On primitive p-adic Rankin-Selberg L-functions

Shih-Yu Chen and Ming-Lun Hsieh

Abstract.

In this note, we revisit Hida’s construction of p-adic Rankin-
Selberg L-functions by incorporating Jacquet’s approach to automor-
phic L-functions on GL(2) x GL(2). This allows us to give a construc-
tion of primitive three variable p-adic Rankin-Selberg L-functions
associated with a pair of two primitive Hida families in full general-
ity and prove the functional equation of this p-adic Rankin-Selberg
L-function.

81. Introduction

The theory of p-adic Rankin-Selberg L-functions for Hida families
of elliptic modular forms has been developed extensively by Hida in
[Hid85] and [Hid88a] and presents a landmark in the search of p-adic
L-functions for motives. The p-adic L-functions constructed by Hida
are in general imprimitive in the sense that they interpolate the critical
values of automorphic Rankin-Selberg L-function with local L-factors
at ramified places removed. The primitive p-adic Rankin-Selberg L-
functions were constructed in [Hid09, Theorem 3.3] under certain local
assumptions. The aim of this note is to go through Hida’s construction
of p-adic Rankin-Selberg L-functions with some new ingredients from
Jacquet’s representation theoretic approach to automorphic L-functions
on GL(2) x GL(2) in [Jac72]. As a result, we obtain the primitive p-
adic Rankin-Selberg L-functions in great generality and deduce the in-
terpolation formula in the form conjectured by Coates and Perrin-Riou
[CPRA9], [Coa89] (See Remark 1.1(1) for the precise meaning). We hope
that brining in representation theory to Hida’s work mentioned above
and the primitive p-adic L-functions can be useful in some applications,
for example, the precise formulation of three variable Iwasawa-Greenberg
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main conjecture for Rakin-Selberg convolutions. In order to give a pre-
cise statement of the main formula, we begin with some notation from
Hida theory for elliptic modular forms and technical items such as the
modified Euler factors at the archimedean place and the place p as well
as the canonical periods of primitive Hida families. To begin with, let
p > 3 be a prime. Let O be a valuation ring finite flat over Z,. Let I be
a normal domain finite flat over the Iwasawa algebra A = O[I'] of the
topological group I' = 1 + pZ,,.

1.1. Galois representations attached to Hida families

For a primitive cuspidal Hida family 7 =" ., a(n,F)q¢" € I[q] of
tame conductor Nz, we let pr : Gq = Gal(Q/Q) — GLa(FracI) be the
associated big Galois representation such that Tr pz(Froby) = a(¢, F)
for primes ¢ Nz, where Frob, is the geometric Frobenius at ¢ and
let Vr denote the natural realization of pr inside the étale cohomology
groups of modular curves. Thus, Vz is a lattice in (FracI)? with the
continuous Galois action via pr, and the Gal(Q,/Q,)-invariant subspace

Fil' Ve = V;” fixed by the inertia group I, at p is free of rank one over
I (JOht00, Corollary, page 558])). We recall the specialization of Vr at

arithmetic points. A point @ € SpecI(Q,,) is called an arithmetic point

of weight k and finite part € if Q|p: I' — AX&Q; is given by Q(z) =
zFe(z) for some integer k > 2 and a finite order character e : I' — Q:
For an arithmetic point ), denote by kg the weight of () and eg the
finite part of Q). Let %;r be the set of arithmetic points of I. For each
arithmetic point Q € .’{f , the specialization Vr, = Vr ®1,¢ Qp is the
geometric p-adic Galois representation associated with the eigenform Fg
constructed by Shimura and Deligne.

1.2. Rankin-Selberg L-functions
Let cyc : Gq — Z,; be the p-adic cyclotomic character. Let Qx/Q

Ecyc

be the cyclotomic Z,-extension and let (€cye), : Gq — Gal(Quw/Q) =~
1+ pZ, — A* be the universal cyclotomic character. Let

R = IRI[I]
be a finite extension of the three-variable Iwasawa algebra. Let

F=(f.g)

be the pair of two primitive Hida families of tame conductor (N7, Na)
and nebentypus (91, ¥2) with coefficients in I. Let w : (Z/pZ)* — pp—1
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be the Teichmiiller character. For each integer 0 < a < p—1, we consider
the big Galois representation py : Gq — GLa(FracR) realized on the
lattice

V= Vf@oV_,;@o <€CYC>A waé‘c_ylc.
Let sz C SpecR(Q,) be the f-dominated weight space of arithmetic
points of R given by

L ={Q=(Q1,Qs,P) € Xf x X x Xn | kg, < kp <ko,}.
For each arithmetic point Q = (Q1,Q2, P) € f{fa, the specialization

—kp kp—1
Vo ="Vs, ®Vg,, @epw ey
is a p-adic geometric Galois representation of pure weight wq = kg, +
kg, — 2kp. Next we briefly recall the complex L-function associated
with the specialization V. For each place ¢, denote by Wgq, the Weil-
Deligne group of Q. To the geometric p-adic Galois representation Vg,

we can associate the Weil-Deligne representation WD,(Vq) of Wq, over
Q, (See [Tat79, (4.2.1)] for £ # p and [Fon94, (4.2.3)] for £ = p). Fixing

an isomorphism ¢, : Q, ~ C once and for all, we define the complex
L-function of V¢ by the Euler product

L(Vg,s) =[] Le(Vg,s)

{< 00

of the local L-factors L¢(V g, s) attached to WD,(Vq) 2Q, ., C ([Del79,
(1.2.2)], [Tay04, page 85]). According to the recipe in [Del79, page 329],
the Gamma factor I'v, (s) iof Vg is defined by

(1.1)

vy (s) =Tc(s+kp —lc(s+kp—kq,) [Tc(s)=2(2m)°I(s)).

On the other hand, denote by m¢, = ®.7mg, .o (resp. mq, ) the irre-
ducible unitary cuspidal automorphic representation of GL2(A) associ-
ated with fg, (resp. gg,). In terms of automorphic L-functions, by
[JacT2, Corollary 19.16] we have

+ 2kp — le — kQ2

. —kp
o Q s 5 Ty, X g, ®epw )

)

where L(s,ﬂle X Tgg, ® epw~FP) is the Rankin-Selberg automorphic
L-function on GL2(A) x GL2(A).
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1.3. The modified Euler factors at p and co

Let Gq, be the decomposition group at p. We consider the following
rank two GGq,-invariant subspaces of V:
(1.2) Fil" V= Fil’ V; ® Vg ® w" (Ecye) s Ecye-
The pair (Fil* V,sz) satisfies the Panchishkin condition in [Gre94,
page 217|) in the sense that for each arithmetic point @ € X%, the
Hodge-Tate numbers of Fil* V¢ are all positive, while the Hodge-Tate
numbers of Vo/Fil* Vg are all non-positive.! Define the modified p-
Euler factor by
(1.3)

Ly(Fil* Vg, 0) 1

VO = D V) L (B Vgl 1) L(Vg 0]

Here (?)¥ means the dual representation. We note that this modified p-
Euler factor is precisely the ratio between the factor Ez(f) ) (V@) in [Coa89,
page 109, (18)] and the local L-factor L,(Vq,0). N

In the conjectural interpolation formula of p-adic L-functions for mo-
tives, we also need the modified Euler factor £, (V) at the archimedean
place as observed by Deligne. In our case, this Euler factor is given by

goo(VQ) _ (\/j1)1+kQ272kP.

This factor is the ratio between the factor £V (Vq) and the Gamma
factor I'v, (0) in [Coa89, page 103 (4)].

1.4. Hida’s canonical periods

We review Hida’s canonical period of an I-adic primitive cuspidal
Hida family F of tame conductor Nr. Let my be the maximal ideal of
I. For a subset ¥ of the support of Nz, we consider the following

Hypothesis (CR). The residual Galois representation
pF = pr (mod my) : Gq — GL2(F,)
is absolutely irreducible and p-distinguished.

We say pr is p-distinguished if the semi-simplication of the restric-
tion of the residual Galois representation pr (mod my) to the decom-
position group at p is a sum of two characters X_}t @ X7 with x}'— Z

!The Hodge-Tate number of Q,(1) is one in our convention.
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X7 (mod my). Suppose that F satisfies (CR). The local component
of the universal cuspidal ordinary Hecke algebra corresponding to F
is known to be Gorenstein by [MW86, Prop.2, §9] and [Wil95, Corol-
lary 2, page 482], and with this Gorenstein property, Hida proved in
[Hid88b, Theorem 0.1] that the congruence module for F is isomorphic
to I/(nx) for some non-zero element nx € I. Moreover, for any arith-
metic point Q € X7, the specialization nz, = ¢,(Q(nr)) generates the
congruence ideal of Fg. We denote by F¢, the normalized newform of
weight kg, conductor Ng = Nxp"? with nebentypus x¢ corresponding
to Fg. There is a unique decomposition xq = X/QXQ,(p)a where X/Q and
XQ,(p) are Dirichlet characters modulo Nx and p"@ respectively. Let
ag = a(p, Fq)- Define the modified Euler factor £,(F¢, Ad) for adjoint
motive of Fg by

(1.4)

Ep(Fq, Ad) = ™"

(1—agp’xq@p*e (1 —ag’xep)pFe™?)  if ng =0,
X< —1 if nQ = leQ,(p) =1,

8(xe.m)xQ.m (1) if ng >0, Xq,m) # 1.
Here g(xo,(p)) is the usual Gauss sum. Fixing a choice of the generator
nr and letting [|F ||1%0(NQ) be the usual Petersson norm of ), we define
the canonical period Qr, of F at Q by

Nrq

(15)  Qrg = (=2V=1)" | F5IBy (ng) - c*.

By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each
arithmetic point @, up to a p-adic unit, the period Qz, is equal to the
product of the plus/minus canonical period Q(+;F3)(—;F3) intro-
duced in [Hid94, page 488].

1.5. Statement of the interpolation formula

Now we give the statement of the main formula. Let (f,g) =
(fg,:9¢,) for some arithmetic specilization. Let Yex. be the finite
set of primes ¢ such that (i) 77, and 7, are supercuspidal, and (ii)
Tre =~ Tre®Tq, ~ T, ,® 0, where 7q,, is the unramified quadratic
character of Q; and ¢ is some unramified character o of Q;°. Note that
this set Yex. does not depend on the choice of arithmetic specializations.

Theorem A. Suppose that f satisfies (CR). For the fized generator
Ny of the congruence ideal of f, there exists a unique element E?a eER
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such that for every Q@ = (Q1,Q2,P) € %{2 in the unbalanced range

dominated by f, we have the following interpolation formula

£} .(Q)
L(Vg,0) _ , ~
=I'v, (0) o (VT) e 2kP5p(F11}'VQ) H (14071,
Fou £€  exe
Remark 1.1.

(1)

We call Lﬁ}:,a the primitive p-adic Rankin-Selberg L-function
for F' with the branch character w®. The shape of the inter-
polation formula exactly complies with the form described in
[Coal9, Principal Conjecture] in the sense that it has the cor-
rect modified Euler factors at p and oco. Note that
(v/=1)'T*@272kPi5 the modified Euler factor at the archimedean
place. However, due to the multiplication by 7s a generator
of the congruence ideal, the period (2 fq We use here may not
agree with the period in [Coa89, Principal Conjecture] up to
Q*. The conjectural form of the interpolation of p-adic L-
functions proposed by Coates and Perrin-Riou is in particular
useful in the comparison among different constructions of a
p-adic L-function.

The p-adic L-function D(P, @, R) constructed by Hida in
[Hid88a, Theorem 5.1d] in general interpolates critical values
of imprimitive Rankin-Selberg L-functions. Therefore, after
making a suitable change of variables, we should be able to see
that D(P,Q, R) is the product of £%. . and local L-factors at
places dividing lem(Ny, Na). We do not verify this here.

As an immediate consequence of the above explicit interpo-
lation formulae combined with the functional equation of the
automorphic L-functions for GLy(A) x GL2(A), we obtain the
functional equation of the primitive p-adic Rankin-Selberg L-
functions. For the precise statement, see Corollary 7.2.

Needless to say, the idea of the construction of E;.’a is entirely due
to Hida, which we recall briefly as follows. Roughly speaking, one be-
gins with a three variable p-adic family of Eisenstein series E, 4, Of

tame level N := lem(Ny, Ny). Let f be the primitive Hida family asso-
ciated with f twisted by ¥, 11/117(,,), where 1 () is the p-primary part
of 1. Viewing Ey, 4,.a as a g-expansion with coefficient in R, we define
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Zﬁ;a € R by
fnya := the first Fourier coefficient of 7y - 13 Trn/n, €(gEy, 15,4,

where e is Hida’s ordinary projector, Try,n, is the trace map from the
space of ordinary R-adic modular forms of tame level N to that of
tame level N7 and 1 ¥ is the idempotent in the universal I-adic cuspidal
Hecke algebra of tame level N;. The standard Rankin-Selberg method
shows that the specialization of E{;’a at (Q1,Q2, P) is a product of the
value in the right hand side of the equation in Theorem A and certain
local fudge factors ¥} at some bad primes ¢ | N. In order to get the
primitive p-adic L-function, one has to choose E, y,.o carefully so that
these fudge factors W are essentially 1. It seems we do not have a
simple construction of such a nice Eisenstein series in the most general
situation. Nonetheless, we can construct such kind of Eisenstein series
easily and show that ¥j = 1 with small effort whenever F' = (f,g)
satisfies certain minimal hypothesis (See the hypothesis (M) in §6.2),
which practically requires F' have the minimal conductor among (prime-
to-p) Dirichlet twists. We now take a suitable twist F' = (@, goA™!)
so that F” is minimal. On the other hand, we have shown the right hand
side of Theorem A is invariant under (prime-to-p) Dirichlet twists (i.e.
Qp“="Qsgx) in [Hsil7, Prop. 7.5], so the desired primitive L-function
can be defined by
‘Cé,a = jl"f’(%a)\

This idea was already employed in [Hsil7].

This paper is organized as follows. In §2, we review some standard
facts and the notation in modular forms and automorphic forms as well
as their well-known connection, and in §3, we recall some ingredients
in Hida theory for ordinary A-adic forms, in particular, the congruence
ideal associated with a primitive Hida family. In §4, we give the con-
struction of the three p-adic family of Eisenstein series following the
method of Godement-Jacquet in [Jac72, §19]. In §5, we recall Hida’s
p-adic Rankin-Selberg method, following the exposition in his blue book
[Hid93, Chapter 10] but in the language of automorphic representation
theory. We explain the construction of .,2”1’:@, and in Proposition 5.3, we
express the interpolation of .,?Ff’a at arithmetic points as a product of
critical Rankin-Selberg L-values and local zeta integrals ¥9™(s) (modi-
fied Euler factor at p) and ¥ (s) (fudge factors). In §6, we evaluate these
local zeta integrals explicitly. Finally, in §7, we construct the primitive
p-adic L-function and prove the interpolation formula Theorem 7.1.
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§2. Classical modular forms and automorphic forms

In this section, we recall basic definitions and standard facts about
classical elliptic modular forms and automorphic forms on GL2(A),
following the notation in [Hsil7, §2] which we reproduce here for the
reader’s convenience. The main purpose of this section is to set up the
notation and introduce some Hecke operators on the space of automor-
phic forms which will be frequently used in the construction of p-adic
L-functions.

2.1. Notation

Let A be the ring of adeles of Q. If v is a place of Q, let Q, be the
completion of Q with respect to v, and for a € A*, let a, € Q) be the
v-component of a. Denote | |q, the absolute value of Q, normalized so
that | |q, is the usual absolute value of R if v = oo and |{|q, = ¢!
if v = { is finite. For a prime ¢, let ordy : Q; — Z be the valuation
normalized so that ordy(¢) = 1. We shall regard Q; and Q; as subgroups
of A and A* in a natural way. Let | |a be the absolute value on A*
given by |a|a =[], |av|q.- Let (y(s) be the usual local zeta function of
Q,. Namely,

Gels) =720 (3) 1 Gls) = (1= 7).

Define the global zeta function (q(s) of Q by (q(s) =[], ¢u(5)-

Let ¥q:A/Q — C* be the additive character with the archimedean
component Yr(z) = e2™V=1z and let ¥q, : Q¢ — C* be the local
component of g at £.

If R is a commutative ring and G = GL2(R), we denote by p the right
translation of G on the space of C-valued functions on G: p(g)f(9’) =
f(g'g) and by 1 : G — C the constant function 1(g) = 1. For a function
f: G — C and a character x : R* — C*, let f® x : G — C denote the
function f ® x(g) = f(g)x(det(g)).

In the algebraic group GL3, let B be the Borel subgroup consisting
of upper triangular matrices and N be its unipotent radical.
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2.2. Hecke characters and Dirichlet characters

Ifw: Q*X\AX — QX is a finite order Hecke character, we denote
by we : Q¢ — C* the local component of w at ¢. For every Dirichlet
character x, we denote by c¢(x) the conductor of y. Let xa be the
adelization of x, the unique finite order Hecke character xa = [ x¢ :
Q“\A*/R4(1+ ¢(x)Z)* = C* of conductor ¢(y) such that for any
prime £ { ¢(x),

xell) = x(0)7™.

For every prime ¢, write ¢(x) = £¢C" with £ 1 C’. Then we can decompose
X = X(g)X(e) into a product of two Dirichlet characters x(,) and x© of
conductors £¢ and N’ respectively. We call x () the {-primary component
of x. The ¢-primary component of a finite order Hecke character can be
defined likewise.

Throughout this paper, we often identify Dirichlet characters with
their adelization whenever no confusion arises.

2.3. Classical modular forms

Let C*($) be the space of C-valued smooth functions on the upper

half complex plane $). Let k be any integer. Let v = ((cl Z) € GL§ (R)
act on z € § by v(z) = ijr's, and for f = f(z) € C°(9), define

Flir(z) = F(7(2))(cz + d) "(det 7).

Recall that the Maass-Shimura differential operators 5 and € on C*°($)
are given by

s _#(£+L 1L 20 (y = Im(2))
B o =10z | 2y/—1y /-1 0z VT

(cf. [Hid93, (1a,1b) page 310]). Let N be a positive integer and
X : (Z/NZ)* — C* be a Dirichlet character modulo N. For a non-

negative integer m, denote by N, ,Em] (N, x) the space of nearly holomor-
phic modular forms of weight k, level N and character y, consisting of
slowly increasing functions f € C*°(§)) such that e™!f = 0 and

e (l0) =x@r o (&5) €

(cf. [Hid93, page 314]). Let Ni(N,x) = U NNV, x) (cf. [Hid93,
(1a), page 310]). By definition, N,io](N, X) = Mg(N, x) is the space of
classical holomorphic modular forms of weight k, level N and character

)yand € = —
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Xx. Denote by Sk(NV, x) the space of cusp forms in My(N, x). Let 6" =
Oktom—2 " Opyalr. If f € Nip(N,x) is a nearly holomorphic modular
form of weight k, then 0} f € Njyom(N, x) has weight k + 2m (|Hid93,
page 312]). For a positive integer d, define

Vaf(:) = d- f(d=); Uaf(z) = = 3 f

Recall that the classical Hecke operators Ty for primes £t N are given
by
Tof = Uef + X(OC2Vif.

We say f € Ni(N,x) is a Hecke eigenform if f is an eigenfunction of
the all Hecke operators Ty for £1 N and the operators Uy for £ | N.

2.4. Automorphic forms on GLy(A)

For a positive integer N, define open-compact subgroups of GLg(z)
by

Uo(N) = {g € GLy(Z) ‘ g= <; :) (mod NZ)},

*

Ui (N) :{geUO(N) ‘gE (0 ’1‘) (mod Ni)}.

Let w: Q*\A* — C* be a finite order Hecke character of level N. We
extend w to a character of Uy(IN) defined by w ((CCL Z)) = [Lyn welde)

for (Z Z) € Uy(N), where wy : Q — C* is the ¢-component of w.
Denote by A(w) the space of automorphic forms on GL2(A) with central
character w. For any integer k, let Ax(N,w) C A(w) be the space of
automorphic forms on GLy(A) of weight k, level N and character w. In
other words, Ay (N,w) consists of automorphic forms ¢ : GLy(A) — C
such that

BMkGW(uf)

) , ug € Up(N)).

p(agrgus) =p(g)
(a c GLQ(Q),K/@ = (

cosf sinf
—sinf cosf

Let A9 (N,w) be the space of cusp forms in A (N,w).
Next we introduce important local Hecke operators on automorphic
forms. At the archimedean place, let Vi : Ap(N,w) — Ags2(NV,w)
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be the normalized weight raising/lowering operator in [JL70, page 165]
given by
(2.1)

Vi = ﬁ <<(1) 01) ®1+ (? é) ® ﬁ) € Lie(GLy(R)) ®r C.

Define the operator Uy acting on ¢ € Ax(N,w) by

o ()

c€Zy /L2y

and the level-raising operator Vp : Ax(N,w) — Ak(N/l,w) at a finite

prime ¢ by
Vep(g) == p ((wé 1)> ©.

Note that UyVpp = lp and that if £ | N, then U, € EndcAx(N,w). For
each prime £t N, let T; € EndcAx(N,w) be the usual Hecke operator
defined by

Ty = Uy + we(£) V.

Let A°(w) be the space of cusp forms in A(w) and let A(N,w) =
A%w) N Agx(N,w). Define the the GLy(A)-equivariant pairing (, ) :
A° (N, w) @ Ak (N,w™t) — C by

(2.2) (p,¢) = / e(9)¢'(9)d"g,
A* GL2(Q)\ GL2(A)

where d"g is the Tamagawa measure of PGLy(A). Note that we have
(Typ, @'y = (p, Tyee') for the Hecke operator Ty with ¢ 1 N.

2.5.

With every nearly holomorphic modular form f € Nj(N,x), we
associate a unique automorphic form &(f) € Ay(N,x,") defined by the
formula

(2.3) P(f)(agoor) == (flrgoo)(V=1) - Xa" (u)

for a € GLa(Q), goo € GLF(R) and u € Uy(N) (cf. [Cas73, §3]).
Conversely, we can recover the form f from &(f) by

(2.4 v = an (5 7))-
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We call &(f) the adelic lift of f.

The weight raising/lowering operators are the adelic avatar of the
Maass-Shimura differential operators 6;* and € on the space of automor-
phic forms. A direct computation shows that the map ¢ from the space
of modular forms to the space of automorphic forms is equivariant for
the Hecke action in the sense that

(2.5) PO f) =VINe(f), @(ef) =V_2(f),

and for a finite prime ¢

(26)  B(Tof) =T 0(f),  S(Urf) = 427U, 8(f).
In particular, f is holomorphic if and only if V_®(f) = 0.

2.6. Preliminaries on irreducible representations of GL»(Q,)

2.6.1. Measures We shall normalize the Haar measures on Q, and
Q) as follows. If v = oo, dz denotes the usual Lebesgue measure on
R and the measure d*z on R* is |z|g'dz. If v = £ is a finite prime,
denote by dx the Haar measure on Q, with vol(Zy,dz) = 1 and by
d*z the Haar measure on Q; with vol(Z,,d*z) = 1. Define the
compact subgroup K, of GL2(Q,) by K, = O(2,R) if v = oo and
K, = GLy(Z,) if v is finite. Let du, be the Haar measure on K, so that
vol(K,,du,) = 1. Let dg, be the Haar measure on PGL2(Q,) given by

- x .
dg, = |yU|Qi dz,d*y,du, for g, = (y(;) 1”) u, with y, € Q, x, € Q,

and u, € K,.

2.6.2. Representations Denote by xHuv the irreducible principal se-
ries representation of GL2(Q,) attached to two characters x,v : QF —
C* such that yv=! # | |§v If v = oo is the archimedean place and
k > 1 is an integer, denote by Dy(k) the discrete series of lowest weight
k if k > 2 or the limit of discrete series if £ = 1 with central character
sgn® (the k-the power of the sign function). If v is finite, denote by
St the Steinberg representation and by xSt the special representation
St ® x o det.

2.6.3. L-functions and e-factors For a character x : QX — C*, let
L(s,x) be the complex L-function and (s, x) = (s, x,%¥q,) be the
e-factor (cf. [Sch02, Section 1.1]). Define the y-factor

L(l B S’Xfl)
L(s,x)

If v is a finite prime, denote by ¢(x) the exponent of the conductor of x,

(2.7) v(s,x) = e(s,x) -
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If 7 is an irreducible admissible generic representation of GL3(Q,),
denote by L(s,m) the L-function and by e(s,m) = &(s,m,v¢q,) the e-
factor defined in [JL70, Theorem 2.18]. Let m¥ be the contragredient
representation of 7. Define the gamma factor

L(1—s,m)

’Y(Svﬂ) = 5(377T) ’ L(S 71')

If v is a finite prime, we let ¢(7) be the exponent of the conductor of .

2.6.4. Whittaker models and the normalized Whittaker newforms
Every admissible irreducible infinite dimensional representation m of
GL2(Q,) admits a realization of the Whttaker model W(m) = W(r, ¥q,)
associated with the additive character ¢q,. Recall that W(r) is a sub-
space of smooth functions W : GL2(Q,) — C such that

° W (((1) 915> g) = thq, (z)W (g) for all x € Q,,

e if v = oo is the archimedean place, there exists an integer M
such that

W ((8 ?)) — O(la|¥) as |alg — oo.

The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(r) via
the right translation p. We introduce the (normalized) local Whittaker
newform Wy, in W(r) in the following cases. If v = co and m = Dy(k),
then the local Whittaker newform W, € W(n) is defined by

Yy oz cosf sinf
W <Z (0 1> (— sinf cos 9))
2.8 o —
(28) “Ir, (4) -7 - sgn(2) dp(x)eY
(y,z € R*, z,0 € R).

Here Ir, (a) denotes the characteristic function of the set of positive
real numbers. If v = £ is a finite prime, then the (normalized) local
Whittaker newform W is the unique function in W(m)**¥ such that
Wr(1) = 1. The explicit formula for W,r((g ?)) is well-known (See
[Sch02, page 21] or [Sah16, Section 2.2] for example).

2.7. p-stabilized newforms

Let m be a cuspidal automorphic representation of GL2(A) and
let A(m) be the m-isotypic part in the space of automorphic forms on
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GL2(A). For ¢ € A(m), the Whittaker function of ¢ (with respect to
the additive character ¥q : A/Q — C*) is given by

29 W= [ ¢((s 7)s)valnir wecLa),

where dz is the Haar measure with vol(A/Q,dz) = 1. We have the

Fourier expansion:
a 0
plg)= > W¢<(0 1> g)

aceQX

(cf. [Bum98, Theorem 3.5.5]). Let f(q) = >_, a(n, f)g" € Sk(IV,x) be
a normalized Hecke eigenform. Denote by 7y = ®) 7y, the cuspidal
automorphic representation of GLa(A) generated by the adelic lift @(f)
of f. Then 7y is irreducible and unitary with the central character x .
If f is newform, then the conductor of 7y is N, the adelic lift &(f) is

the normalized new vector in A(7y) and the Mellin transform

2 o= [ o ((f 1)) WK ey =1

is the automorphic L-function of 7¢. Here d*y is the product measure
I, *yo.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix
an isomorphism ¢, : C ~ Qp. We say that a normalized Hecke eigen-
form f =" a(n, f)¢" € Sk(Np, x) is a (ordinary) p-stabilized newform
(with respoect to ¢,) if f is a new outside p and the eigenvalue of Uy, i.e.
the p-th Fourier coefficient ¢,(a(p, f)), is a p-adic unit. The prime-to-p
part of the conductor of f is called the tame conductor of f.

By the multiplicity one for new and ordinary vectors, the Whittaker
function of &(f) is a product of local Whittaker functions in W(7y).
To be precise,

War)(9) = W (g0) [ Wa,.(90) (9= (90) € GL2(A)).
v#D

Here W,  is the normalized local Whittaker newform of 7y, and W;T);dp
is the ordinary Whittaker function characterized by

or O %
2100w 1)) =asklé, @) 0 orac Q)

where oy : Q) — C* is the unramified character with a(p) = a(p, f) -
p1=F)/2 (See [Hsil7, Corollary 2.3, Remark 2.5]).
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§3. A-adic modular forms and Hida families

3.1. Ordinary A-adic modular forms

Let p > 2 be a prime and let O be the ring of integers of a finite ex-
tension of Q,. Let I be a normal domain finite flat over A = O[1 + pZ,].
A point Q € SpecI(Q,), a ring homomorphism @Q : I — Q,,, is said to be
locally algebraic if Q|14,z, is a locally algebraic character in the sense
that Q(z) = 2"eq(2) with kg an integer and €g(z) € pp=. We shall
call kg the weight of Q and eg the finite part of Q). Let X1 be the set of
locally algebraic points @ € SpecI(Qp). A point Q € Xy is called arith-
metic if the weight kg > 2 and let X]” be the set of arithmetic points.
Let pg = Ker@ be the prime ideal of I corresponding to @ and O(Q)
be the image of I under Q.

Fix an isomorphism ¢, : C, ~ C once and for all. Denote by
w : (Z/pZ)* — pp—1 the p-adic Teichmiiller character. Let N be a
positive integer prime to p and let x : (Z/NpZ)* — O* be a Dirichlet
character modulo Np with value in O. Denote by S(N, x,I) the space
of I-adic cusp forms of tame level N and (even) branch character x,
consisting of formal power series f(q) = >, ~; a(n, f)¢" € I[¢] with the
following property: there exists an integer af such that for arithemtic
points @ € Xi with kg > ag, the specialization Jo(q) is the g-expansion
of a cusp form f € Sk, (Np©, xw *2eq). We call the character  is the
branch character of f.

The space S(N, x, I) is equipped with the action of the usual Hecke
operators Ty for £ 1 Np as in [Wil88, page 537] and the operators Uy for
0| pN given by Ue(>, a(n, f)¢") = >, a(nl, f)¢". Recall that Hida’s
ordinary projector e is defined by

: n!

e:= nhﬁn;o u,.
This ordinary projector e has a well-defined action on the space of clas-
sical modular forms preserving the cuspidal part as well as on the space
S(N, x,I) of I-adic cusp forms (cf. [Wil88, page 537 and Proposition
1.2.1]). The space eS(N, x,I) is called the space of ordinary I-adic forms
defined over I. A key result in Hida’s theory of ordinary I-adic cusp forms
is that if f € eS(N, x,I), then for every arithmetic points Q € Xi, we
have f, € €Sk, (Np°, xw *2eq). We say f € eS(N,x,1) is a primitive
Hida family if for every arithmetic points () € X1, fg is a p-stabilized
cuspidal newform of tame conductor N. Let X§* be the set of classical
points (for f) given by the subset of @ € Xp such that kg > 1 and f,
is the g-expansion of a classical modular form. Note that X§!® contains
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the set of arithmetic points %;“ but may be strictly larger than x; as
we allow the possibility of the points of weight one.

3.2. Galois representation attached to Hida families

Let (-) : Z)X — 1+ pZ, be character defined by (z) = zw™!(x)
and write z — [z]a for the inclusion of group-like elements 1 + pZ, —
O[1 +pZ,]* = A*. For z € Z), denote by (2)1 € I* the image of [(2)]a
in I under the structure morphism A — I. By definition, Q({z)1) =
Ql1+pz, ((2)) for Q € X1. Let ecye : Gq — Z,; be the p-adic cyclotomic
character and let (eqyc)1 : Gq — I be the character (€cyc)i(0) =
(€cyc(0))1. For each Dirichlet chatacter x, we define x1 : Gq — I* by
X1 := Oy (Ecye) %(Ecye)1, Where o, is the Galois character which sends
the geometric Frobenious element Frob, at ¢ to x(¢)~!.

If f € eS(N,x,I) is primitive Hida family of tame conductor N, we
let py : Gq — GLa(FracI) be the I-adic Galois representation attached
to f which is unramified outside p/N and characterized by

Tr(pg(Frobe)) = a(l, f);  det pg(Frob,) = x(€)(O)it~" (€1 pN).

Note that det py = x1 L. Ec_ylc. The description of the restriction of pg

to the local decomposition group Gq, is well-understood. For ¢ = p,
according to [Wil88, Theorem 2.2.1], we have

| ap *
1 N0 agttedt)
where o, : Gq, — I* is the unramified character with a,(Frob,) =

a(p, f).2

3.3. Hecke algebras and congruence numbers

If N is a positive and x is a Dirichlet character modulo N, we let
Ti(N, x) be the O-subalgebra in EndceSi(N, x) generated over O by
the Hecke operators Ty for £ { Np and the operators Uy for ¢ | Np.
Suppose that N is prime to p. Let A = (Z/NpZ)* and A be the group
of Dirichlet characters modulo Np. Enlarging O if necessary, we assume
that every x € A takes value in O%. We are going to consider the Hecke

algebra T(N,I) acting on the space of ordinary A-adic cusp forms of
tame level I'1 (N) defined by

S(N, 1) := P eS(N, x, ).

xeﬁ

2Qur representation p; is the dual of ps considered in [Wil88].
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In addition to the action of Hecke operators, denote by o4 the usual
diamond operator for d € A acting on S(N,I)”® by oa(f),cx =
(X(d)f)ca- Then the ordinary I-adic cuspidal Hecke algebra T(N,I)
is defined to be the I-subalgebra of EndiS(N,I)°™ generated over I by
Ty for £ | Np, Uy for £ | Np and the diamond operators o4 for d € A.
Let @ € X3! be an arithmetic point. Every ¢t € T(N,I) commutes with
the specialization: (t- f)q =t fo. For x € ﬁNp, let pg be the
ideal of T(NNV,I) generated by pq and {oq — x(d)}4ca- A classical result
[Hid88c, Theorem 3.4] in Hida theory asserts that

T(N,1)/pq.x = Tro (NP, xw *2eq) ®0 O(Q).

Let f € eS(N, x,I) be a primitive Hida family of tame level N and
character x and let Ay : T(INV,I) — I be the corresponding homomor-
phism defined by Ag(Ty) = a(¢, f) for £ { Np, A\¢(Uy) = a(¢, f) for
£| Np and Af(oq) = x(d) for d € A. Let my be the maximal of T(N,I)
containing Ker Ay and let Ty, be the localization of T(N,I) at mg. It
is the local ring of T(N,I) through which Af factors. Recall that the
congruence ideal C(f) of the morphism Ay : Ty, — I is defined by

c(f) = )\f(AnnTmf (KerAg)) C L

The Hecke algebra Ty, is a local finite flat A-alegba and there is an
algebra direct sum decomposition

(3.1)  A:Ty,; @ Fracl ~FracI® %, t— A(t) = (A\f(1), \2(1)),

where 4 is a finite dimensional (Frac I)-algebra (|[Hid88c, Corollary 3.7]).
By definition we have

C(f) = Af(Tm, N A" (FracI® {0})).
Now we impose the following

Hypothesis (CR). The residual Galois representation py of py is
absolutely irreducible and p-distiniguished.

Under the above hypothesis, Ty, is Gorenstein by [Wil95, Corol-
lay 2, page 482|, and with this Gorenstein property of Ty, Hida in
[Hid88b] proved that the congruence ideal C(f) is generated by a non-
zero element 7y € I, called the congruence number for f. Let 1% be the
unique element in Ty, NA™! (FracI& {0}) such that A#(1%) =ng. Then
1y = 77]:11’} is the idempotent in Ty, ®1 FracI corresponding to the
direct summand FracI of (3.1) and 1; does not depend on the choice of
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a generator of C(f). Moreover, for each arithmetic point @, it is also
shown by Hida that the specialization n¢(Q) € O(Q) is the congruence
number for f, and

1= n}ll}(mod ©y.Q) € ’H‘ng(Npr,Xw_erQ) ®o Frac O(Q)

is the idempotent with A\¢(15) = 1.

84. A three variable p-adic family of Eisenstein series

4.1. Eisenstein series

We recall the construction of Eisenstein series described in [Jac72,
§19]. Let (u1,p2) be a pair of Dirichlet characters. We shall identify
(1, pe) with their adelizations as described in §2.2. Let B(uq, o, s)
denote the space consisting of smooth and SO(2,R)-finite functions
f: GL2(A) — C such that

1
s+§

2 f(9)-

15 0 =m@w@|s

A

For each place v and a positive integer n, denote by S(QI) the space
of Bruhat-Schwartz functions on Q. For every Bruhat-Schwartz func-
tion ® = ®,®, € S(A?) = ®/5(Q?), define the Godement section
Jurpz. s = Dufur vpon@,,s - GL2(A) — C given by

ful.'vvﬂ2,v;¢>'uys(gv)

1 _
3:N1,v|"s+2(det9v)/ . (I)v((ovtv)gv)ﬂl,1)ﬂz,11;|'|(25j1(tv)dxtv-

v

(4.1)

Then f,, 4, @, belongs to B(u1, po, s). The Eisenstein seres associated
to the section f,, ..., is defined by the formal series

BA(9, funpnes) = D fuimmes(79), (g€ GLy(A),s € C).
vEB\ GL2(Q)

The above series converges absolutely for Re(s) > 0 and has meromor-
phic continuation to s € C. Define the Whittaker function of f,, i, s
by

W(g, fMl;NZ,q),S) = H W(gva fm,v,uz,vﬁbms)a (g = (gv) € GL2(A))7
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where

W(gvv ful,u,uz,mq’v,s)
0 -1 1 =z
= / fl‘l,m#2,v,¢‘u,£((1 0 > (O ]_U) gv)va(_xv)dxﬂ'

v

The Eisenstein series Ea (g, fu, us,0,5) admits the Fourier expansion

EA (g, f,u1,,u2,q>75)

a 0
:f;u,ufz,‘b,s(g)+f#2“u17<f>7_s(g) + Z W((Q 1) g’fﬂ17ﬂ27‘1’,s)7

acQX

(4.2)

where ® := ®<f>v is the symplectic Fourier transform defined by
)= [ [ Bl t)vq,(sy - ta)dsdt.

4.2. The Eisenstein series E,:Ct(ul,ug,C)

If v is place of Q and ¢ € S(Q,), the usual Fourier transform
¢ € §(Qy) is defined by

z) = /Q b(y)q. (yz)dy.

Note that if ® = ¢1 ® g2 € S(Q?), then <AIJ(Jc,y) = $2(—x)$1(y) Ifvo=1¢
is a finite place and p: Q, — C* is a character, we define ¢, € S(Qy)
by

0u(2) i= Ly (@)n(a).

It is easy to verify that

~

¢l~b(x) = X_l(m)]lw—c(“,)zz (CL’) . 5(1, /J,_l).

Now we fix a pair (C1, C2) of two positive integers such that
ged(Cy,C3) = 1 and p | C1Cy. Let C' = C1C5 and let k be a positive
integer such that 35 '(—1) = (—1)*. We recall a construction of cer-
tain classical Eisenstein series E;:t(/,él,/,bg) of weight k, level T'1(C1C5)
and nebentypes u;l o L py using suitable Godement sections as above.
In the remainder of this section, we assume the following conditions:

e i1 is unramified outside p,
o c(u2) | p*Ca.
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Definition 4.1. To the positive integer k and the Eisenstein datum
D = (p1, p2, C1, Ca),

we associate the Bruhat-Schwartz function <I>[£] = @L]Z] ®ePpy € S(A?)
defined as follows:

o Ol(@y) =27F(@+ yTy)le @),

i (PD,p(x7y) = ¢M1_,; ® (/5“2_,119,

o Ppy(z,y) =lc,z,(2)lz,(y) if £1pCs,

b (I)D-,Z(x’y) = HC'zZz (1')(;5#2‘@ (y) if £ | Co.
Define the local Godement sections

(k] ._ . —
D,s,00 " fm oo 2,00, L8] 57 IDs.0 = Frn ez, @m0,

{)(}75

and define the Godement section attached to k and D = (u1, 2, C1, Cs)

by
Z[;C,]s = gc,]s,oo ® fD,s,l'

£< 00

Remark 4.2. For each place v, denote by B, (11, 12, $) the space
of smooth functions f : GL2(Q,) — C such that

s+%
o f(9)

a b a
(5 2o =motam@]
Then fl[;]sm is the unique function in By (i1, p2, s) such that

k] cos@  sinO\\ _TTre ok ko (st EEL) k+1
Dvsv‘x’(<—sin€ cost9>)_e 27V -1)%r T 8+72 .
For a finite prime ¢, fp s ¢ € Be(p1, pt2, s) is invariant by U (C) under the
right translation, where U; (C) is the open-compact subgroupof GLa(Zy)
given by

_ Z, Z,
Zxﬁ(C) = GLQ(Z@) n (OZ[ 1 +CZ@> .

Definition 4.3. Define the classical Eisenstein series Elf (1, p2) :
H — C by

Vo _k x
El:r(MhMQ)(x—’_ _]-y) =y gEA((% 1> ) gi]s”%a

_ _k X k
B (pas pe)(x + V—1y) ==y 2EA(<ZOI 1>7 ’[D,]s)|1%k'
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Remark 4.2 implies that Eif (1, p2) € My (C, pu7 py "), and by defini-
tion

BBy (11, 12)) = Eg, fil)ezr; B(By (11, 12)) = Eg, fyg)l iz,

2

where @ is the adelic lift map in (2.4).

Proposition 4.4. For every non-negative integer t, we have

POLEF (11, 112)) = Ealg, 1) s € A(Cypuapa).

PrOOF.  For the differential operator V't in (2.1), we have the
relation VﬂLfZ[f_’]S’Oo = {fjﬂo (see [JL70, Lemma 5.6 (iii)]), and hence the
assertion follows from (2.5). Q.E.D.

4.3. Fourier coefficients of Eisenstein series

Lemma 4.5. For a € R*, we have

k a 0
WO (§ 9Pl

PROOF. By definition, W ( [k] (a ?)) equals

D,s,00°

2% |72 (a)

« / / (a + v Tz) e @ D) son () (125 g (—2)d* tda
R JRX

k41

)Wf(er%)

=" 2 (a) - (—2v/=1)7* (s +
X / (z 4+ vV=1a)" 6T (2 — V=1a)~ =2 p (—)da.
R

By an elementary calculation, we find that

k a 0
W( Z[),]s,oc:’ (0 1))'5_’“21

. 67271'\/?11
R R [

k  _9ra
=pi(a)-aze? -Ir, (a),
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and that

k a 0
Wt (5§ Pl

17% b —1 (1. _ _1a)k71€72ﬂ'\/?1$

= o1 d

il @2yt [ B
=p1(a) - a%e 2T Ir, (a).

Since p(a) = sgn(a)®, the lemma, follows. Q.E.D.

Lemma 4.6. Let { be a finite prime. Let x = H;}HZ,Z- Let a € Qf
and m = ordy(a). Then we have the following:

o Ifl1{pCsy, then

a 0 m—ordy(C1)

s+1 —2s /94
Wit (V) =mb i@ X e

j=0
o Ifc(uze) =0 and q | Ca, then

a 0

W(fp,s,e, (O 1))
m—ordg(C2)

=] " 5(a) - Toyerz, (o) | x| O+ A=1e) Y TR

=0
o Ifc(uaye) >0, then ¢ | Cy and

Witowe: (§ ) =m3@ (1225 + 100 ooz, )

o Ifl{=np, then

Wi (1)) =1 @1

PROOF. Write p1 = p1,¢ and pg = pa ¢ for simplicity. Note that
ifd=o; P € S(Qr) ®S(Qr), then

a 0
W(fm,uz,@z,m(o 1>)

=ml @) [ a0

2
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If 01 pCs, ®pe =1c,z, ® Iz,, and hence

a 0
W(f'D,s,ea <0 1))
= u1|'3+2(a)/qx Teyz, (£ a)lz, (—t)py ' pol-| 72 (£)d*¢t

14
m—ord,(Ch)

=l @) DY w7 @),

Jj=0

Consider the case ¢ | Cy. Recall that p; is unramified at ¢ # p by our
assumption. Let ¢ = ¢(x) = ¢(u2). Recall that

~ (Euz (r) =1z, — [£|T;-17, if c=0,
¢#2 (:L') = )
e(l,py pz (™ ooz (z)  if ¢ > 0.

If ¢ =0, then W(fp s, (8 (1)>) equals

) m—orde(Ca2) m—ordg(Ca2)
s+3 — —25/ 9 — —2 j
=l Y el )= Y el )
=0 j=—1

s+3
::LL1|'| 2(0’) ’ chf’lze(a)
m—ordg(C2)

o Y H e (O S e ) B N TP E e (2
§=0

a

If ¢ > 0, then W(fp s, (O (1))) equals

s+1 o — — s
,U1|'| +2(CL)/QX che(at)¢uz(_t 1)#1#21“2 (t)dxt

4

s+1 — 25/ pc
= |72 (@e(1, py o (=1 |- (€) L op-ez, (a).
Finally, at the p-adic place, a similar calculation shows that

WD (3 (1)>>=m|-|s+%<a> /Qx%f(at)%z—l(t-l)wz1|-|2S<t>dXt

:HZ;; (a)
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The assertion follows immediately from the above expressions of

W (fD,s.05 (g (1)> ). Q.E.D.

For each positive integer n, we define the polynomials Py, ¢ €
Z(p) [X, Xﬁl] by

ordg(nCT 1)

Poo(X)= > CIXTif LfpCy,

B

7=0
ordg(nCy 1) ordg(nCy ')
Poo(X)= > XTI - 3" TIXT L] Oy,
j=0 j=-1

Pn,p(X) =L
For a Dirichlet character x, we set
Gr,t(X) = (0, xe)xe(—1) - X0,

In the above equation, we have identified y with its adelization as in
§2.2 and xy is the f-component of .

Corollary 4.7. We have the following Fourier expansion

Eif (1, p2)(q) = Z at(ui, po,k) - q" (g = €27,

n>0, ptn
where
af (s pos k) = () T Prelas (0 - 65) [T Gy ()
te(p2) fle(p2),tln
ay (s 2, k) =n* gt () T Pty e (s (OC7F))
Ue(p2)
X H gwglj(e?—’“).
Lle(pz), £n

ProoF.  Note that at the distinguished prime p, ®p ,(0,y) =0

and ®p ,(0,y) = ¢,z (O)¢)“171 (y) = 0,s0 wesee that fi, , juu, @p,.s(1) =

fi D _,(1) = 0. This in particular implies that
s P sP sP

y x y x
fl‘l’#mq)D,S((O 1)) = fMQ,p,HLp,CED,p,s((O 1)) = 0
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In view of (4.2) and Lemma 4.5, we find that

k n 0
o) =nf [T Wiipan, (5§ Plssse

<00
The assertion follows from Lemma 4.6 by noting that Mi%ﬂu(@ =
pa iy (6). QE.D.
4.4. A three variable p-adic family of Eisenstein series

Let (x1,x2) be a pair of Dirichlet characters modulo p and pCs
respectively. Define the O[T, T, T3]-adic g-expansion by

E(x1,x2)(q) == Y An(x1,x2)q" € O[T1, T3, T][q],
n>0,ptn
where A, (x1,Xx2) € O[T, T, T5] is given by
An(x1x2) = () gy, (Mg, xa() [ PucOa a0 07 (07, (0F,)
te(x2)

< I Gersr (07 05 (O,

£e(x2),4n
Proposition 4.8. For every (Q1,Q2, P) € XA X Xp X XA with
0<kg, <kp<kg,,
we have the interpolation

E(x1,x2)(Q1,Q2, P)

pke. —kr gt
2kp—kqQ; —kQy

if 2kp > kg, + kg,

—1_—1 ko, —kp -1, kp—k
(O €g, EPW A1 )y X2€Qq€p W @2)

kp—kqgy,—1pp—
o 2 EkQ1+kQ272kP+2

if 2kp < kg, + ko,

-1 _—1 k —k -1, kp—k
(X1 €0, €pw 1T xoeq €p WP T R2)

Here 0 is the theta operator 6(3_, anq™) =, nanq™.
PROOF. Let p; = xfleaepkal_kP and po =
X2€Q, elglwkp’k%. Put k = 2kp — kg, — kq,. For an integer n prime to
p, we have

An(leXQ)(QlaQQaP) :nleikP:ul_l(n) H Pn,f(ﬂl:ugl(g)fk)
Lre(xz2)

x H gn,X;1X;17z(X1X2M1/~L51(f)ﬁk),
Lle(xz2).tn
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Since x1X2/1 1y ! is a Dirichlet character modulo a power of p, one ver-
ifies that

Gyt e Oaxamps (OX) =G, 1 (X).

By Corollary 4.7, we find that

nleikP ’ a;’t(/'l’lal‘lﬂvk) ifk > 07

An(x1, @2, P) =
(X1, x2)(Q1,Q2, P) {nlierl —kp . a;, (p1,p2,2—k) ifk <0.

The proposition follows immediately. Q.E.D.

85. The construction of p-adic Rankin-Selberg L-functions

5.1. The construction of the p-adic L-function

Let O = Op for some finite extension F' of Q,. For ¢ = 1,2, let I,
be a normal domain finite flat over A and let ¢; : (Z/pN;Z)* — O* be
Dirichlet characters with t;(—1) = 1. We let

F = (f,g) € eS(Nlathl) X €S(N271/12712)

be a pair of primitive Hida families of tame conductors (N1, N2) and
branch characters (11, 12). In this section, we recall Hida’s construction
of the Rankin-Selberg p-adic L-function for F. Fixing a topological
generator vy of 1+ pZ, once and for all, we put ' =9 — 1 € A and let

R =1L 0ol T3]
be a finite extension over the three variable Iwasawa algebra

ARoABoA = O[Ty, Ty, T3],
(M=TRIex1,T,=1T®1,T=10111T).

Let N = lem(Ny, Na2). Decompose the finite set supp(N) = X
H)Y i) U Y iii where
(i) (iii)>
(5.1)
¥(i) :=the set of primes /| N such that Tfq, ¢ and mg, ¢ are principal
series, ordg(Ny) = ordy(N2) > 0, co(¥192) = 0,

E(ii) :{é prime | Tfou b Tag,.t: discrete series and L(S,ﬂ'fQI’[ X ﬂngyg) #* 1},

i) = {E prime factor of N | £ & ;) L E(ii)} .
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Define the auxiliary integers C7 and C5 in the definition of an Eisenstein
datum by

Cyo= [ emextordeVordevan) TT 4157,

LeX ) LE€X iy
(5.2)
Cy = H gmax{ordg(Nl),ordg(Nz))}.
L€X (is1)

If £ € ¥ Ui, then cg(¥192) = 0 in view of [GJ78, Propositions (1.2)
and (1.4)]). We have

L4 0102 | N,
e 15 is a Dirichlet character modulo pCy.

For any integer a € Z/(p — 1)Z, we define the power series H,

Ha =g- E(¢1,(P)w_a7w;lql};lwly(p)wa)’

where 1 () is the p-primary component of ¢; in §2.2. By the arguments
in [Hid93, page 226-227] and [Hid93, Lemma 1 in page 328], we can de-
duce that the power series H , indeed belongs to S(N, wflwi(p), I,)®1,R
( ¢f. [Hsil7, Lemma 3.4]). Therefore, one can apply the ordinary projec-
tor e to H, and obtain eH , an ordinary A-adic modular form with coef-
ficients in R. Let f € eS(Ny, ’(/J;l’i/)i(p), I,) be the primitive Hida family

corresponding to the twist f‘[lﬁ;libl,(p)] = soaln, f)wflwly(p)(n)q”.

Definition 5.1. Fixing a generator ny of the congruence ideal of
f, the p-adic Rankin-Selberg L-function .Zlf’a is defined by

.,S”Iffﬂ := the first Fourier coefficient of 1y - 1:Trn/n, (eH,)) € R,

where Try/n, : eS(N, w;lwi(p), L) — eS(thflwi(p),Il) is the trace
map (cf. [Hid88a, page 14]). Note that 7y - 17 is an integral Hecke

operator since f and f share the same congruence ideal (cf. [Hsil7,

(3-2)))-

5.2. The interpolation formula and Rankin-Selberg inte-
gral

Define the weight space for the pair (f, g) in the f-dominated range
by

(5.3) XL = {(Q1,Q2P) € X{ x X{" x Xp | kg, < kp < kq,}.
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Let (Q1,Q2,P) € %{z We relate the value .Zlff(Ql,Qg,P) to a global
Rankin-Selberg integral. Let

(kla ko, k3) = (kQquz’kP)

and let 7 be an integer greater than max{1, ¢,(eq, ), cp(€g,)}. Recall that
the specializations

(fa g) = (fQ17gQ2) € Sk1 (Nlpraxf) X SkQ(N2pT7Xg)

are p-stabilized cuspidal newforms with characters (xf, x4) modulo Np”

given by
X5 = treqw ™™, xg = Paeg,w ™.

Let o5 = @(f) and ¢, = ®(g) be the associated automorphic cusp forms
as in (2.3). Then

(p1,02) € A) (N1p",w1) x AP, (Nap”, w3)

and the central characters wy,ws are the adelizations
o1 i1
wi = (X7 )a, w2 =(xg )a

of XJTI and Xg_l. Put
w = wWiw2.

Let wy () be the p-primary component of wy (so wy (p) is the adelization
of X;}p))- Define the matrices Jo and ¢, € GLy(A) for each integer n

by
(5.4)

o= 1) ectam = (0, ") € GLa@,) < GLa(a)

Proposition 5.2. Let D be the Eisenstein datum
(5.5) D= (ePw“_k”wl,(p),e}lw_a+kpw_1w17(,,),Cl,Cg).
Then we have
ZF.4(Q1,Qs, P)
[k1—kz]

:<P(jootn)%0f7 g Eal= fp, s )®wﬁp)> | o= 2babaty

 $a(2)[SLa(2) : To(V))(-2v D) ! G(1) |
Y wi 03| lq, ("G (2)
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for any sufficiently large positive n, where () : A‘ikl (N, wiw] (Qp)) X
Ap, (N, wl_lwi(p)) — C is the pairing defined in (2.2) and oy is the
unramified character of Q) in (2.10).

PROOF.  Let E := E(w "1 (), ¥ "0 ' w™y (). Since fo, is
a p-stabilized newform, by the multiplicity one for new and ordinary
vectors, we have

(56) ng- 1}'Q1TrN/N1 (e(g : E(QlaQQaP))) = gFf,a(QhQ%P) : }.Ql'

Put x = epw?® *3. By Proposition 4.8, we have

k1—k + -1, ,—1
O B ey — ke (XW1,(p), X T W W1 ()

if 2ks > ky + ko,

9k3*k271E1~c_1+k2—2k3+2(le,(p)vXﬁlwilwlv(f’))
if 2ks < k1 + ko.

E(Q1,Q2,P) =

We put

ki—Fk R .
ET'_ {52k3_21—sz;C:z—kl—b(lev(P)7X 'w le(p)) if 2k3>k1+k2’
T cks—ko—1 — IR .
5kf+k§—2k3+2Ek1+k2—2k3+2(Xw1,(p)7 X tw 1w17(p)) if 2k3 <k1+ka,

where 0;" is the Maass-Shimura differential operator. The argument in
[Hid93, equation (2), page 330] shows that

(5.7) e(g- E(Q1,Qa, P)) = eHol(g - ET),

where Hol is the holomorphic projection as in [Hid93, (8a), page 314].
Put

@r=0(fq,) € A, (N1p",wi 'l ()-

Pairing with the form p(Jsotn)ef ® w;(lp) on the adelic lifts on both
sides of (5.6), we obtain that

<p(\700t71)g0f ®w1_7(1p)7¢/f> "%I‘?fﬂ(leQ?vP)

(5.8) = (p(Tootn)py ®w;(1p), 1*} Trn)n, e @(Hol(g - E™)).
Q1
Let H = g- ET. Note that H is a nearly holomorphic modular form of
weight k1 and its adelic ¢(H) € Akl(Npr,wflwi(p)) has a decomposi-
tion
O(H) = Hol(P(H)) + Vi + Viph + - + Vi),
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where Hol($(H)) and {¢;};=1,... » are holomorphic automorphic forms.
It follows that Hol(¢(H)) = ¢(Hol(H)). Let 1} € T (N1p™, ps) be
the specializations of 1} at Q1. As a consequence of strong multi-
plicity one theorem for modular forms, the idempotent 1; = 7])711} €
Tord(Nyp™, 1) @0 FracO(Q1) is generated by the Hecke operators Ty for
¢t Np, and this implies that hat 1y is the left adjoint operator of 1y

Q1

for the pairing (— ®w;(1p), —). Hence, the right hand side of (5.8) equals

np (T, (1f p(Tootn)pr ® w;gp)) , Hol(®(H)))

(5.9)
=0 [Us(N1) - Ug(N)] - (p(Tsotn) s @ wi (), eHOl(@(H))).

On the other hand, it is straightforward to verify that for all sufficiently
large n

<p(tn)Up90’ 90,> :<507 Up‘P/>7
(P(T0), V') = = (p(Toc) Vop, ')

(cf. [Hid85, (5.4)]). It follows that the pairing on the right hand side of
(5.9) equals

(o Tat)ps @ i), HOI(B(H))
= (p(Tsotn) ey ®w;’%p)7 P(H)) = (p(Tctn) ey ®wi(1p)7 P(H)).

On the other hand, by Proposition 4.4,

O(H) = 0y B(ET) = 0 - Ealg, 5 momass b

5= %
We obtain
(p(Tootn)ps ® Wi ), 1) - ZLE 4 (Q1,Q2, P)

=n¢[Lo(N1) : o(N)] - {p(Tootn) s, g - Ealg, f»gils:kg]) ® w;(lp)”s:%s*’;l*@ :

By the formula for (p(JTootn )@y ®w1_(1p), ¢r) in [Hsil7, Lemma 3.6] and
the definition of Qy =y, in (1.5), we have

<p<jootn)¥7f ® w;,(lp)’ ‘Pvf>

C (2)71 —k1—-1
[SL2(§) :To(Ny)] g (=2v/ 1) TR,

wrha?l g, (76 (2)
(1)
Putting the above equations together, we get the proposition. Q.E.D.
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5.3. Rankin-Selberg L-functions for GLs x GLg

In this subsection, we review briefly Jacquet’s approach to Rankin-
Selberg L-functions. Let (m1,.A(m1)) and (w2, A(m2)) be irreducible cus-
pidal automorphic representations of GL2(A) and let x be a Hecke char-
acter of Q*\A*. Put w = wiws. For 1 € A(m1) and 2 € A(ms), let
W, and W, be the Whittaker functions of ¢1 and ¢ defined in (2.9)
respectively. Assume that W, and W, are decomposable, i.e.

W<P1 = H WL/’hU’ Wgoz = HWWQJ)

with W, ., € W(m; ) fori=1,2. Let ® = @®, € S(A?). For each place
v of Q, define the local zeta integral W(Wey, o, Wes 0, f\, \ wit.a,.s) (cf.
[JacT2, (14.5)]) by

(5.10)
‘I}(Wsahmsz,v’fm,v,x’lw’l,@u,s)
-1 0
= / W«pl,v(gv)Wgog,v(( 0 1) gv)fxv’x—lw;}ﬂ(}ms,%(gv)dgv7
N(Qu)\ PGL2(Qu)

where dg, is the quotient measure of the Haar measure of PGL2(Q,)
by the additive Haar measure of Q, defined in §2.6.1. It is well-known
that the local zeta integrals converge absolutely for Re(s) > 0 and has
meromorphic continuation to s € C. A standard unfolding argument
shows that

(5.11)

1
<§0]_7992 ’ EA(i’ fXaX_lw_lﬂq)7s_%)>: m 1;[ \IJ(WAFL’U’ W(PQY’U" XvaX;lW;l,q)u,S)
as meromorphic functions in s € C.
For each place v of Q, let L(s, 71,4 X T2, ® Xo) be the local L-factor
of 71, X g, twisted by x,. The Rankin-Selberg L-function of m; x my
twisted by x is defined by

L(Saﬂl X o & X) = HL(577T1,1) X T2 & Xv)~

v

Note that if 7y, mo, and x are unitary, then L(s,7m; ® 7y ® X) is an
entire function if and only if m; and 7y ® x~2 are not isomorphic up to
unramified twist (cf. [JS81, Proposition 3.3]). Let S be a finite set of
places of Q containing the archimedean place such that for all v ¢ S,
e 7, and mo, are spherical, and x, is unramified,
o Wo,v=Wg v, Wy, 0o = Whr, ., are the normalized local Whit-
taker newforms, and ®, =1z gz,-
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By [Jac72, Proposition 15.9], for all v ¢ S we have
\I/(chl,va WLPQ,M fX’u,Xglw’:l)(I’vys) = L(Sv’frl,v X Moy & Xv)'

It follows that (5.11) can be rephrased in the following form

<§017 P2 - EA(_7 fx,Xflwfl P sfl)>

2
(512)  L(s,m xm®Y) 1 YW, 0 Wes s Fro i tws Loy s)
CQ(Q) L(Saﬂl,v X T2.0 & Xv) '

5.4. The interpolation formula and Rankin-Selberg
L-values

veS

Now we return to the setting in §5.2 and keep the notation there.
Let m; and w9 be the cuspidal automorphic representation generated by
the automorphic forms ¢ and ¢, associated with p-stabilized newforms
[ = fq, and g = g, respectively. From the discussion in §2.7, we know
the Whittaker functions of ¢y and ¢, can be factorized into a product
of local Whittaker newforms and p-ordinary Whittaker functions

_ ord _ ord
=wed H Wiy v, W, = W H Wiy
v#p v#p

Let x = epw® "3 and D be the Eisenstein datum
(xw1,(p)5 X_lw_lwl)(p), (4, Cs).Define the local Godement section
(5'13) f’B,s,oo = fX xatwx! ¢[k1 kz] fé,s,[ = fX,lew[l,q’D,z,S

with the Bruhat-Schwartz function <I>[ 1=k

By definition,

and ®p , in Definition 4.1.
k1 —k - -1 -
fD s® HfD 5,0 XX_1W_1,<I>£,§1_’C2],5: [D; 2]®w1’(1p)€B(X,X L 1, 8)

is the Godement section attached to <I>[Dk17k2].

Proposition 5.3. For every sufficiently large positive integer n, we

have
gFf,a(leQ%P)
Ues — ky — k J=T)2ks+kat1
ki h o) (L) g (—1) - ,

2

d
X Word(s) - H‘I’Z(S)L:%rkrkz’
(N 2

Qle
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where WO (s) and ¥ (s) are normalized local zeta integrals given by
rd ord
( ( )W;:l p? Wﬂ'gp’fl*),s,p) . w2 ;D( ) CP(]‘)
L(s,m1,p ® ap @ Xp) Wy paf‘ lq,® P)Gp(2)
CQe(l) . \IJ(WWLNWM,w‘fD,s,E)
(Q.(2)INlq, L(s;me®m20®xe)
ProOOF. By (5.11), we find that

(p(Tootn) s 0q - Eal= 5 ) @ wify)
=(P(Toctn)ss05 - Eal= fp 1))
:CQ(2) ( (‘-700) 1,009 Wﬂz 009 f’Z*),s,oo) ' ( ( )ngdpa Worp7f’D s,p)

X H\If 1,05 Trz,vaDsl)
t#£p

We must calculate the archimedean local zeta integral. Note that 71 oo
and 7y o are discrete series of weight ki and k2, and the corresponding
Whittaker newforms Wy, _ and Wy,  are given in (2.8). Let k' =

k1 — ko. In addition, fﬁsm is the Godement section attached to @L’Z].
Therefore, we can compute the integral

W7T1,OO7 WTI'Q,OO’ fD s, oo)

(3 (3 )

X Yool 5t | (y)fD,s—%,oo(u)du d*y

’ / . ’ k/
:Xoo(_l)z_k (\/jl)k W_é_k /QF s+ 2)
s+

ord
Up(s) =

Wi(s) =

(
A i e

:( 1)a+k32—t( P k' /2F ( ) ys+k1+kz _16_4Tryd><y

k1 — ko k k
:(f]_)a(\/jl)2k3+k1*k22*k1*11—\c s+ 1 5 ) FC <S+ 1 ; 2 1)
:(_l)a( /_1)2k3+k17k227k171 . L(Svﬂ'l,oo X T2.00 ® Xoc)-

Combining Proposition 5.2, (5.12) and the fact that ws ,(—1) =

§
o) (~1)(~1)** and [SLy(N) : To(N)] =Ty g GfinTg» We gt the

proposition. Q.E.D.
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§6. The calculation of local zeta integrals

In this section, we calculate the normalized local zeta integrals
¥ord(s) and Wj(s) in Proposition 5.3. The notation is as in §5.2. We
will continue to use the local Haar measures normalized in §2.6.1.

6.1. The p-adic place

Lemma 6.1. For all sufficiently large n, we have

G(2) AFwpllg, (PM)wp(-1)
G(1) Y(8,m2p @ arXp) '

\Ij(p(tn)word Word 9 fé,s,p) =

T1,p? " T2,p

In particular, \I/grd(s) =&)(s, [,9®X), where E}(s, f,g®x) is the mod-
ified p-Fuler factor given by
(6.1)
Ex(s, f,9@X)
L(s, ma,p ® ayXp) . 1
e(s,map @ apxp)L(1 — 5,715, ® alezjl) L(s,m1p X T2, ® Xp)

PROOF. To simply the notation, we omit the subscript p in the
proof. For example, we write 71,w1, fp .. |-| for m1p, w1 p, f5 500 | ]q,-
According to Definition 4.1, f5 . = fy y-1w-1,0p,s be the Godement
section associated with

q)D’p - (bxilwli,(lp) ® ¢waliép) '

A direct computation shows that

~

. (0 -1\,
fD,s((]_ T )) - (ZSwa;%p) (1’)
Let Wprd = Word for i = 1,2. By (2.10), we have
y 0 i y 0 1
wal(l V) =ast iz, wal(} 0)) = a1z, )

Using the integration formula

/N\ PGL2(Q,) Fla)ds = gzgg /pr /Qp F(<g (1)> <(1) _9€1>)dxdxy
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for F € L*(N\ PGL2(Q,)), we obtain

U(p(ta) W™, W™, f5 )

SLLE DG Doz 92
AT (] )l ey

) ()

X x|-|5‘1(y>$wizp) (z)d*ydx

_ @yl et 07
G(D)
L L) (e

P

for sufficiently large n. By the local functional equation for GL(2)
[Bum98, Theorem 4.7.5], the above integral equals

Cp (Q)wa1 1| |(p ”) x(-1)
v(s,m @ ayx)
/ / ord( Xé T))%lx_la 1|.|%—8(y)$xww1()( 2)d%ydz
Cp( )Oéf‘*ﬁ 1| |(p") x(=1)

(s, @ apy)
/ / blya)uawy Y o T )8 s (2)d%yda

1,(p)
@R
Cp( ) 7(877(2®an>
< [ artager T 00 (0.

P

Since ay, oy and wlwl_(lp) are unramified, we find that

Gp(2)agwr |- wa(—1)
Word ord — f1 . 2 .
( ( ) ast) Cp( ) ’7(5,7T2®Ole)
This completes the proof. Q.E.D.
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6.2. The (-adic case with /| N

In this subsection, we compute the local zeta integral ¥ (s) under
certain minimal Hypothesis (M) below. Recall that an irreducible ad-
missible representation 7 of GL2(Qy) is called minimal if the exponent of
the conductor ¢(7) of 7 is minimal among the twists 7 ® x for all char-
acters x of Q. In this subsection, we assume the following minimal
hypothesis for (f, g)

Hypothesis (M). For every ¢ | N, there exists a rearrangement
{m1,m2} = {7, g0} such that
e 7y is minimal,
e FEither m is discrete series or m; and w5 are both principal
series.
e If m and my are both principal series with L(s,m; X m2) # 1,
then 79 is also minimal.

Remark 6.2. Note that if the above hypothesis holds for (f,g),
then it holds for the specialization of (f,g) at any classical point by
the rigidity of automorphic types for Hida families described in [FO12,
Lemma 2.14] (See also [Hsil7, Remark 3.1]). Moreover, one can always
find a Dirichlet character A such that (mf @ \,m, ® A~1) satisfies Hy-
pothesis (M).

Let £ be a prime factor of N. So £ belongs to ;) U ;) U i)
as described in (5.1). Note that in this case x is unramified at ¢, and
U7 (s) is symmetric for (7.0, 7g.0). Let (m1,m2) as above. Fori = 1,2, let
¢; = ¢(m;) be the exponent of the conductor of 7;. Set ¢ = max{c;,ca} =
ordy(N) > 0. We write

a(t):(é ?)w(x):(é “”f>w:(_01 é) (teQf, xeq.

For a non-negative integer n, let

Z, Zy

my _—

Uo(ﬂ ) = GLQ(Z@) n (fnZg Ze> .

In what follows, we assume Hypothesis (M) throughout this subsection.
We often omit the subscript £ as before. We first treat the case £ € ¥;).

Lemma 6.3. If £ € ¥, then we have

(@ (2)Nlg,

U (Way, Way, [5) = 0 L(s,m1 X T ® X),
£

and hence ¥ (s) = 1.
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PROOF. Write W1 and Wy for W, and W, respectively. Recall
that fl*),s = f1w-1,0p,s is the Godement section attached to the Bruhat-
Schwartz function ®p = Ijez, ® Iz,. Since x is unramified, we may
assume y = 1. For k € GL2(Qy), put

T(u) = o Wi (a(t)u)Wa(a(—t)u) |t~ d*t.

Then Z and f5 , are indeed functions on N(Qe)\ GL2(Qy)/Up(£°), so
we have

(6.2) W(Wy, W, f5.,) = volUo(£°), du) > T, @)
u€GL2(Ze)/U(Le)

To evaluate the above sum, we give an explicit formula for the function
f5 .1 and Z. First of all, it is easy to verify that f (1) = L(2s,w),
873 573

Py ) =Fpyto (5 9)) = sl (60

Fracy((p 0)) =Ls)-wl )

)
(¢ 9)-+((2 1)

for x € Qp, t € Z), and n € Z. In view of the definition of X in (5.1)
and Hypothesis (M), we must have that 7 = u1 By and mo = ps B o
are principal series such that

c=c(v1) =c(vra) > 0; p1,p2 and wiwsy are unramified.

For i = 1,2 we have
Wila(t)) = wil-|* (8)Tz, (£),
=1 5 (pc 1 1/2
W alt)o) = ) 2 (G ) il POz, 0

Combined with the equation €(1/2,m1)e(1/2,m2) = r1va(£)ve(—1), we
obtain

(1) = (1 — ppa(0) €)1,
T (w) = papa ()1 (1= vawa(0) |€]7) .
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Moreover, for 0 < n < ¢, from the explicit formula for Whittaker new-
forms in Proposition 6.4 (ii) below, we deduce by a straightforward com-
putation that

7((n 1)) = cmmmiey =i

With the above formulae, using a complete coset representatives for
GLy(Zy) /Uy (£°) given by

{1 G)

and the relation w = pqporrv2, we find that the sum in (6.2) equals

et (I() + :é(e - 1)46"1f5,5;(<1; (1)) )Z ((;n ?))

FO L ) T(w)

T € Zg/€CZg,y S EZg/KCZg} .

c—1
=L(2s,w) (L(Sv pape) + > viva () [0 + vav(€°) [0 L(s, V1V2)>

n=1

=L(s, p1p2)L(s,v1v) = L(s, 71 X m3).
Hence we obtain
U (W1, Wa, [ ) = vol(Uo(£°), du) L(s, m X m2)
= [GLa(Zy¢) : U(£™)] ™" - L(s,m x T2).
The lemma follows. Q.E.D.

—

Proposition 6.4. Let Z; be the set of continuous characters of
Z). For & € Z), we extend & to a character of Q) so that £(0) = 1.
Let m = pBv with ¢(u) =0 and c¢(v) = ¢ > 0. Let W, € W(m,v) be the

Whittaker newform. For n > 0, let W#n) =p ((gln (1)>> Wa.
(i) Forn=0, WT(rO)(a(t)) is supported in ¢~ Zy. Fort € Z; and —c <
m < —1, we have

WO (a(e™)) = |62 ¢y (1)u(0) e (w)

x > € <;,V§1>_1§(—t),

fEi},c(uf‘l):—nL
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and

W (e~ 0) =11 G0 (5.7 ) - (Bve) e

_‘€|C/2+1/2 C[(].),U,(e)icé‘ (;,W) V(—qilt).

Fort #0 € Z;, we have

WO a(0) = 7 u(e) w12 (5.7 ) vl-[2(0).

(i) For 0 <n <c, we have

WA 0(0) = Tneegi () G172 e~ (5.1

-1
1
D S (2, g) =)
£€Z; ,0<c(§)<c—n
(iii)  Forn>c, Wi =W,.
PROOF. Let n > 0and m € Z. For & € i}, put
AR©) = [ W (aem))e (1)
z;
For t € Z, we have
Wit (a(emn) = Y AR(E) - £().
éeie;
Recall the local functional equation for GL(2)

L(s,m®@¢&1)
L1 =57V ®@&e(s,m®&1)

W (a()e @) |2 % =

x [ W (a(tyw) Ewy (1) [t A
Q/
Let wr = pv be the central character of . Note that (cf. [Sch02, §2.4])
Wi (a(t)) = |-/ (0)Iz, (8),

p () Wi(a(t)) = (; w) wn ()W (a(€41)).
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Therefore, the local functional equation for GL(2) implies that

D AR e

meZ

Lis,m@g&t 1 .
:L(l Svﬂ(\f;g)g(S?;—@E]) "€ (2;77) 'f(_l) . |f|( 1/2)

x/ St (1) 11 T, (£)d% 1.
Q/

A direct calculation shows that

G () [ Iz, (£)d <t
Q/
10]©7/2 ¢ (1) (o)™ |qc,H<§)|1_s c <%,,Lg*1> if0<c(f)<c—n,

(O™ g™ ' 7" (1 = p()a*) (L — = (O)g*~1)~"
ifé=1landc—n>1,

1-p YO Htif¢=1and c=mn,

0if ¢(§) > ¢,

and for 0 < ¢(€) < ¢

L(s,tr@&™h)

Ll —s,mv@&e(s,m@&1)

(c(&)+e(e)(1/2-s) (1 e -
o (5ue) e (5o

if 0 < e(x) < cand c(vE~1) £0,
- u—u*wwkwu—vwwﬂr*wﬂ”ﬂs(;ueJ)

if ¢(¢) = c and c(v€~1t) =0,
(=i OF = e e () e =1

We conclude that for ¢(€) > ¢,

A (€) =0.

m

For 0 < ¢(§) <c—mn and c(vé~1) >0, A5,’Z)(§) equals

—1
{|a”2m”@umwrﬂme(;w)s(;uff) €1 itm=n-c
0

ifm#n-—-c.
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For c(¢) = ¢ and c(v€~1) = 0, qu?)(ﬁ) equals

/2 1 _‘£|1/2V71(€) ifm=—1and n =0,
= C@(l)p(é)%(Q,w) Co(1) g™ 20 ()™ if m>0 and n=0,
0 if m<—1 or n#£0.

Forxy=1landc—n>1,

22 GO ifm=n—c,

(n) (g =
Am(g){o ifm#n-—c

For x =1 and ¢ = n,

0 o2 ™ it m >0,
apo={ {7

This completes the proof. Q.E.D.

Now we suppose that £ € X, so orde(C1) = [§] by (5.2). In
addition, 71 is minimal and 71, 7o are discrete series with L(s,m X mg) #
1. This in particular implies that mo = 7 ® £ for some unramified
character £ of Q) by [GJ78, Propositions (1.2) and (1.4)], and hence ¢ =
c1 = co. Let TQ,2 be the unramified quadratic character associated to the
unramified quadratic extension of Q. A discrete serires representation
7 is said to be of type 1 if 7 ~ 7 ® 7q_,, and of type 2 if 7 % TRTQ,,-
Note that a special representation is always of type 2.

Lemma 6.5. If £ € ¥, then we have

v (Wﬂ'l’ Wﬂzvf’g,s)

1. CQ.(2) |N‘QZL 1414 if w1 is of type 1,

=13 8, X Mo ®
Cq.(1) S 2® ) {1 if ™1 is of type 2.
Proor. We may assume x = 1 as in the previous case. Let f°

be the spherical section in B(1,w™!, s— 3) normalized so that f°(1) = 1.
Let 7 = [§] = ord,(C1). Then f7 _ is the Godement section associated
with Iprz, ® Iz, according to Definition 4.1. It is easy to verify that

Foa g = 1071 L(25,) - pla(t")) 1.

It is computed in [Hsil7, Proposition 6.9] that U(W., ,Wr,, p(a({77)) f°)
equals

14 |/] L(2s,w)

MT(I—S) L(s,m xm) |1+ ¢ if m is of type 1,
1 if my is of type 2.
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The lemma follows. Q.E.D.
Finally, we consider the last case £ € ).

Lemma 6.6. If £ € Y, then

2) N
\II(WvaWzﬂf%,s) = M : L(Suﬂ—l X T2 ®X)7
CQz(l)

and hence ¥ (s) = 1.
PROOF. We may assume y = 1 and write W; = W, i =1,2 as
before. Since £ € X, by definition £ | Cy, and I5 1 is the Godement
L]

section associated with ez, ® ¢,-1 according to Definition 4.1. It is
easy to see that

F.s(k) = w(d)Lo ey (k) for k = (g Z) € GLa(Zy).

Therefore, we obtain
WOV W £, = [ £y o (WA (a(tyu) Wala(~t)u) |1~ d*tau
GL2(Z¢) / Q) o2

= [GLa(Zy) : Up(£°)] 7t Wi (a(t)) Wy (a(—t)) [t]°*~" d*¢t.
Q/
Hence the lemma follows immediately if we can prove the following
equality

(6.3) Wi (a(t)) Wy (a(—t)) [¢]*~ 1 d¥t = L(s, m x m).
Q/

To show (6.3), we first consider the case m; is spherical. Then g is not
spherical, and hence (6.3) can be verified easily. Now suppose that 7 is
special p1 -]~ 2St or ramified principal series p; By with 14 ramified. By
the minimality of 7y, p1 is unramified and Wi (a(t)) = ,u1\~|%(a)llzZ (a).
We thus conclude that the left hand side of (6.3) equals L(s,m2 ® p1).
It remains to see

(6.4) L(s,ma ® p1) = L(s,m X ma).

If 7o is supercuspidal, (6.4) is clear. If my = ,U2|"_%St is special, then
(6.4) fails only when 7 is special and pqpe is unramified, which con-
tradicts to the fact that £ & ;). If mp = pp B 1, is principal series,
then the failure of (6.4) implies that L(s,m2 ® v1) # 1, and then my is
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minimal by Hypothesis (M) and pqpusvqvs is unramified. This implies
¢ € X, a contradiction. We thus shows (6.4), and hence (6.3) if m;
is not supercuspidal. Finally, suppose that 7; is supercuspidal. In this
case, Wi (t(a)) = I (a), and we must have L(s, 71 xm) = 1 as £ € X).
Thus the left hand side equals

Wg(t(a))dxt =1= L(S,?Tl X 7T2).
z;

This completes the proof. Q.E.D.

87. The interpolation formulae

We prove the main result in this paper with the setting and the
notation in the introduction and §5.1. Recall that the finite set ¥ex. in
the introduction is

Yexe = {ﬁ € E(ii) | TfL = Tfe ® TQ,2 } .

We continue to suppose that f satisfies the Hypothesis (CR) and fix a
generator 7y of the congruence ideal of f used in the definition of Hida’s
canonical periods £ o for Qe %{1 We have the following

Theorem 7.1. For each a € Z/(p — 1)Z, there exists a unique
element ££7a € R =Li®oL[T] such that for every Q=(Q1,Q2,P) ¢
x%, we have

L{:‘?G(QDQQ’ P)

- L(Vg,0)
= FVQ(O) . (\/jl)QkP—kQQ—leQl
X (=) gy (=1) T (471,

LEXexe

S (Filt V)

where EJ(Fiﬁ' Vgq) is the modified p-Euler factor defined in (1.3).

PROOF. For every Dirichlet character A unramified at p, let f® A
be the primitive Hida family associated with f|[A]. Then it is proved
in [Hsil7, Proposition 7.5] that there exists a generator 77%8)\ of the
congruence ideal of f ® A such that for every arithmetic point @, we
have Q(¢gn), = QfQ. Therefore, we can deduce that up to a units in
I, the right hand side of the equation in the theorem is invariant under
prime-to-p twists.
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According to the discussion in Remark 6.2, we can choose a Dirichlet
character A of conductor ¢(\) such that ¢(\)? | N and for every arith-
metic points (Q1,Q2), the pair (fo, ® A\,gg, ® A~!) satisfies the Hy-
pothesis (M). Therefore, we may replace F by the twist (f®\, g A~1)
with such A\ and then define

Lh, =2, T[] INCTg, R
ZGE(“)

We put

_ 2kp — kg, — kq,

a—kp).
2

’ S0

(7717 T2, X) = (ﬂ—le ) 7TgQ2 , EpW

Then from Proposition 5.3 combined with the local calculation
Lemma 6.1, Lemma 6.3, Lemma 6.5 and Lemma 6.6, we deduce that

E{JG(Q) equals

L(sg,m X T2 ® X)

a, £} (50, m X T @X) - (—1)* T (V=) "PRe Rt TT (14471).

£E€Xexc

Finally, a simple computation of local Langlands parameters associated
with 71 and 79 shows that

kq, + ko,

ko, + ko.
L(S,TF1X7T2®X):FVQ(S+M 5

Q 2 )L(VQ’S+ )7

where FV& (s)=L(s+1— m, Tl,00 X T2.00 @ Xoo) is the I-factor

of Vg in (1.1) and that
5;(80,71'1 X Ty & X) = gg(F11+ VQ)

in view of the definitions (1.3) and (6.1). Now the theorem follows.
Q.E.D.

We proceed to establish the functional equation of the primitive p-adic L-
functions. We first introduce the R-adic root number for Rankin-Selberg
convolution. To begin with, it follows from [Hsil7, Lemma 6.11] that
there exists ") (f ® g ® w?) € (I;®0I)* such that

_ le + sz

PN (fRgOW)(Q1,Q2) = H5(1 B

Up

a
’ﬂ’fque XTFQQT@@(“J )
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Let Ngg be the tame conductor of wg, X 7, ~for any arithmetic spe-

cialization (Q1,Q2).> Then define the R-adic root number ) (V) €
(LiL[I])* by

e (V) i= Nyg (Nyg)p' - (f @ g @ w).

which satisfies the following interpolation property
(7.1)

ePAVYQ1, Q2. P)= [ elkr

{#poo

_ kg, +kq,

(L—kp
2 )

1T f g, £ XTgg, LDEP LW,

Corollary 7.2. Suppose that V1 )02, p) = w. Let
v =), o —(p)
F=rfedls g=goi)
and let F = (},g). Then we have

£§>1+ao—a(€Cyc(’yo)(l + T)_l(l + Tl)(l + T2))

=1, (—1)(=1) - e PN (V) - £ (T).

PROOF. It suffices to show the equation of both sides are equal
after specialized at all arithmetic points Q@ = (Q1,Q2,P) € %fa Let

v %

Q = (Q1,Q2. P) € XL, be the arithmetic point defined by

kﬁ:—kp+kiQ2+kp+1, 615261_3166216@2.

1 1 1

k w;(p)w;’(p). Then left hand side special-

Let ¥ = w!t® 0% 0w
ized at @ equals

}5:X_

‘? v
Ei’,l#»agfa(g)

_L(l*So,ﬂ'i/ X 71';/ ®X_1) 1 P v 9 2+ag—a -1
T (VoD)2ktha 2k Q) & (L =50, f,0®X) - (=1) eelz_{xc(l+£ )-

We have the relation
5(3057"—2,p®anp)'5p(307 f:g®X) = 8(17807 W;/,p(g)afwli,;xgl)'gp(l*& '}E7§®>v<)

and
£(50, M1 ,00 X T2,00 @ Xoo) = (V-1 72 = (=)~

3This is independent of any choice of arithmetic specializations by the
rigidity of automorphic types in Hida families.
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as Ti,0c and Ty o are discrete series of weight kg, and kqg,. Therefore,
by the functional equation

L(1—s,m) xmy @x 1) =e(s,m x 1@ x)L(s,m X T2 @ X)
and by (7.2), one verifies easily that

(—1)’92“071W2,p(—1)5§71+ao,a@) = I (om0 x 720 @ x0) - LE L (Q)

v#poo

Keep in mind that wo ,(—1) = b2 (,)(—1)(—1)22, and we get the corol-
lary. Q.E.D.
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