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Abstract

In this paper, we discuss generating a matrix ∗-algebra over the real field with a set of
symmetric matrices. This is motivated by an application in structural engineering. We show
that any matrix ∗-algebra can be generated with at most four randomly-chosen symmetric
matrices. The proof relies on the structure theorem for matrix ∗-algebras and the notion of
genericity in eigenvalue structure.

1 Introduction

Let Mn be the set of matrices of order n over the real field. We say that T ⊆ Mn is a matrix ∗-
algebra if it contains the identity matrix and it is closed under linear combination, multiplication,
and transposition. Matrix ∗-algebras have been studied extensively in engineering fields such as
semidefinite programming [2, 4, 12, 15], signal processing [13], and structural engineering [1]. In
these applications, we can reduce the computational effort by exploiting the Artin-Wedderburn
type structure theorem for matrix ∗-algebras: A matrix ∗-algebra can be decomposed uniquely
into irreducible components with a single orthogonal matrix. Recently, a numerical algorithm
for finding such decomposition was proposed by Murota, Kanno, Kojima, and Kojima [15] and
Maehara and Murota [12]. A variant of this algorithm was designed by de Klerk, Dobre, and
Pasechnik [4]. Maehara and Murota [14] further developed a simpler decomposition algorithm,
which allows us to control numerical errors.

In this paper, we consider a situation that we do not know an explicit representation of a
matrix ∗-algebra T , but instead, we can obtain a symmetric matrix from T randomly. In this
setting, we discuss how many symmetric matrices in T are required to generate T . Here, a set
of matrices generates T if the minimum matrix ∗-algebra containing these matrices coincides
with T . It should be emphasized that T is a subalgebra over the real field, which is not
algebraically closed, and that generators are restricted to be symmetric. This is in contrast to
other related problems, e.g., generating simple groups [6], Lie algebras [3, 9], and matrix algebras
over algebraically closed fields [11].

This problem is motivated by an application in structural engineering. When we investigate
the deformation of structures, we repeatedly solve a system of governing nonlinear equations,
say, for different loadings. It is noteworthy that the Jacobian matrix is always a symmetric
matrix, which is a consequence of reciprocity of structural systems. Sometimes, structures are
endowed with (geometric) symmetry. In such a case we can make use of the symmetry in
various ways to enhance the computational efficiency of the numerical analysis. For example,
the symmetry implies that all the Jacobian matrices at symmetric deformations are contained
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in some nontrivial matrix ∗-algebra T . This means that the Jacobian matrices can be block-
diagonalized simultaneously with a single orthogonal matrix P . If T is explicitly given in
advance, e.g., represented by group symmetry, then we can compute P with the aid of group
representation theory [7, 8]. It should be noted, however, that we often do not know an explicit
representation of T , for example, when we deal with large complex structures. In such a
situation, it is natural to pick several Jacobian matrices randomly, and to substitute for P an
orthogonal matrix P̂ that diagonalizes the matrix ∗-subalgebra T̂ generated by these Jacobian
matrices. In fact, this idea was recently introduced in [1] to develop a numerical algorithm for
computing the deformation of symmetric structures. A motivation of this paper is to analyze
this approach theoretically, that is, to estimate the number of Jacobian matrices, which are
symmetric, necessary to generate T . This is indeed the problem which this paper deals with.

In this paper, we show that any matrix ∗-algebra over the real field can be generated with at
most four randomly-chosen symmetric matrices (Theorem 3.1). This is optimal in the sense that
some matrix ∗-algebra cannot be generated with any three symmetric matrices. The proof relies
on the structure theorem for matrix ∗-algebras. Since a matrix ∗-algebra can be decomposed
into irreducible components, it suffices to discuss irreducible cases. By providing the explicit
minimum number of matrices that are necessary to generate each irreducible case, we obtain
Theorem 3.1 for general matrix ∗-algebras. We remark that large complex structures with
group symmetry, such as dihedral or tetrahedral symmetry, yield matrix ∗-algebras with special
irreducible components, which can be generated with only two symmetric matrices.

This paper is organized as follows. Section 2 provides some notation and basic results in
the theory of matrix ∗-algebras. Section 3 is devoted to the proof of our main results. Finally,
concluding remarks are presented in Section 4.

2 Matrix ∗-algebras

2.1 Structure theorem

Throughout this paper, we denote by R, C, and H the real field, the complex field, and the
quaternion field, respectively. Let Mn be the set of matrices of order n over the real field R,
and Sn be the set of symmetric matrices in Mn. We say that T ⊆ Mn is a matrix ∗-algebra
if it satisfies (i) In ∈ T , and (ii) A,B ∈ T ;α, β ∈ R ⇒ αA + βB,AB,A⊤ ∈ T , where In is
the identity matrix of order n. The value n is called the order of T . Obviously, Mn itself
is a matrix ∗-algebra. There are two other basic matrix ∗-algebras: the real representation of
complex matrices Cn ⊂ M2n and the real representation1 of quaternion matrices Hn ⊂ M4n,
which are respectively defined by

Cn =

C(Z) :=

C(z11) · · · C(z1n)
...

. . .
...

C(zn1) · · · C(znn)

 Z = (zij) ∈ Cn×n

 and

Hn =

H(Y ) :=

H(h11) · · · H(h1n)
...

. . .
...

H(hn1) · · · H(hnn)

 Y = (hij) ∈ Hn×n


1Our definition of Hn is slightly different in signs of the entries from those in [12, 15], but these two are

equivalent.
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with

C(a+ ib) =

(
a −b
b a

)
and H(a+ ib+ jc+ kd) =


a −b −c d
b a −d −c
c d a b
−d c −b a

 ,

where a+ ib ∈ C and a+ ib+ jc+ kd ∈ H.
For two matrix ∗-algebras T1 and T2, their direct sum, denoted by T1 ⊕ T2, is defined as

T1 ⊕ T2 = {A⊕B | A ∈ T1, B ∈ T2},

where

A⊕B =

(
A O
O B

)
,

and their tensor product, denoted by T1 ⊗ T2, is

T1 ⊗ T2 =

{
t∑

i=1

(Ai ⊗Bi) t ∈ N, Ai ∈ T1, Bi ∈ T2 (i = 1, . . . , t)

}
,

where

A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 .

Note that both T1 ⊕ T2 and T1 ⊗ T2 are matrix ∗-algebras. For notational convenience, we
sometimes identify the identity matrix In with the matrix ∗-algebra {aIn | a ∈ R}. For example,
we denote

In⊗T =


A O

. . .

O A

 A ∈ T

 and T ⊗Im =


a11Im · · · a1nIm

...
. . .

...
an1Im · · · annIm

 A = (aij) ∈ T

 .

A matrix ∗-algebra T is called simple if it has no ideal other than {O} and T itself, where
an ideal of T means a submodule I of T such that [A ∈ T , B ∈ I ⇒ AB,BA ∈ I]. We say
that T is irreducible if no T -invariant subspace other than {0} and Rn exists, where a linear
subspace W of Rn is T -invariant if AW ⊆ W for every A ∈ T . The matrix ∗-algebras Mn, Cn,
and Hn are typical examples of irreducible matrix ∗-algebras.

We say that two matrix ∗-algebras T1 and T2 are equivalent if there exists an orthogonal
matrix P such that

T2 = P⊤T1P, where P⊤T1P = {P⊤AP | A ∈ T1}.

We denote the equivalence by T1 ≃ T2.
From a standard result of the theory of matrix ∗-algebras [16, 17], we obtain the following

structure theorem for a matrix ∗-algebra over the real field R. The proof can be found, e.g., in
[10, 15].

Theorem 2.1. A matrix ∗-algebra T is equivalent to the direct sum of simple matrix ∗-algebras.
A simple matrix ∗-algebra is equivalent to the direct sum of equivalent irreducible matrix ∗-
algebras. Moreover, an irreducible matrix ∗-algebra of order p is equivalent to one of Mp, Cp/2,
and Hp/4. In other words, it holds that

T ≃
ℓ⊕

j=1

(Imj ⊗ Tj),

where Tj is one of Mpj , Cpj/2, and Hpj/4 and pj is the order of Tj for j = 1, . . . , ℓ.
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Note that the decomposition in Theorem 2.1 is uniquely determined by a matrix ∗-algebra T .
It then follows that, with a single orthogonal matrix P , every matrix X in T can be trans-

formed simultaneously to a block-diagonal form as

P⊤XP =

ℓ⊕
j=1

(Imj ⊗Bj) (1)

for some Bj ∈ Tj for j = 1, . . . , ℓ.

2.2 Commutant algebra

For a matrix ∗-algebra T , the commutant algebra, denoted by T ′, is defined to be

T ′ = {X | AX = XA, ∀A ∈ T }.

Note that T ′ also forms a matrix ∗-algebra, and that (T ′)′ = T holds.
The following lemma is not difficult to see.

Lemma 2.2.

(i) M′
n = {aIn | a ∈ R}.

(ii) C′
n = In ⊗ C1.

(iii) H′
n = In ⊗W, where

W =



a −b −c −d
b a −d c
c d a −b
d −c b a

 a, b, c, d ∈ R

 .

Note that W is equivalent to H1, because diag(1, 1, 1,−1)Wdiag(1, 1, 1,−1) = H1, where
diag(· · · ) is a (block)-diagonal matrix whose diagonal blocks are in the parentheses.

For two matrix ∗-algebras T1 and T2, it follows from the definition that

T1 ⊆ T2 ⇐⇒ T ′
1 ⊇ T ′

2 .

Moreover, it can be shown by using Theorem 2.1 and Lemma 2.2 that

(T1 ⊗ T2)′ = T ′
1 ⊗ T ′

2 . (2)

3 Main theorem

Assume that a matrix ∗-algebra T is generated by symmetric matrices A1, . . . , AN . Note that,
in our setting, we do not have any information of A1, . . . , AN in advance. For a real vector
r = (r(1), . . . , r(N)), put

A(r) = r(1)A1 + · · ·+ r(N)AN .

We denote by span{· · · } the set of linear combinations of the matrices in the braces, and by
⟨· · · ⟩ the matrix ∗-algebra generated by the matrices in the brackets.

The main result of this section is the following.
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Table 1: Minimum number of symmetric matrices to generate irreducible matrix ∗-algebras

n = 1 n = 2 n = 3 n ≥ 4

Mn 1 2

Cn — 3 2

Hn — 4 3 2

Theorem 3.1. Assume that span{In, A1, . . . , AN} = T ∩ Sn. Then there exists an open dense
subset R ⊆ R4N such that for any (r1, r2, r3, r4) ∈ R with ri ∈ RN for i = 1, . . . , 4, it holds that

⟨A(r1), A(r2), A(r3), A(r4)⟩ = T .

We may assume that the coefficient vector (r1, r2, r3, r4) is normalized, for example, to ∥ri∥ = 1
for i = 1, . . . , 4. Then, by the proof of this theorem, we can show that A(r1), . . . , A(r4) generate
T for almost all values of (r1, r2, r3, r4), or with probability one if (r1, r2, r3, r4) is chosen at
random. See also remarks for simpler cases after Lemmas 3.4 and 3.9.

To prove Theorem 3.1, it suffices, by Theorem 2.1, to discuss each case of irreducible matrix
∗-algebras, i.e., Mn, Cn, and Hn. The main part of the proof is to provide the minimum number
of symmetric matrices to generate each irreducible matrix ∗-algebra, which is summarized in
Table 1. Note that C1 and H1 cannot be generated by any set of symmetric matrices.

1. Mn (n ≥ 2) can be generated with two randomly-chosen symmetric matrices (Lemma 3.4).

2. C2 cannot be generated with any two symmetric matrices (Lemma 3.7), but can be done
with three randomly-chosen symmetric matrices (Lemma 3.9).

3. Cn (n ≥ 3) can be generated with two randomly-chosen symmetric matrices (Lemma 3.11).

4. H2 cannot be generated with any three symmetric matrices (Lemma 3.16), but can be
done with four randomly-chosen symmetric matrices (Lemma 3.18).

5. H3 cannot be generated with any two symmetric matrices (Lemma 3.19), but can be done
with three randomly-chosen symmetric matrices (Lemma 3.21).

6. Hn (n ≥ 4) can be generated with two randomly-chosen symmetric matrices (Lemma 3.23).

In what follows, we will prove 1–6 above in turn.

3.1 Genericity in eigenvalue structure

To obtain our main theorem, we make use of the notion of genericity introduced in [12, 15].
Let X be a symmetric matrix in T . We say that X is generic (more precisely, generic in
eigenvalue structure) if the matrices B1, . . . , Bℓ appearing in the decomposition in (1) do not
share a common eigenvalue, and in addition, for each j = 1, . . . , ℓ, it holds that

• If Tj = Mpj , then all the eigenvalues of Bj are simple.

• If Tj = Cpj/2, then all the eigenvalues of Bj have multiplicity two.

• If Tj = Hpj/4, then all the eigenvalues of Bj have multiplicity four.

The following lemma can be proved in a similar way to [12, 15].

Lemma 3.2. Assume that span{In, A1, . . . , AN} = T ∩ Sn. Then there exists an open dense
subset Rg ⊆ RN such that for any r ∈ Rg, the matrix A(r) is generic.
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3.2 Case of Mn

In this section, we deal with generating the irreducible matrix ∗-algebra Mn. Note that if n = 1
one nonzero matrix generates Mn = M1.

The following lemma asserts that if two symmetric matrices satisfy the genericity with some
condition, they generate Mn. We remark that a single symmetric matrix X ∈ Mn does not
generate Mn if n ≥ 2. Indeed, since X is diagonalized by some orthogonal matrix P , we see
⟨P⊤XP ⟩ ⊆

⊕n
j=1M1 ⊊ Mn. Hence ⟨X⟩ ⊊ PMnP

⊤ = Mn holds.

Lemma 3.3. Let X1, X2 be two symmetric matrices in Mn with n ≥ 2. If X1 is generic and
there exists an orthogonal matrix Q such that (a) it diagonalizes X1 and (b) (Q⊤X2Q)1j ̸= 0
for every j = 2, . . . , n, then it holds that ⟨X1, X2⟩ = Mn.

Proof. It suffices to show that ⟨X1, X2⟩′ ⊆ In. Indeed, if so, then we have ⟨X1, X2⟩ ⊇ I ′n = Mn

by Lemma 2.2 and (2). This, together with ⟨X1, X2⟩ ⊆ Mn, implies that ⟨X1, X2⟩ = Mn.
Let Yℓ = Q⊤XℓQ for ℓ = 1, 2. Then Y1 is a diagonal matrix whose diagonal entries are

its eigenvalues, denoted by λ1, . . . , λn. Assume that A = (aij) is a matrix in ⟨Y1, Y2⟩′. By
AY1 = Y1A, we have

aijλj = λiaij for any i, j.

Hence if i ̸= j then aij = 0 holds since λi ̸= λj by the genericity of X1. Moreover, by AY2 = Y2A,
it holds that

aii(Y2)ij = (Y2)ijajj for any i, j,

where (Y2)ij is the (i, j)-entry of Y2. Since (Y2)1j ̸= 0 by the assumption, we see that a11 = ajj
for every j, and hence A = αI for some α ∈ R. Therefore, ⟨Y1, Y2⟩′ ⊆ In holds. Hence we have
⟨X1, X2⟩′ = Q⟨Y1, Y2⟩′Q⊤ ⊆ QInQ

⊤ = In, which proves the statement.

By Lemma 3.3, together with Lemma 3.2, we have the following lemma, which says that
almost all pairs of symmetric matrices generate Mn.

Lemma 3.4. Assume that span{In, A1, . . . , AN} = Mn ∩ Sn with n ≥ 2. Then there exists an
open dense subset R ⊆ R2N such that for any (r1, r2) ∈ R with ri ∈ RN for i = 1, 2, it holds
that ⟨A(r1), A(r2)⟩ = Mn.

Proof. Let (r1, r2) ∈ R2N with r1, r2 ∈ RN , and Xi = A(ri) for i = 1, 2. It follows from
Lemma 3.3 that if (a) X1 is generic and (b) there exists an orthogonal matrix Q such that it
diagonalizes X1 and (Q⊤X2Q)1j ̸= 0 for every j = 2, . . . , n, then it holds that ⟨X1, X2⟩ = Mn.
It is not difficult to see from Lemma 3.2 that these conditions are satisfied for any parameter
value (r1, r2) in some open dense subset R of R2N . Thus the statement holds.

We may assume that the vectors r1 and r2 are both normalized to unit vectors in Lemma
3.4. If r1 is chosen at random, then A(r1) is generic with probability one by Lemma 3.2. Under
this condition, A(r1) and A(r2) generate Mn with probability one if r2 is chosen at random,
because A(r2) satisfies for almost all values of r2 that (Q⊤A(r2)Q)1j ̸= 0 for j = 2, . . . , n for
an orthogonal matrix Q that diagonalizes X1. Therefore, A(r1) and A(r2) generate Mn with
probability one if r1 and r2 are chosen at random, respectively.

3.3 Case of Cn
In this section, we provide the explicit number of symmetric matrices to generate the irreducible
matrix ∗-algebra Cn. For a matrix A ∈ Cn, there exists a matrix B in Cn×n such that C(B) = A.
For 1 ≤ p, q ≤ n, the [p, q]-block of A, denoted by A[p,q], means the submatrix C(Bpq) of order
two, where Bpq is the (p, q)-entry of B.
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We say that an orthogonal matrix P is C-compatible if P = C(U) for some unitary matrix
U over the complex field. Note that a C-compatible orthogonal matrix P preserves the form of
a matrix in Cn, that is, P⊤CnP = Cn.

We first show the following lemma.

Lemma 3.5. For a symmetric matrix X in Cn, there exists a C-compatible orthogonal matrix
P that diagonalizes X.

Proof. Since X ∈ Cn ∩ S2n, there exists a Hermitian matrix Y ∈ Cn×n such that X = C(Y ).
Then there exists a unitary matrix U that diagonalizes Y , i.e., U∗Y U is a diagonal matrix whose
diagonal entries are its eigenvalues. Note that all the eigenvalues of Y are real. Define P = C(U).
Then, since the mapping C from Cn×n to Cn is isomorphic, we see that P⊤P = C(U∗)C(U) =
C(U∗U) = I2n, i.e., P is orthogonal. Moreover, it holds that P⊤XP = C(U∗)C(Y )C(U) =
C(U∗Y U), which is a diagonal matrix all of whose diagonal entries have multiplicity two.

Observe that for any nonzero matrix C(a+ ib) ∈ C1, the matrix µ−1C(a+ ib) is orthogonal,
where µ =

√
a2 + b2. This fact gives the following lemma.

Lemma 3.6. Let X1, X2 be two symmetric matrices in Cn. Then the following two statements
hold.

(i) There exists a C-compatible orthogonal matrix Q1 such that (a) it diagonalizes X1 and (b)
(Q⊤

1 X2Q1)[1,j] = µjI2 for some µj ∈ R for every j = 2, . . . , n.

(ii) If X1 is generic and there exists a C-compatible orthogonal matrix Q1 satisfying (a), (b),
and (c) µj ̸= 0 for every j = 2, . . . , n, then it holds that Q⊤

1 ⟨X1, X2⟩Q1 ⊇ Mn ⊗ I2.

Proof. (i) By Lemma 3.5, there exists a C-compatible orthogonal matrix Q0 diagonalizing X1.
We denote Q⊤

0 X1Q0 = diag(x1I2, x2I2, . . . , xnI2), and the [p, q]-block of Q⊤
0 X2Q0 by Cpq =

C(apq + ibpq) for p, q = 1, . . . , n. Define D1 = I2, and, for j = 2, . . . , n, define Dj to be

Dj = µ−1
j C1j if C1j ̸= O and Dj = I2 otherwise, where µj =

√
a21j + b21j . Then Dj is orthogonal

for j = 1, . . . , n.
Let Q′

1 = diag(D⊤
1 , D

⊤
2 , . . . , D

⊤
n ). Then Q1 = Q0Q

′
1 is orthogonal and C-compatible, and

Q⊤
1 X1Q1 = diag(x1I2, x2I2, . . . , xnI2) holds. Moreover, the [p, q]-block of Q⊤

1 X2Q1 is equal to
DpCpqD

⊤
q , and in particular, the [1, j]-block is equal to µjI2 if C1j ̸= O and to O otherwise for

every j = 2, . . . , n. Thus the statement holds.

(ii) Define Yh = Q⊤
1 XhQ1 for h = 1, 2. We will show that

⟨Y1, Y2⟩′ ⊆ In ⊗M2.

Indeed, let A be a matrix such that YhA = AYh for h = 1, 2. Since A is commutative with
Y1, the matrix A has the form of A = diag(A1, A2, . . . , An), where Aj ’s are matrices of order
two. This is because xp ̸= xq holds for distinct p, q by the genericity of X1. Moreover, since
A is commutative with Y2, comparing the [1, j]-blocks of Y1A and AY1 leads to µjA1 = Ajµj

for j = 2, . . . , n, and hence A1 = Aj holds since µj ̸= 0. Hence A is contained in In ⊗ M2.
Therefore, since (In ⊗M2)

′ = Mn ⊗ I2 by Lemma 2.2, it holds that ⟨Y1, Y2⟩ ⊇ Mn ⊗ I2.

Subcase: n = 2

We first discuss the case of C2. The following lemma asserts that C2 cannot be generated with
any two symmetric matrices.

Lemma 3.7. Let X1, X2 be two symmetric matrices in C2. Then it holds that ⟨X1, X2⟩ ⊊ C2.
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Proof. By Lemma 3.6 (i), there exists a C-compatible orthogonal matrix Q1 satisfying (a) and
(b). Then Yh = Q⊤

1 XhQ1 for h = 1, 2 have the forms of

Y1 =

(
x1I2 O
O y1I2

)
and Y2 =

(
x2I2 µI2
µI2 y2I2

)
(3)

for some real numbers xj , yj (j = 1, 2) and µ. This means that ⟨Y1, Y2⟩ ⊆ M2 ⊗ I2 ⊊ C2. Thus
⟨X1, X2⟩ ⊊ C2 holds.

On the other hand, if we have three symmetric matrices with some condition, they generate
C2.

Lemma 3.8. Let X1, X2, X3 be three symmetric matrices in C2. If X1 is generic and there
exists a C-compatible orthogonal matrix Q1 satisfying (a), (b), and (c) in Lemma 3.6 with an
additional condition (d) (Q⊤

1 X3Q1)1,4 ̸= 0, then it holds that ⟨X1, X2, X3⟩ = C2.

Proof. Define Yh = Q⊤
1 XhQ1 for h = 1, 2, 3. Then Y1 and Y2 take the forms of (3), and Y3 has

the form of

Y3 =

(
x3I2 C(a+ ib)

C(a+ ib)⊤ y3I2

)
.

By (d), b ̸= 0 holds. We will show that

⟨Y1, Y2, Y3⟩′ ⊆ I2 ⊗ C1.

To see this, let A be a matrix such that YhA = AYh for h = 1, 2, 3. Since A ∈ ⟨Y1, Y2⟩′, Lemma
3.6 (ii) implies that A ∈ (M2 ⊗ I2)

′ = I2 ⊗ M2, that is, A = I2 ⊗ A1 for some matrix A1 of
order two. Moreover, since A is commutative with Y3, we have C(a+ ib)A1 = A1C(a+ ib). By
b ̸= 0, we obtain A1 ∈ C1. Hence A ∈ I2 ⊗ C1, and therefore, since (I2 ⊗ C1)′ = C2 by Lemma
2.2, we have ⟨Y1, Y2, Y3⟩ ⊇ C2. Thus ⟨X1, X2, X3⟩ ⊇ Q1C2Q⊤

1 = C2, and moreover the equality
holds since ⟨X1, X2, X3⟩ ⊆ C2 obviously holds.

It follows from Lemma 3.8 that almost all triples of symmetric matrices in C2 generate C2.

Lemma 3.9. Assume that span{In, A1, . . . , AN} = C2 ∩ S4. Then there exists an open dense
subset R ⊆ R3N such that for any (r1, r2, r3) ∈ R with ri ∈ RN for i = 1, 2, 3, it holds that
⟨A(r1), A(r2), A(r3)⟩ = C2.

Proof. Let (r1, r2, r3) ∈ R3N with ri ∈ RN for i = 1, 2, 3, and denote Xi = A(ri). Suppose that
the condition of Lemma 3.8 is satisfied, that is, X1 is generic and there exists a C-compatible
orthogonal matrix Q1 satisfying (a), (b), (c) in Lemma 3.6, and (d) (Q⊤

1 X3Q1)1,4 ̸= 0. Then
it follows from Lemma 3.8 that ⟨X1, X2, X3⟩ = C2. By Lemma 3.2, such Q1 exists for any
parameter value (r1, r2, r3) in some open dense subset R of R3N . Thus the statement holds.

In a similar way to Lemma 3.4, A(r1), A(r2), and A(r3) generate C2 with probability one
if r1, r2, and r3 are chosen at random from normalized vectors. Indeed, if r1 is chosen at
random, then A(r1) is generic for almost all values of r1 by Lemma 3.2. Under this condition,
a C-compatible orthogonal matrix Q1 with the two conditions (a) and (b) also satisfies (c) for
almost all values of r2, and, in addition, Q1 satisfies (Q⊤

1 X3Q1)1,4 ̸= 0 for almost all values of
r3. Thus A(r1), A(r2), and A(r3) generate C2 for almost all values of (r1, r2, r3). We remark
that we can apply a similar argument for all the other cases in the rest of this section.
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Subcase: n ≥ 3

We next discuss the case where n ≥ 3. The following lemmas correspond to Lemmas 3.8 and
3.9 for n = 2.

Lemma 3.10. Let X1, X2 be two symmetric matrices in Cn with n ≥ 3. If there exists a
C-compatible orthogonal matrix Q1 satisfying (a), (b), (c) in Lemma 3.6 with an additional
condition (d) (Q⊤

1 X2Q1)3,6 ̸= 0, then it holds that ⟨X1, X2⟩ = Cn.

Proof. Define Yh = Q⊤
1 XhQ1 for h = 1, 2. We will show that

⟨Y1, Y2⟩′ ⊆ In ⊗ C1.

Let A be a matrix such that YhA = AYh for h = 1, 2. By Lemma 3.6 (ii), A = In ⊗A1 for some
matrix A1 of order two. Let C = (Y2)[2,3] ∈ C1. Since A is commutative with Y2, comparing
the [2, 3]-blocks of Y2A and AY2 leads to CA1 = A1C. Since the off-diagonal entries of C are
nonzero by (d), we obtain A1 ∈ C1. Therefore, A is contained in In ⊗ C1. Since (In ⊗ C1)′ = Cn
by Lemma 2.2, ⟨Y1, Y2⟩ ⊇ Cn holds. Thus ⟨X1, X2⟩ ⊇ Q1CnQ⊤

1 = Cn, and the equality holds
since ⟨X1, X2⟩ ⊆ Cn.

Lemma 3.11. Assume that span{In, A1, . . . , AN} = Cn ∩ S2n with n ≥ 3. Then there exists an
open dense subset R ⊆ R2N such that for any (r1, r2) ∈ R with ri ∈ RN for i = 1, 2, it holds
that ⟨A(r1), A(r2)⟩ = Cn.

Proof. This follows in a similar way to the proof of Lemma 3.9.

3.4 Case of Hn

In this section, we discuss the number of symmetric matrices to generate the irreducible matrix
∗-algebra Hn. The outline of this section is essentially similar to, but more complex than, the
case of Cn.

We say that an orthogonal matrix P is H-compatible if P = H(U) for some quaternion
unitary matrix U ; recall that a matrix U over the quaternion field H is unitary if U∗U = I,
where U∗ denotes the conjugate transpose of U with respect to H, i.e., the (q, p)-entry of U∗ is
a− ib− jc−kd if the (p, q)-entry of U is a+ ib+ jc+kd. Note that an H-compatible orthogonal
matrix P preserves the form of a matrix X in Hn, that is, P

⊤HnP = Hn. In a similar way to
the case of Cn, we have the following lemma.

Lemma 3.12. For a symmetric matrix X in Hn, there exists an H-compatible orthogonal matrix
P that diagonalizes X.

Proof. Since X ∈ Hn is symmetric, we have X = H(Y ) for some quaternion Hermitian matrix
Y ∈ Hn×n, where Y being Hermitian means Y ∗ = Y . There exists a quaternion unitary matrix
U such that U∗Y U is a diagonal matrix whose diagonal entries are real. Then P = H(U) is
orthogonal and P⊤XP = H(U∗)H(Y )H(U) = H(U∗Y U), which is a diagonal matrix.

For A ∈ Hn and B ∈ Hn×n with H(B) = A, the [p, q]-block of A, denoted by A[p,q], is the
matrix H(Bpq) of order four for 1 ≤ p, q ≤ n, where Bpq is the (p, q)-entry of B.

By analogy with Lemma 3.6, we have the following lemma, which follows from the fact that
for any nonzero matrix H(a+ib+jc+kd) ∈ H1, the matrix µ−1H(a+ib+jc+kd) is orthogonal,
where µ =

√
a2 + b2 + c2 + d2.

Lemma 3.13. Let X1, X2 be two symmetric matrices in Hn. Then the following two statements
hold.
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(i) There exists an H-compatible orthogonal matrix Q1 such that (a) it diagonalizes X1 and
(b) (Q⊤

1 X2Q1)[1,h] = µhI4 for some µh ∈ R for every h = 2, . . . , n.

(ii) If X1 is generic and there exists an H-compatible orthogonal matrix Q1 satisfying (a), (b),
and (c) µh ̸= 0 for every h = 2, . . . , n, then it holds that Q⊤

1 ⟨X1, X2⟩Q1 ⊇ Mn ⊗ I4.

We also make the following observations needed later.

Lemma 3.14. For a matrix H1 in H1, there exists an H-compatible orthogonal matrix P such
that

P⊤H1P =

(
aI2 −νI2
νI2 aI2

)
(4)

for some real numbers a and ν, which implies that P⊤⟨H1⟩P ⊆ C1 ⊗ I2.

Proof. We denote H1 = H(a+ ib+ jc+ kd) for some real numbers a, b, c, and d. Note that H1

has the form of

H1 =

(
C(a+ ib) C(−c− id)
C(c− id) C(a− ib)

)
.

We may assume that b ̸= 0 or d ̸= 0, since otherwise H1 itself has the form of (4). Without
loss of generality, suppose that d ̸= 0, because a similar argument holds for the case of b ̸= 0 by
symmetry. For an H-compatible orthogonal matrix

P =

(
I2

τ−1C(c− id)

)1
ν−1C(τ − ib)

1

 ,

where τ =
√
c2 + d2 and ν =

√
b2 + c2 + d2, we have

P⊤H1P =

(
aI2 −νI2
νI2 aI2

)
.

Thus the statement holds.

Lemma 3.15. Let H1,H2 be two matrices in H1. If (d) there exists an H-compatible orthogonal
matrix P satisfying (4), where ν ̸= 0, such that all the off-diagonal entries in P⊤H2P are
nonzero, then it holds that

⟨H1,H2⟩ = H1.

Proof. Define Gh = P⊤HhP for h = 1, 2. We will show that

⟨G1, G2⟩′ ⊆ W.

To see this, let A be a matrix in ⟨G1, G2⟩′. Since G1A = AG1 and ν ̸= 0, the matrix A has the
form of

A =

(
B1 −B2

B2 B1

)
for some matrices B1, B2 of order two. Moreover, since A is commutative with G2 and all the
off-diagonal entries of G2 are nonzero, we have A ∈ W, and hence ⟨G1, G2⟩′ ⊆ W. Therefore,
⟨G1, G2⟩ ⊇ (W)′ = H1 by Lemma 2.2. Hence ⟨H1,H2⟩ = P ⟨G1, G2⟩P⊤ ⊇ H1, which proves the
statement since ⟨H1,H2⟩ ⊆ H1.
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Subcase: n = 2

We first discuss the case where n = 2.

Lemma 3.16. Let X1, X2, X3 be three symmetric matrices in H2. Then ⟨X1, X2, X3⟩ ⊊ H2

holds.

Proof. By Lemma 3.13 (i), there exists an H-compatible orthogonal matrix Q1 satisfying (a)
and (b). Then Yh = Q⊤

1 XhQ1 for h = 1, 2 have the forms of

Y1 =

(
x1I4 O
O y1I4

)
and Y2 =

(
x2I4 µI4
µI4 y2I4

)
for some real numbers xh, yh (h = 1, 2) and µ. This means that ⟨Y1, Y2⟩ ⊆ M2 ⊗ I4.

Let Y3 = Q⊤
1 X3Q1 have the form of

Y3 =

(
x3I4 H3

H⊤
3 y3I4

)
,

where H3 ∈ H1. It follows from Lemma 3.14 that there exists an H-compatible orthogonal
matrix P such that P⊤H3P = C ⊗ I2 for some C = C(α+ iβ) ∈ C1. Letting Q2 = diag(P, P ),
we see that Q⊤

2 YhQ2 = Yh for h = 1, 2 and

Q⊤
2 Y3Q2 =


x3I2 O αI2 −βI2
O x3I2 βI2 αI2
αI2 βI2 y3I2 O
−βI2 αI2 O y3I2

 .

This means that Q⊤
2 ⟨Y1, Y2, Y3⟩Q2 ⊆ C2 ⊗ I2 ⊊ H2. Hence ⟨X1, X2, X3⟩ ⊊ Q1Q2H2Q

⊤
2 Q

⊤
1 = H2

holds.

Lemma 3.17. Let X1, X2, X3, X4 be four symmetric matrices in H2. Assume that X1 is generic
and that there exists an H-compatible orthogonal matrix Q1 satisfying (a), (b), and (c) in Lemma
3.13 with an additional condition that (d) in Lemma 3.15 holds for H1 = (Q⊤

1 X3Q1)[1,2] and

H2 = (Q⊤
1 X4Q1)[1,2]. Then it holds that ⟨X1, X2, X3, X4⟩ = H2.

Proof. We denote Yh = Q⊤
1 XhQ1 for h = 1, . . . , 4. By Lemma 2.2, it suffices to show that

⟨X1, X2, X3, X4⟩′ ⊆ (H2)
′ = I2 ⊗W.

To see this, let A be a matrix such that YhA = AYh for h = 1, . . . , 4. By Lemma 3.13 (ii),
A = I2 ⊗A1 for some A1 of order four. Moreover, since A is commutative with both Y3 and Y4,
the matrix A1 is commutative with both H1 = (Y3)[1,2] and H2 = (Y4)[1,2]. Since the pair of H1

and H2 satisfy the condition (d) of Lemma 3.15, we have A1 ∈ ⟨H1,H2⟩′ = H′
1 = W. Therefore,

we obtain ⟨Y1, Y2, Y3, Y4⟩′ ⊆ I2 ⊗ W. This implies that ⟨X1, X2, X3, X4⟩′ ⊆ I2 ⊗ W, and thus
⟨X1, X2, X3, X4⟩ = H2 holds.

Lemma 3.17, together with Lemma 3.2, implies the following lemma, which corresponds to
Lemma 3.9 for C2.

Lemma 3.18. Assume that span{In, A1, . . . , AN} = H2 ∩ S8. Then there exists an open dense
subset R ⊆ R4N such that for any (r1, r2, r3, r4) ∈ R with ri ∈ RN for i = 1, . . . , 4, it holds that
⟨A(r1), A(r2), A(r3), A(r4)⟩ = H2.
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Subcase: n = 3

We next discuss the case where n = 3.

Lemma 3.19. Let X1, X2 be two symmetric matrices in H3. Then we have ⟨X1, X2⟩ ⊊ H3.

Proof. By Lemma 3.13 (i), there exists an H-compatible orthogonal matrix Q1 satisfying (a)
and (b). Let H = (Q⊤

1 X2Q1)[2,3]. By Lemma 3.14, there exists an H-compatible orthogonal

matrix P such that P⊤HP = C ⊗ I2 for some C ∈ C1. Then

Q2 = Q1

P O O
O P O
O O P


is H-compatible and orthogonal, and we have

Q⊤
2 X1Q2 = X1 and Q⊤

2 X2Q2 =

x2I4 µ1I4 µ2I4
µ1I4 y2I4 C ⊗ I2
µ2I4 C⊤ ⊗ I2 z2I4


for some x2, y2, z2, µ1, µ2 ∈ R. This means that Q⊤

2 ⟨X1, X2⟩Q2 ⊆ C3 ⊗ I2 ⊊ H3. Hence
⟨X1, X2⟩ ⊊ H3 holds.

Lemma 3.20. Let X1, X2, X3 be three symmetric matrices in H3. Assume that X1 is generic
and that there exists an H-compatible orthogonal matrix Q1 satisfying (a), (b), and (c) in Lemma
3.13 with an additional condition that (d) in Lemma 3.15 holds for H1 = (Q⊤

1 X2Q1)[2,3] and

H2 = (Q⊤
1 X3Q1)[2,3]. Then it holds that ⟨X1, X2, X3⟩ = H3.

Proof. Define Yh = Q⊤
1 XhQ1 for h = 1, 2, 3. Let A be a matrix such that YhA = AYh for

h = 1, 2, 3. Since A ∈ ⟨Y1, Y2⟩′, Lemma 3.13 (ii) implies A = I3 ⊗ A1, where A1 is a matrix
of order four. Since A is commutative with both of Y2 and Y3, we see that A1H1 = H1A1 and
A1H2 = H2A1 by comparing the [2, 3]-blocks. Since the pair of H1 and H2 satisfy the condition
(d) of Lemma 3.15, we have A1 ∈ W. Thus A ∈ I3 ⊗ W. Therefore, ⟨Y1, Y2, Y3⟩′ ⊆ I3 ⊗ W
holds, and hence ⟨Y1, Y2, Y3⟩ ⊇ H3 by Lemma 2.2. Thus the statement holds by ⟨Y1, Y2, Y3⟩ =
Q⊤

1 ⟨X1, X2, X3⟩Q1 and ⟨Y1, Y2, Y3⟩ ⊆ H3.

Lemma 3.21. Assume that span{In, A1, . . . , AN} = H3∩S12. Then there exists an open dense
subset R ⊆ R3N such that for any (r1, r2, r3) ∈ R with ri ∈ RN for i = 1, 2, 3, it holds that
⟨A(r1), A(r2), A(r3)⟩ = H3.

Subcase: n ≥ 4

The case where n ≥ 4 is obtained in a similar way.

Lemma 3.22. Let X1, X2 be two symmetric matrices in Hn with n ≥ 4. Assume that X1 is
generic and that there exists an H-compatible orthogonal matrix Q1 satisfying (a), (b), and (c) in
Lemma 3.13 with an additional condition that (d) in Lemma 3.15 holds for H1 = (Q⊤

1 X2Q1)[2,3]
and H2 = (Q⊤

1 X2Q1)[2,4]. Then it holds that ⟨X1, X2⟩ = Hn.

Proof. Define Yh = Q⊤
1 XhQ1 for h = 1, 2. Let A be a matrix such that YhA = AYh for h = 1, 2.

By Lemma 3.13 (ii), A = In ⊗ A1 for some matrix A1 of order four. By comparing the [2, 3]-
blocks and [2, 4]-blocks of Y2A and AY2, respectively, we have H1A1 = A1H1 and H2A1 = A1H2.
Since the pair of H1 and H2 satisfy the condition (d) of Lemma 3.15, we obtain A1 ∈ W. This
means that A ∈ In⊗W, and hence ⟨Y1, Y2⟩′ ⊆ In⊗W. Thus ⟨X1, X2⟩ ⊇ Hn by Lemma 2.2.
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Lemma 3.23. Assume that span{In, A1, . . . , AN} = Hn ∩ S4n with n ≥ 4. Then there exists
an open dense subset R ⊆ R2N such that for any (r1, r2) ∈ R with ri ∈ RN for i = 1, 2, it holds
that ⟨A(r1), A(r2)⟩ = Hn.

3.5 Proof of Theorem 3.1

We can prove Theorem 3.1 by combining Theorem 2.1 with Lemma 3.4 for Mn, Lemmas 3.9
and 3.11 for Cn, and Lemmas 3.18, 3.21, and 3.23 for Hn. It follows from Theorem 2.1 that
there exists an orthogonal matrix P such that

P⊤AhP =
ℓ⊕

j=1

(Imj ⊗Bh
j )

with some Bh
j ∈ Tj for j = 1, . . . , ℓ and h = 1, . . . , N . Since A1, . . . , AN are symmetric matrices,

Tj is neither C1 nor H1.
Define A′

h = P⊤AhP . For (r1, r2, r3, r4) ∈ R4N with ri ∈ RN for i = 1, . . . , 4, let A′(ri) =
P⊤A(ri)P . Note that the matrix ∗-algebra generated by A′(r1), . . . , A

′(r4) is the direct sum
of the matrix ∗-algebras generated by the block matrices of A′(r1), . . . , A

′(r4). Therefore, it
follows that there exists an open dense subset R ⊆ R4N such that for any (r1, r2, r3, r4) ∈ R
with ri ∈ RN for i = 1, . . . , 4, we have

⟨A′(r1), A
′(r2), A

′(r3), A
′(r4)⟩ =

ℓ⊕
j=1

(Imj ⊗ Tj).

This implies that
⟨A(r1), A(r2), A(r3), A(r4)⟩ = T .

Thus the statement of Theorem 3.1 is proved.

4 Concluding Remarks

Remark 4.1. It follows from Theorem 3.1 that a matrix ∗-algebra having no C1 and H1 as
irreducible components can be generated by symmetric matrices. Thus the following corollary
holds.

Corollary 4.1. A matrix ∗-algebra T is generated by some symmetric matrices if and only if
the decomposition of T in Theorem 2.1 has neither C1 nor H1 as an irreducible component Tj.

Remark 4.2. For an algebra, the one and a half generation property is the property that every
non-zero element can be completed to a pair of elements that generate the algebra. It is known
that this property holds for simple Lie algebras over the complex field [9] and a certain class
of an algebraically closed field of finite characteristic [3]. The proof of Theorem 3.1 implies
that matrix ∗-algebras over the real field satisfy such kind of property, i.e., every symmetric
matrix (which is not a scalar multiple of the identity matrix) can be completed to a tuple of four
symmetric matrices that generate the matrix ∗-algebra. Indeed, assume that a matrix ∗-algebra
is Mn (the other cases follow in a similar way). Then, for a given symmetric matrix X2, we can
take a generic symmetric matrix X1 diagonalized by an orthogonal matrix satisfying (a) and
(b) in Lemma 3.3.

Remark 4.3. The proof of Theorem 3.1 can be adopted to matrix ∗-algebras over the complex
field C. It is known that a matrix ∗-algebra over C can be decomposed into the direct sum of
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Im⊗Mp(C) for some m and p, where Mp(C) is the set of matrices of order p over the complex
field. See, e.g., [2, 5] for a detailed proof. Hence we only have to discuss the case of Mn(C).
Since the proof of Lemma 3.4 works even when we replace the transpose “⊤” by the complex
conjugate “∗” and “orthogonal” by “unitary,” we have the following theorem.

Theorem 4.2. Let T be a matrix ∗-algebra over the complex field, generated by Hermitian
matrices A1, . . . , AN . Assume that span{In, A1, . . . , AN} = T ∩ Sn(C), where Sn(C) is the set
of Hermitian matrices in Mn(C). Then there exists an open dense subset R ⊆ R2N such that
for any (r1, r2) ∈ R with ri ∈ RN for i = 1, 2, it holds that

⟨A(r1), A(r2)⟩ = T .
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