiOp, forany 1 < j <p—1and 1 <i < d. Hence

H?Zl[[k’iOkl]bU = H?Zl[[k(j),iOkl]bij =1 for any j € J’ by Lemma 4.2.
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If we write additively as ‘Z?Zl bi;[lk,iOk,] = 0’, then

([10k)+++  [.aOk 1) = (0, ,0) B = (0, ,0).
This implies that the lift mapping A(k) — A(k1) : [a] — [aOy,] is a zero
mapping, i.e., A(k) capitulates in k;. Then, moreover if p is inert in
k/Q, we have A(k) = u(k) = 0 by [5, Theorem 1]. O

REMARK 5.2. Note that the extensions k(... k(=1 have the
common genus class field which contains k;. For 1 < i < d, since

mi(@i)|k = mi 2y, and (m1(2i)|k,) = Gal(ki/Q1) = (m1(2a)lx,), we
have 1 ()|, = 71(2;"")|k,, and hence my) ; = my,; (mod p) for any
0<j<p-1,ie,m; (1 <i<d)iscommon for all K = k). On
the other hand, we may assume that Gal(k,/kW)) = (z(z5”x4)|r, ), i.e.,
mo =My o =j " (mod p) for each K = ED (1<j<p-1).

Theorem 1.2 is a partial generalization of Theorem 1.1 in the fol-
lowing sense.

Proposition 5.3. If d = 2 under the settings above, rank By = 2
(and rank Cy, = 1) if and only if (1) is satisfied.

Proof. Put lK,ij = mK,jlk(&,Kj) ((5[{ <5< 2) for Ql 7’5 K C k/’l,
and put l;; = lg;; if 7 # 0 (cf. Remark 5.2). Since

112 0
Cy € ( —ly; O )GLQ(FP)

and
0 —lo1 —lo2
Ckel| 0 Ilxi0+lha —li2 GL3(F),)
0 —l21 lxc 20 + l21

for K 75 k, we have (lgl,llg)ck = (0,0) and (bQ’K,bl’K,bgyK)CK S
(0,0,0) with

bo, i lialr 20 + U200k, 10 + U 10021
b1,k = I 20l01 + lo1l21 + la1lo2
ba i I, 10l02 + lo2li2 + lizlor
—lo1 —lo2
= I 10 + li2 X —l12 )
—l21 Ixc20 + 121

where x denotes the cross product of vectors. For each K = kU) with
1<j<p—1,rankCg <1 (ie, j & J) if and only if bp x = b1, x =
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ba,xk = 0. Note that lo; = l12 = 0 if and only if rank Cj, = 0 (i.e., 0 & J).
Since

l b
(1) ‘ 21 01K ‘ lo1li2lk 20 + lo2l21lk 10,

lig bax

we have J = {0,1,--- ,p—1} (in particular rank C}, = 1) if (1) is satisfied.
If 0 € J, then (b107b20) = (121,112). If 0 75] S J, then (boj,blj,sz) =
(bo,x, b1,i, b2 k). Since the 2 x 2 minors of By, are either (4) or

b b1 K _
‘ b;i b;; = (—lo1hialk 20 + lo2la1lk 10) (lo1 + 102)(mK’,OmK}0 -1)
with some K and K’, we have (1) if and only if rank By, = 2. O

86. Examples

Using Theorem 1.2, one can see the detail of an example by Green-
berg [5] as follows.

EXAMPLE 6.1 ([5, p.283]). If ¢ = p = 3, d = 3, ({1,03,03) =
(7,13,19), oy, = 3, g, = g, = 2, we have

0 5 8 5 02 2 2
242 01 12| _[2 0 10

(Ik(€:, £5))o<i,j<3 = 1t 3013|5100 1 |med3
0+25 1 7 0 0110

with some z; € 3Z3, where we note that (1+p)? =1 (mod p?). Let k/Q
be the cyclic cubic extension ramified only at S = {7,13,19} such that
Me1 =m1 =1, mgo =me =2 (and my3 = ms = 1). Then

110
Cr=10 1 1], rankCy=2, (1,0,2)Cx = (0,0,0),
110

and A(k) ~ (Z/3Z)* by Lemma 4.2. For j € {1,2}, assuming my) o =
j =371 (mod 3), we have

Criy = , rankCpuy =3,

O = NS
<.
+
—
—

o= O N
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and (1,2,1,0)C,y = (0,0,0,0) = (1,0,1,1)Cj2). Then J = {0,1,2},
and

1 2
By, = 0 1 , rank By = 3.
2 0

= O

Hence A(k) capitulates in k; by Theorem 1.2. Since

3 1k(£Lo,€; 3 mylk(€o,5)
(o)l = [T1_y () [ = m(as) | O = (@2 £ 1

by Theorem 2.2, p is inert in k/Q. Therefore A(k) = u(k) = 0 by [5,
Theorem 1].

Moreover, we obtain infinitely many examples of Theorem 1.2 as
follows.

Corollary 6.2. If 2 < d < p, there exist infinitely many cyclic ex-
tensions k/Q of degree p such that; p is inert in k/Q, A(k) ~ (Z/pZ)4~1,
and \(k) = u(k) =0 (and v(k) =1 if d = 2).

Proof. Put £y = p. By Proposition 2.4, there exist infinitely many
S ={l, - ,Lq} such that

0O 0 1 1
1 0 0 0

(k(£;, €))o<ijea= | 2 ~1 0 0 mod p.
d 1 0 - 0

Let k/Q be the Z/pZ-extension ramified only at S such that my,; =
m; =1 for all 1 <7 <d. Since

d Ik(£0,¢, d _
(yo)lk =TT, w(@) e ™) = Ty (@)l = n(aa)|f #1

by Theorem 2.2, p is inert in k/Q. (If d = 2, then (1) is satisfied, and
hence Theorem 1.1 yields that A(k9) = p(k9) = v(k9) = 0, which implies
Ak) = u(k) =0, v(k) =1 and A(k) ~ Z/pZ.) Since

0 0 --- 0
-1 1
Cr =
-1 1
has rank d — 1, we have A(k) ~ (Z/pZ)%~! by Lemma 4.2. Moreover
0 € J and (b1g, - ,bao) = (1,0,---,0) € Fg. Suppose that myu) o =
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7! (mod p) as in Remark 5.2. Then

—(d-1)j7 0 1 1
1 —j1 0 0
—T
Crir = 2 —1 [1-2j
d -1 1—djt

for 1 <j <p-1 Puw J = {0,2,---,d} if d < p, and J =
{0,1,2,--- ;p — 1} if d = p. One can easily see that J C J, i.e.,
rankC;) =dif0£je J. Ifd<p,

-1 - -1
1
By, = (bij)i<i<djer = .
0 d-!
and by; =0 for any 2 < j < d. If d = p,

1 0 1 -1
0 171 21
B, = (bij)i<i<ajer = | O 27t )
: : (p—1)71
0 -1 T 0 - 0
b1 =1, and by; = 0 for all 2 < j < p — 1. Since det B}, # 0, we have
rank By, = d, and hence A\(k) = p(k) = 0 by Theorem 1.2. O

EXAMPLE 6.3. If £y = p = 3, d = 2, ({1,03) = (67,79), ay, = 12,

oy, = 53, we have
) mod 3
1)
)=

0 57 1 0 0 1
(H{(fi,gj))ogi,jgg = 1+2z 0 48 = 1 0 0
2420 65 0 -1 0

with some z; € 3Zs. Then A(k) = u(k) = 0 (and v(k) = 1) for k with
my1 = 1 as in the proof of Corollary 6.2. Since A(k9) = p(k9) = v(k9) =

0 by Theorem 1.1, we have A(k) = u(k) = 0 (and v(k) = 1) also for k
with mg 1 = 2.

~
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