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Abstract.

In this paper we give an overview of some aspects of Iwasawa
theory for modular forms. We start with the classical formulation in
terms of p-adic L-functions in the ordinary case and the±-formulation
for supersingular elliptic curves. Then we discuss some recent pro-
gresses in the proof of the corresponding Iwasawa main conjectures
formulated by Kato (Conjecture 4.1), which relates the index of his
zeta element to the characteristic ideal of the strict Selmer groups. 1

§1. Introduction

An important problem in number theory is to study relations be-
tween analytic L-functions and arithmetic objects. A �rst example
of this �avor is the class number formula which relates the values of
Dedekind ζ-functions of number �elds at s = 1 to its class number. Let
p be a prime. In the 1950's, Iwasawa initiated the study of such rela-
tion for cyclotomic Zp-towers of �eld extensions, which resulted in the
asymptotic formula for the p-part of class numbers of such tower of �eld
extensions. Beyond the case for number �elds (and Hecke characters),
another important example for this relations is the Birch-Swinnerton-
Dyer conjecture for elliptic curves E de�ned over Q. According to the
Shimura-Taniyama-Weil conjecture proved by Wiles [37] and Breuil-
Conrad-Diamond-Taylor [3], its associated L-function L(E, s) is an en-
tire function for s. The L-series has a functional equation symmetric
with respect to the point s = 1. The BSD conjecture states that

• The vanishing order r = ran of L(E, s) at s = 1 is equal to the
rank of the Mordell-Weil group E(Q). This is called the rank
part of the conjecture.
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• We have the following expression for the leading coe�cient of
L(E, s) at 1

L(r)(E, 1)

r!ΩERE
=

]XE,Q
∏

ℓ cℓ
(]E(Q)tor)2

.

Here ΩE is the period, RE is the regulator, XE,Q is the
Shafarevich-Tate group and cℓ is the Tamagawa number of E
at `. This is called the re�ned BSD formula.

In order to study the re�ned BSD formula, one �rst studies if the p-
parts of both hand sides are equal. It is Mazur who �rst realized that
the idea from Iwasawa theory can be applied to elliptic curves, getting
results for the p-part of its BSD formula. In fact the Tamagawa numbers
above come out naturally in Mazur's control theorems for Selmer groups
(we refer to [8] for a detailed presentation of such theory). Later on, the
formulation of Iwasawa theory has been greatly generalized by Greenberg
[7] and others to certain �motives� (or automorphic forms which are
algebraic in the sense of Clozel). In this paper we are going to give a
survey on the case of elliptic modular forms, including elliptic curves as
a special case.

§2. Modular Forms, Galois Representations and Assumptions

Fix a prime p. Let f =
∑∞

m=1 amqm be a normalized cuspidal eigen-
form for GL2/Q, of weight k ≥ 2 and conductor N . For simplicity we
assume that f has trivial character throughout this paper. By work of
Shimura, Langlands, Deligne, etc, one can associate a Galois represen-
tation

ρf : GQ → GL2(L)

for some �nite extension L of Qp. It is well known that one can �nd a
Galois stable lattice in the representation space for ρf over the integer
ring OL of L, from which we can talk about the residual representation
ρ̄f .

• Assume throughout this paper that this residual representation
is absolutely irreducible.

In this case the choice of the Galois stable lattice is unique up to mul-
tiplying by a nonzero number. In fact such assumption is also used
in several places in the argument (e.g. the lattice construction, and
also Kato's Euler system argument). Write Tf for this lattice and let
Vf := Tf ⊗OL

L. It is characterized by requiring that for all primes `
not dividing Np,

Tr(Frobℓ|Vf
) = aℓ.



Iwasawa Theory for Modular Forms 3

Moreover the representation of GQp
on Vf is de Rham (potentially semi-

stable) in the sense of p-adic Hodge theory. On the other hand, standard
theory for modular forms provides an L-series to f , which we denote
as L(f, s). This is an entire function on the complex plane C. More
generally for each Hecke character χ of Q×\A×

Q of �nite order, there

is a twisted L-series L(f, χ, s) (entire functions) of f by χ. The special
values of L(f, χ, s) at s = 1, · · · , k−1 are called critical values (following
Deligne). Critical L-values are those related to Selmer groups by the
Bloch-Kato conjecture [5] which we recall momentarily.

• From now on throughout this paper we assume p is an odd
prime for simplicity. The main reason is right now the prime 2
is still not accessible in the automorphic form arguments. The
Euler system argument does not need to exclude the prime 2
nevertheless.

• We also always assume that k is even. The reason is we need
the central critical point for the L-function for f is an integer
(again for the automorphic arguments, we need some vanishing
of anticyclotomic µ-invariant results which require this).

§3. Iwasawa Theory for Ordinary Modular Forms

As we are mainly interested in applications to central L-values, we
are going to consider even weight k and look at the Galois representations
Tf (−k−2

2 ) (the −k−2
2 -th Tate twist) and Vf (−k−2

2 ). Let Q∞ be the
cyclotomic Zp extension of Q. Write Γ = Gal(Q∞/Q) ' Zp. We de�ne
the Iwasawa algebra over OL to be Λ = ΛOL

= OL[[Γ]]. We say the
modular form f is ordinary at p if ap is a p-adic unit. In this case we
have a nice description of the representation ofGQp on Tf : there is a rank

one OL submodule T+
f (direct summand) of Tf stable under the action

of GQp , and such that the action of GQp on the quotient T−
f := Tf/T

+
f

is unrami�ed. In this section we focus on the good ordinary case, i.e. f
is ordinary and p ∤ N . In order to state the Iwasawa main conjecture for
f , we de�ne objects on arithmetic side and analytic side.

Arithmetic Side
Write Σ for the set of primes dividing pN . For any �nite sub-extension
Qn/Q of Q∞, we de�ne the Selmer group for f over Qn as follows. For
v ∤ p we de�ne the �nite part of local cohomology

H1
f (Qn,v, Vf (−

k − 2

2
)) :=ker{H1(Qn,v, Vf (−

k − 2

2
))→ H1(In,v, Vf (−

k − 2

2
))}
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(In,v is the inertial group ofQn,v) and de�ne H1
f (Qn,v , Vf (− k−2

2 )/Tf (− k−2
2 ))

as the image of

H1
f (Qn,v, Vf (−

k − 2

2
)).

Let

Sel(Qn, Vf (−
k − 2

2
)/Tf (−

k − 2

2
)) := ker{H1(QΣ

n , Vf (−
k − 2

2
)/Tf (−

k − 2

2
))

→
∏
v∤p

H1(Qn,v , Vf (− k−2
2 )/Tf (− k−2

2 ))

H1
f (Qn,v , Vf (− k−2

2 )/Tf (− k−2
2 ))

×
H1(Qn,p, Vf (− k−2

2 )/Tf (− k−2
2 ))

H1(Qn,p, V
+
f (− k−2

2 )/T+
f (− k−2

2 ))
}.

We also de�ne

Sel(Q∞, Vf (−
k − 2

2
)/Tf (−

k − 2

2
)) := lim−→

n

Sel(Qn, Vf (−
k − 2

2
)/Tf (−

k − 2

2
)).

We de�ne the dual Selmer group

Xf,Q∞ := HomZp
(Sel(Q∞, Vf (−

k − 2

2
)/Tf (−

k − 2

2
)),Qp/Zp).

This is equipped with an action of Γ and thus a Λ-module structure,
which can be easily proved to be �nitely generated. This Xf,Q∞ is the
main arithmetic object to study. We need one more de�nition.

De�nition 3.1. Suppose A is a Noetherian normal domain and X
is a �nitely generated A module. We de�ne the characteristic ideal of X
as A module by

charA(X) = {x ∈ A|lengthAP
XP ≤ ordPx, for any height one prime P of A.}.

We also de�ne it to be 0 if X is not a torsion A module.

Analytic Side

Now we write α, β for the roots of the Hecke polynomial X2 − apX +
pk−1 = 0. Since we assume ap is a p-adic unit, there is a unique such
root which is a p-adic unit. Without loss of generality we write α for
this root. Let γ be the topological generator of Γ which corresponds to
(1+p) under the local reciprocity law in class �eld theory at p. We say a
Q̄p-point φ in SpecΛ is arithmetic if φ(γ) = ζ(1+p)m for 0 ≤ m ≤ k−2
for some p-power root of unity ζ. We write χϕ for the Hecke character
of Γ corresponding to φ. By work of Amice-Vélu [1] and Vishik [32],
there is a p-adic L-function Lf,Q ∈ Λ with the following interpolation
property

φ(Lf,Q) =
m!(pt

′
ϕN)m+1L(f, ω−mχ−1

ϕ ,m+ 1)

(−2πi)m+1Ω
(−1)m

f G(ω−mχ−1
ϕ )

ep(φ)
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for each arithmetic point φ. Here ep(φ) is some local normalization
factor at p (see [28, 3.4.4] for details. In fact there is an error for power
of 2πi there. See also the formula in [28, Section 12.3]. The formula in
[28, 3.4.4] follows [18] but the de�nition for Ω±

f di�ers from [18] by 2πi ).

We assume the ζ corresponding to φ is a primitive ptϕ−1-th root of unity,
and the t′ϕ is de�ned as 0 if tϕ = 1 and p − 1|m, and is tϕ otherwise.

The ω is the Teichmuller character, G is the Gauss sum, Ω±
f are period

factors associated to f . These periods are de�ned up to multiplying by
a p-adic unit (see [28, 3.3.3] for a precise de�nition).

Now we are ready to formulate the Iwasawa main conjecture for f .

Conjecture 3.2. Assume ρ̄f is absolutely irreducible. The Λ-module
Xf,Q∞ is torsion, and its characteristic ideal is the principal ideal gen-
erated by Lf,Q.

This formulation is due to Greenberg in a series of papers (e.g. [7]).
In the elliptic curve case the conjecture was already made by Mazur-
Swinnerton-Dyer in 1974 [19, Conjecture 3]. The conjecture was greatly
in�uenced by early work of Mazur on control theorems for Selmer groups
of elliptic curves (see [8]). We will see in Remark 4.3 that this is a special
case of Kato's more general formulation in the ordinary case. Now the
conjecture is already a theorem, due to work of Kato and Skinner-Urban
[28].

Theorem 3.3. Suppose the weight k of f is congruent to 2 mod-
ulo (p − 1), and that T̄f is an absolutely irreducible representation of
GQ. Suppose moreover that there is a prime `||N , such that T̄f |GQℓ

is
rami�ed. Then the Iwasawa main conjecture is true.

Note that the assumption excluded the CM cases, which are treated
by results of Karl Rubin [23]. Note also that as noted in [29], the as-
sumption of Kato that the image of GQ contains SL2(Zp) can be slightly
weakened by only requiring the mod p irreducibility of the Galois repre-
sentation, and the existence of the ` as above.

The proof consists of two parts. To prove the upper bound for
Selmer groups, Kato [11] constructed an Euler system coming from the
Siegel units on modular curves. An Euler system is, roughly speaking a
set of Galois cohomology classes satisfying the norm relation and some
local conditions. We refer to [24] for the precise de�nition and methods
of Euler systems. Thaine [31] made an annihilator of the class groups of
real abelian �elds over Q, using cyclotomic units via an argument which
was later re�ned and generalized by many people including Rubin and
Kolyvagin. It was Kolyvagin who made the machinery �Euler systems�
and used it to study Heegner points and proved the rank part of the BSD
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conjecture when the analytic rank is 0 or 1. He also suggested to use
this machinery to study Iwasawa theory. Karl Rubin studied it system-
atically, axiomatized the argument in [24], and exploited it in the case of
elliptic units to prove Iwasawa main conjectures for quadratic imaginary
�elds [23]. (Strictly speaking the Heegner point case of Kolyvagin is not
an Euler system in the sense of Rubin, but an �anticyclotomic Euler
system in his terminology.)

To prove the lower bound, Skinner-Urban studied the congruences
between families EKling of Klingen Eisenstein series and cusp forms on
the rank four unitary group U(2, 2), and constructed �su�ciently many�
elements in the Selmer group. By doing this, it is necessary to study
two and three variable main conjectures over the quadratic imaginary
�eld K that is used to de�ne the unitary group U(2, 2). The key part of
the argument is to �nd out a suitable Fourier coe�cient of EKling and
show that it is co-prime to the p-adic L-function under study. For this
purpose, they used the pullback formula of Piatetski-Shapiro-Rallis and
Shimura to realize EKling as the pullback of a family of (simpler) Siegel
type Eisenstein series ESieg on U(3, 3) under the pullback

U(2, 2)×U(1, 1) ↪→ U(3, 3).

So it is reduced to computing the Fourier-Jacobi coe�cients for ESieg,
which turns out to be a �nite sum of products of Eisenstein series and
theta functions on U(1, 1). We refer to [36] for a concise introduction
to Skinner-Urban's work. After this, a Galois representation theoretic
argument called �lattice construction� (generalizations of the so-called
Ribet's lemma by Wiles, and further generalized later on by E. Urban
[28, Section 4]. This construction is also explored in Bellaiche-Chenevier
[2].) gives the Selmer elements needed.

§4. Kato's Formulation for Main Conjecture

Now we brie�y discuss Kato's formulation of Iwasawa main conjec-
ture for modular forms in [11] using his zeta elements. In this section
for simplicity we exclude the situation described in [11, (12.5.1)]. In
particular it is satis�ed if f is �potentially of good reduction� at p. This
formulation does not involve p-adic L-functions and does not require any
ordinarity on the form.

Strict Selmer Groups
We de�ne

H1
Iw(QΣ, Tf (−

k − 2

2
)) := lim←−

n

H1(QΣ
n , Tf (−

k − 2

2
))
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where Qn is running over all intermediate �eld extensions between Q∞
and Q. Kato proved that it is a torsion-free rank one module over Λ,
and de�ned a zeta element zKato in H1

Iw(QΣ, Tf (−k−2
2 )) ⊗ Qp. In fact

what Kato constructed is a canonical morphism

V ±
f → H1

Iw(QΣ, Tf (−
k − 2

2
))⊗Qp, γ 7→ zγ ,

where ± denotes the parts where the complex conjugation acts by ±1.
The zKato is the image of a generator of T+

f under the above map (de-

termined up to a p-adic unit).
On the arithmetic side, we de�ne the Selmer group

Selstr,Qn(f) := ker{H1(QΣ
n , Vf (−

k − 2

2
)/Tf (−

k − 2

2
))

→
∏
v∤p

H1(Qn,v, Vf (− k−2
2

)/Tf (− k−2
2

))

H1
f (Qn,v, Vf (− k−2

2
)/Tf (− k−2

2
))
×H1(Qn,p, Vf (−

k − 2

2
)/Tf (−

k − 2

2
))}.

Here strict means the local image at p is required to be 0.

Selstr,Q∞(f) := lim−→Selstr,Qn(f)

and

Xstr := Selstr,Q∞(f)∗.

Here ∗ means Pontryagin dual. Kato formulated the Iwasawa main
conjecture as

Conjecture 4.1. The Xstr is torsion over Λ. If the image of ρf
contains SL2(Zp), then the zKato is in H1

Iw(QΣ, Tf (−k−2
2 )), and

charΛXstr = charΛ(
H1

Iw(QΣ, Tf (−k−2
2 ))

ΛzKato
).

Without the assumption that the image of ρf contains SL2(Zp), then the
related statement is true after tensoring with Qp.

In fact Kato constructed zeta elements for various levels, so that
these classes form an Euler system and can be used to bound the strict
Selmer groups. The zKato above is actually the zeta element of level 1.
We will see in a moment that in the ordinary case, Kato's formulation
of the Iwasawa main conjecture is the same as the one given in Section
3. Kato proved the following
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Theorem 4.2. (Kato) The Xstr is a torsion module over Λ, and

char(Λ⊗ZpQp)(Xstr⊗ZpQp) ⊇ char(Λ⊗ZpQp)(
H1

Iw(QΣ, Tf (−k−2
2 ))⊗Zp

Qp

(Λ⊗Zp
Qp)zKato

).

If moreover the image of ρf contains some conjugation of SL2(Zp) then

charΛXstr ⊇ charΛ(
H1

Iw(QΣ, Tf (−k−2
2 ))

ΛzKato
).

Remark 4.3. Now we brie�y explain the equivalence between Kato's
formulation and the formulation using p-adic L-functions of the Iwasawa
main conjecture in the ordinary case (this is explained in detail in [11,
Section 16]). By the Poitou-Tate exact sequence we have the following

0→ H1
Iw(QΣ, Tf (−

k − 2

2
))→

H1
Iw(Qp, Tf (− k−2

2
))

H1
Iw(Qp, T

+
f (− k−2

2
))
→ Xf,Q∞ → Xstr,Q∞ → 0.

On the other hand there is a pseudo-isomorphism from H1
Iw(Qp, T

+
f (− k−2

2 ))

to OL[[T ]], mapping zKato to the p-adic L-function for f . Then the equiv-
alence follows from the multiplicativity of characteristic ideals in exact
sequences.

§5. Iwasawa Main Conjecture for Supersingular Elliptic Curves

We note in the above section that Kato's result does not make any
assumptions on ordinarity. So the next natural question to ask is: can
we get the lower bound for Selmer groups in the non-ordinary case as
well?

Recall in the proof in the ordinary case, Skinner-Urban used the
formulation using p-adic L-functions. In the non-ordinary case, there
are two problems to face. (1) The p-adic L-function constructed using
similar interpolation formula is not in the Iwasawa algebra. (2) The
Λ-module of dual Selmer groups de�ned by taking limits of Bloch-Kato
Selmer groups, is not necessarily torsion. So these suggests that some
modi�cation is needed.

In the special case of supersingular elliptic curves E, if ap = 0, there
is a nice ±-theory on both analytic and arithmetic sides. Write α and
−α for the roots of the Hecke polynomial X2 + p = 0. On the analytic
side, R. Pollack [20] constructed a pair of ± p-adic L-function, which
we brie�y summarize. Let LE,α and LE,−α be the p-adic L-functions
associated to the roots α and −α respectively. These are not in the
Iwasawa algebra Λ. Instead they are rigid analytic functions on the unit
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disc with certain growth condition. We introduce two additional half
log functions log±p as follows:

log+p (1 +X) =
1

p

∏
m

Φ2m(1 +X), log−p (1 +X) =
1

p

∏
m

Φ2m−1(1 +X).

Here Φm denotes the pm-th cyclotomic polynomial. It follows from the
interpolation formulas that LE,α +LE,−α is 0 at all zero points of log+p ,

and LE,α−LE,−α is 0 at all zero points of log−p . Based on this observa-
tion Pollack proved the following theorem.

Theorem 5.1. There are elements L±
E ∈ Λ such that

LE,α = L−
E log+p (1 +X) + L+

E log−p (1 +X)α,

LE,−α = L−
E log+p (1 +X)− L+

E log−p (1 +X)α.

Later on Kobayashi [14] found analogues of Pollack's ± p-adic L-
functions on the arithmetic side. Kobayashi put more strict local Selmer
conditions at p, and de�ned the ± dual Selmer groups which we denote
as X±

E . Kobayashi made the following conjecture.

Conjecture 5.2. The characteristic ideals of X±
E are generated by

L±
E, respectively.

Kobayashi also proved that the characteristic ideal of X±
E above

contain the principal ideal (L±
E), using Kato's theorem above. Kobayashi

also proved that the ± main conjecture are both equivalent to Kato's
main conjecture in this case.

For CM elliptic curves, Pollack and Rubin [22] proved the lower
bounds for Selmer groups as well, completing the full main conjecture.
For general elliptic curves, we proved the following theorem.

Theorem 5.3. Assume ap = 0. Suppose there is at least one prime
` dividing N exactly once, such that the representation E[p] of GQℓ

is
rami�ed. Then the ± main conjecture above is true.

Note that our theorem is slightly more general than in that we do
not need N to be square-free, since we removed such assumptions for the
Greenberg type main conjecture in [35]. Note also that we do not assume
the image of GQ contains SL2(Zp). The reason is observed by Skinner
that to make the Euler system argument work, we only need to assume
the weaker assumption that there is an ` as in the theorem above, and
that E[p] is an absolutely irreducible GQ-representation (which is auto-
matic since E has supersingular reduction at p). We have the following
corollary.
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Corollary 5.4. Assumptions are the same as in Theorem 5.3. If
ran = 0 or 1, then the p-part of the re�ned BSD formula for E is true.

The rank 0 case follows from a control theorem for Selmer groups.
In the rank 1 case this follows from an old result (unpublished) of Perrin-
Riou on non-degeneracy of p-adic height pairing and also explained in
[15, Introduction and Section 4]. The key is the non-vanishing of the
p-adic height pairing in the supersingular case.

The proof of Theorem 5.3 is a little convoluted. We �rst need some
backgrounds on Greenberg's work on Iwasawa theory. At the moment
suppose T is a Zp-Galois representation of GQ and V := T⊗Qp. Suppose
V is geometric (i.e. de Rham at p and unrami�ed almost everywhere).
Then we have the Hodge-Tate decomposition

V |GQp
⊗ Cp = ⊕iCp(i)

hi

where Cp(i) is the i-th Tate twist and hi is the multiplicity. Let d be
the dimension of T and let d± be the dimensions of the subspaces whose
eigenvalues of the complex conjugation c is ±1. We assume

• d+ =
∑

i>0 hi.

This is put by Greenberg as a p-adic version of the assumption that
L(T, 0) (in favorable situations when this makes sense) is critical in the
sense of Deligne. Assume moreover the following Panchishkin condition
at p

• There is a d+-dimensional Qp-subspace V
+ of V which is stable

under the action of the decomposition group GQp
at p such that

V + ⊗ Cp = ⊕i>0Cp(i)
hi .

Write T+ := V + ∩ T . Under this Panchishkin condition Greenberg
de�ned the following local Selmer condition

H1
f (Qp, V/T ) = Ker{H1(Qp, V/T )→ H1(Qp,

V/T

V +/T+
)}.

In other words under the Panchishkin condition the local Selmer con-
dition above is very analogous to the ordinary case, thus making the
corresponding Iwasawa main conjecture (when an appropriate p-adic
L-function is available) accessible to proof (especially the �lattice con-
struction� discussed in [28, Chapter 4]). The following example is crucial
for this paper.

Example 5.5. Let f be a cuspidal eigenform of weight k and g be a
CM form of weight k′ with respect to a quadratic imaginary �eld K such
that p splits. Then g is ordinary at p by de�nition. Assume k + k′ is
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an odd number. We consider critical values for Rankin-Selberg products
L(f, g, i) (which means L(ρf ⊗ ρg(−i), 0) if we write ρf and ρg for the
corresponding Galois representations). We consider two possibilities:
1. If k > k′, then the Panchishkin's condition is true if f is ordinary;
2. If k′ > k, then the Panchishkin's condition is always true, regardless
of whether f is ordinary or not. This can be seen as follows: we have
d± = 2, ρf and ρg have Hodge-Tate weights (0, k − 1) and (0, k′ −
1) respectively. The L-values are critical when k − 1 ≤ i ≤ k′ − 1.
So for those i above ρf ⊗ ρg(−i) has two positive Hodge-Tate weights.
On the other hand ρg as a GQp

-representation is the direct sum of two
characters. Thus the Panchishkin condition is easily seen.

We pick an auxiliary quadratic imaginary �eld K above. Let K∞ be
the unique Z2

p-extension of K with Galois group denoted as ΓK. Write

ΛK = Zp[[ΓK]]. Let Γ
±
K be the rank one submodules of ΓK such that the

complex conjugation acts by ±1. We are going to use the case 2 in the
above example when f is the weight two cuspidal eigenform associated
to E, and g varying in the Hida family g corresponding to characters
of ΓK. We vary the data in a two-variable family: one corresponds
to Hida family g, one corresponds to twisting by cyclotomic characters
(i.e. considering tower of �eld extensions Q∞/Q). The corresponding
Greenberg type p-adic L-function has been constructed by Hida using
Rankin-Selberg method (which we denote as LGr

g⊗f ). We also denote

XGr
g⊗f for the two-variable dual Selmer group de�ned by Greenberg. We

proved the following theorem (see [34] and [33]).

Theorem 5.6. Assume the residual Galois representation associ-
ated to f is absolutely irreducible over GK, and that there is at least one
prime ` dividing N exactly once. We have the characteristic ideal of
XGr

g⊗f as ΛK-module is contained in (LGr
g⊗f ), up to height one primes of

Zp[[Γ
+
K]].

The proof of this theorem used Eisenstein congruences on the uni-
tary group U(3, 1), extending Skinner-Urban's strategy for the group
U(2, 2). Unlike Skinner-Urban's case, there is only Fourier-Jacobi ex-
pansion (instead of Fourier expansion) on U(3, 1), making the argument
more complicated. In particular we need to carefully make the local
constructions and analyze the p-adic properties. This is the most tech-
nical part of our argument. We refer to the introduction of [33] for a
detailed account of this argument. We also mention that this theorem
has other important consequences. For example it is the key ingredient
for Skinner's proof [26] of the converse of the theorem of Gross-Zagier
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and Kolyvagin, and the proof for the p-part of the re�ned BSD formulas
for elliptic curves of analytic rank one, by Jetchev-Skinner-Wan [10].

Go back to the proof of the ± main conjectures. B. D. Kim [12]
is able to upgrade the ± theory into a two-variable setting over ΛK.
In fact since there are two primes of K above p, there are four pos-
sibilities in Kim's theory: ++,+−,−+,−−. Now we explain how we
prove the ± main conjecture. We consider the ++ p-adic L-function
L++
E,K above. The key input comes from the explicit reciprocity law for

Beilinson-Flach elements, studied by Kings-Loe�er-Zerbes [16], [13]. We
�rst constructed the ± Beilinson-Flach element BF±, imitating Pollack's
construction of the ± p-adic L-functions. Next we further develop some
± local theory and construct ± Coleman maps and Log maps, which are
denoted as Col± and Log±. Writing p = v0v̄0 for the decomposition of p
in K. The work of Kings-Loe�er-Zerbes tells us that the images of BF+

under Col+v̄0 and Log+v0
are essentially given by L++

E,K and LGr
g⊗f , respec-

tively. Then by an argument using Poitou-Tate exact sequence, we see
that the one side divisibility of the Greenberg main conjecture is equiva-
lent to the one side divisibility of the ++ main conjecture. Thus we get
the desired divisibility for the ++-main conjecture from Theorem 5.6.
(Here we need some µ-invariant argument to deal with height one primes
of Zp[[Γ

+
K]].) Finally we specialize this two-variable one divisibility to

the cyclotomic line, and get the + main conjecture of Kobayashi.
Note that we have assumed ap = 0 in all above discussion. This is

automatic when p > 3. When ap 6= 0 and p = 3, F. Sprung developed a
more complicated [/] theory in the place of ± theory here. Following the
main line of our argument above, using more technical algebra, Sprung is
able to prove in [30] the [/]-main conjecture, which are again, equivalent
to Kato's main conjecture.

§6. Iwasawa Main Conjecture for Modular Forms

In fact we are also able to prove Kato's main conjecture for modular
forms of general weight k, provided p ∤ N . More precisely we have the
following theorem [35].

Theorem 6.1. Assume 2|k, p ∤ N , f has trivial character, and
that T̄f |Q(ζp) is absolutely irreducible. Suppose T̄f |GQp

is absolutely irre-

ducible. Assume moreover that the p-component of the automorphic rep-
resentation πf is a principal series representation with distinct Satake
parameters. If there is an `||N such that πℓ is the Steinberg representa-

tion twisted by χ
k
2
ur for χur being the unrami�ed character sending p to

(−1) k
2 p

k
2−1, then
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(1) We have

charΛ[1/p](Xstr) = charΛ[1/p](
H1

Iw(QΣ, Tf (−k−2
2 ))

ΛzKato
).

(2) If moreover the image of the Galois representation ρf contains
SL2(Zp). Then

charΛ(Xstr) = charΛ(
H1

Iw(QΣ, Tf (−k−2
2 ))

ΛzKato
).

The proof of this theorem goes mainly in 3 steps:

• Prove the Greenberg-type main conjecture (generalization of
Theorem 5.6) for Rankin-Selberg product of f with CM forms
of higher weight. Here the main di�culty is when k > 2, we
are forced to consider forms on U(3, 1) of vector-valued weights.
Then the Archimedean computation for Fourier-Jacobi coe�-
cient is very complicated. Our idea is to �x the Archimedean
weight and vary the nebentypus at p to obtain the two-variable
family. Then we use Ikeda's theory to show that the Fourier-
Jacobi coe�cients for Siegel Eisenstein series are �nite sums of
products of Eisenstein series and theta functions. From this we
can use a less explicit argument to factor out an Archimedean
integral which is non-zero and �xed throughout the family.
This is enough for our purpose.

• In general we do not have a nice integral local theory at p as in
the ordinary or ± case. So we �rst use the trianguline Iwasawa
theory to prove the main conjecture after inverting p. This is a
�nite slope analogue of the ordinary Iwasawa theory, devloped
by J. Pottharst [21]. By trianguline we mean the (ϕ,Γ)-module
for Vf |GQp

is upper triangular. (In the ordinary case, we have
a much stronger property that the representation Tf of GQp is
upper triangular.)

• Finally we treat powers of p. Using some control theorem of
Selmer groups, it actually su�ces to show that at some arith-
metic point where the value for the L-function of f over K is
non-zero, the size of the Selmer groups is precisely as predicted.
We do so by looking at one line in the two-variable family. It
corresponds to twisting by Hecke characters of K×\A×

K which
is unrami�ed at v0 but rami�ed at v̄0. Therefore along this line
the local Iwasawa theory at v0 is easy to understand. We pick
up such a line on which the Greenberg type p-adic L-function
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is not identically 0, and do the Poitou-Tate exact sequence ar-
gument: we compute the relations between the index of the
Beilinson-Flach element, or the Greenberg p-adic L-function,
with their corresponding Selmer groups along this line chosen.
Then we specialize to the point on the cyclotomic line, and
compare with the special value of the L-function for f over K
at this point. Note that in this argument we do not need any
local Iwasawa theory at v̄0.

This theorem can be viewed as a generalization of Theorem 5.3, how-
ever, it does not completely cover the latter due to di�erent assumptions.

It is also possible to deduce the p-part of the Tamagawa number
formula if L(f, k/2) 6= 0, provided k > p. Write T for Tf (−k−2

2 ). The
notations in the following corollary are slightly di�erent from [35].

Corollary 6.2. Assumptions are as in part two of Theorem 6.1.
Assume moreover that the weight k is in the Fontaine-La�aille range
k < p. If L(f, k

2 ) 6= 0, then the full Iwasawa main conjecture for T is
true, and we have

∏
l|pN

cl(T ) · charOL
(Selp∞(T )) = charOL

 OL L(f, k2 )

(2πi)
k
2 Ω

(−1)
k
2
−1

f

OL

 .

The reason for putting this low weight assumption is, in general
we do not know how to have a nice purely local de�nition for the local
Tamagawa numbers at p. If k < p this is given by the Fontaine-La�aille
functor as in Bloch-Kato [5]. We note that there is recent work of Bhatt-
Morrow-Scholze [4] on integral p-adic Hodge theory giving a purely local
functor from lattices in crystalline p-adic GQp

-representations V to lat-
tices inDcris(V ) giving by BK(T )⊗SW (F). Here BKmeans Breuil-Kisin
module functor over some coe�cient ring S (we refer to loc.cit. for pre-
cise de�nitions). The W (F) is the Witt vector over some �nite �eld F
of characteristic p. Moreover they proved cohomology comparison re-
sult for trivial coe�cient sheaf. More precisely, they have the following
theorem

Theorem 6.3. (Bhatt-Morrow-Scholze) Let X be a proper smooth
variety de�ned over OL. Suppose

Hi
crys(XF/W (F))tor = 0, Hi+1

crys(XF/W (F))tor = 0.
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Then there is a canonical isomorphism

BK(Hi
et(X,Zp))⊗S W (F) ' Hi

crys(XF/W (F)).

Here the assumption on the torsion-freeness of the crystalline coho-
mology of the special �bre is crucial. Morrow mentioned that there is
work in progress to generalize the above theorem to general coe�cient
sheaves. In our setting, we can consider the construction by Tony Scholl
[25] on the motive for modular forms. Let Y and X be the modular
curve Y0(N) and the compacti�ed modular curve X0(N), respectively,
and Euniv the universal Abelian variety over Y . Let Z = X\Y be the
set of cusps. Write E for the �rst relative de Rham cohomology of Euniv

over Y0(N). Let Ω1
X(logZ) be the sheaf of di�erentials with log poles

at cusps. Let ω = e∗Ω1
Euniv/X

. Then for an appropriate extension of E

from Y to X (which we still denote as E), there is a short exact sequence

0→ ω → E→ ω−1 → 0.

Let Ek−2 = Symk−2E. There is also a di�erential operator (we refer to
[25] for details)

∇k−2 : Ek−2 → Ek−2 ⊗ Ω1
X(Z).

Tony Scholl de�ned a complex of coherent sheaves Ω•(Ek−2) on X
with two non-zero terms in degrees 0 and 1, and studied its hyper-
cohomology. From the proof of [25, Theorem 2.7], there is a �ltration
F i on Ek−2 whose graded pieces Gri are given by ω2i−k+2, 0 ≤ i ≤ k−2,
satisfying Gri�ths transversality for ∇k−2. One thus de�nes a �ltered
complex structure on Ω•(Ek). Scholl worked out the graded pieces for
this complex as follows:

Gr0(Ω•(E)) = [ω−(k−2) → 0],

Gri(Ω•(E)) = [ω2i−(k−2) → ω2i−k ⊗ Ω1
X(logZ)], 1 ≤ i ≤ k − 2,

Grk−1(Ω•(E)) = [0→ ωk−2 ⊗ Ω1
X ].

Consider the spectral sequence for hyper-cohomology of �ltered com-
plexes. From this description, if k is not in the Fontaine-La�aille range,
there might indeed be torsion for the integral de Rham cohomology
(even after localizing at non-Eisenstein maximal ideals of Hecke alge-
bras), whose e�ects to the comparison theorem is still not clear. On the
other hand, those torsion may also contribute to the di�erence between
the integral de Rham cohomology (the hyper-cohomology of Ω•(Ek))
and the space H0(X0(N), ωk), by the above spectral sequence. We hope
experts in p-adic Hodge theory can provide a nice formulation for a
Tamagawa number conjecture for general weight forms, compatible with
Kato's main conjecture we proved.
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§7. Rami�ed Cases

So far we have assumed the automorphic representation πf is un-
rami�ed at p. Now we discuss cases when πf is rami�ed at p. If f has
weight two and the automorphic representation for f is special at p,
then the main conjecture is proved by Skinner in [27] (in this case the
f is ordinary at p). It seems not hard to adapt our argument above in
the general weight special at p case, where f has �nite slope. (But the
details need to be checked.)

The strategy we summarized above does not apply to cases with cer-
tain bad rami�cation at p, especially when the automorphic representa-
tion of f is supercuspidal at p. (Kato's Euler system method works well
also in these cases to get the upper bounds for Selmer groups.) The main
di�culty comes from the explicit reciprocity law for Beilinson-Flach el-
ements. In the case when p ∤ N , Kings-Loe�er-Zerbes �rst studied the
explicit interpolation maps for various Perrin-Riou regulator maps over
families, and used analytic continuation to prove the explicit reciprocity
law from the information at a Zariski dense set of points where they get
the formulas from geometry. In the rami�ed cases, however, it seems im-
possible to understand the interpolation formulas for Perrin-Riou maps.
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