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Abstract

Recently, we proposed a general measurement theory for classical and quantum systems (i.e., “objective fuzzy measure-
ment theory”). In this paper, we propose “subjective fuzzy measurement theory”, which is characterized as the statistical
method of the objective fuzzy measurement theory. Our proposal of course has a lot of advantages. For example, we can
directly see “membership functions” (= “fuzzy sets”) in this theory. Therefore, we can propose the objective and the
subjective methods of membership functions. As one of the consequences, we assert the objective (i.e., individualistic)
aspect of Zadeh’s theory. Also, as a quantum application, we clarify Heisenberg’s uncertainty relation. © 1997 Elsevier
Science B.V.
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1. Introduction and fuzzy measurement theory

In this paper, we propose “subjective fuzzy measurement theory”, which is characterized as the statistical
method of “(objective) fuzzy measurement theory” (cf. [9]).

Our original motivation (i.e., the first purpose of this paper) is to clarify Heisenberg’s uncertainty relation.
Recently, in a series of our papers [6—8, 10], we investigated and proposed the mathematical representation of
Heisenberg’s uncertainty relation. Let 4; and 4, be physical quantities (i.e., self-adjoint operators) in a Hilbert
space V, in which a quantum system is formulated. The quartet [4, 45, U, ¢o] is called an approximate simul-
taneous measurement of Ay and 4,, if it satisfies the following conditions (i)—(iv): (i) U is a Hilbert space and
¢ is an element in U such that ||¢o||y = 1, (ii) the self-adjoint operators 4; and 4, in a tensor Hilbert space
V' ® U commute, (iii) (Y ® bo, A (Y ® d0))veu = (W, ArY)y (VY € Dom(A4y),the domain of Ay, k = 1,2),
(iv) Ay and 4; ® I commute (k=1,2)

Then, we have the following proposition (cf. [6]).

Proposition 1.1 (Heisenberg’s uncertainty relation). Let A, and A, be physical quantities in a Hilbert space
V. Then, the following statements (A) and (B) hold:
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(A) There exists an approximate simultaneous measurement [4,, 4, U, ¢o] of A, and A,. Furthermore,
Jor any positive ¢, we can take this [Ay, Ay, U, ¢o | such that

| (Ax — 4k @ DAY @ ¢0) ||rou

_ Jelldwlly  for all y € Dom(Ay)such that ||y|ly =1 (if k= 1),
e YAlly  for all € Dom(A4y)such that Wy =1 (@fk=2).

(B) However, for any approximate simultaneous measurement [A,, A, U, ¢o] of A\ and A, the following
inequality (Heisenberg’s uncertainty relation) holds:

(i =4 @ D)W ® ¢0) [lreu - || (A2 — 42 @ DY & do) |lreu
= (A1, oY)y — (Ao, 1Y)y |/2

Jor all v € Dom(A4,) N\ Dom(Ay) such that |||y = 1.
When A4, and A4 is a position quantity and a momentum quantity, respectively (i.e., AjAs — Ay A, = ih,h
is the Plank constant), the right-hand side of this inequality is of course equal to /2.

This is the mathematical representation of Heisenberg’s uncertainty relation. As an immediate consequence
of Proposition 1.1, we solved the paradox between Einstein-Podolsky—Rosen experiment and Heisenberg’s
uncertainty relation. Though this was immediately accepted by many physicists, we do not think that the
above Proposition 1.1 is the final version of Heisenberg’s uncertainty relation. That is because the meaning
of the quantities ||(4; — 4,QI)(Y ® do)llveu, & = 1,2, is not yet clear (though it may be considered as
“error”). Therefore, our first purpose is to answer the general question “What is a measurement error ?”. Of
course this should be answered for all measurements (i.e., classical and quantum measurements).

On the other hand, recently in [9], we proposed a foundation of measurements (i.e., “(objective) fuzzy
measurement theory”), which is characterized as a kind of generalization of Born’s quantum measurement
theory. Thus, this theory is a general measurement theory for classical and quantum systems. And furthermore,
we proposed the identification: “measurement” = “inference”. As one of the consequences, we showed that
the standard syllogism (i.e., 4 = B,B = C implies 4 = C) is true for classical systems. This is of course
quite important. That is because “symbolic logic” is merely a mathematical rule, and therefore, the justification
of the “symbolic logic” for this real world should be guaranteed by a certain principle. In fact, the standard
syllogism does not always hold for quantum systems. Also, in [9] we mentioned, as a short sketch, that other
“fuzzy theories in the wide sense” (i.e., “Zadeh’s fuzzy sets theory”, “Kolmogorov’s probability theory”,
“Bayesian statistics” and so on.) should be characterized as some aspects of fuzzy measurement theory. That
is because we consider that Born’s assertion (i.e., quantum theory) is most fundamental, and therefore others
are “methods” (or “mathematics”). Thus, the second purpose of this paper is to examine this sketch precisely.

The above first and second purposes are of course closely connected with each other. In order to characterize
“measurement error”, we must provide a lot of preparations in the fuzzy measurement theory. That is, we
must construct “subjective fuzzy measurement theory”. This construction is almost equal to examining the
above sketch. Therefore, we can also say that our main purpose of this paper is to propose “subjective fuzzy
measurement theory”.

In Section 1 and the next Section 2 we review the fuzzy measurement theory (proposed in [9]) and study
the objective (or, individualistic) aspect of this theory. In Sections 3 and 4 we propose “subjective fuzzy mea-
surement theory”, which is characterized as a “statistical” method of “(objective) fuzzy measurement theory”.
Thus, this subjective theory can always be interpreted from the objective point of view. Throughout these argu-
ments, we clarify the relation between “objective fuzzy measurement theory” (with C*-algebraic formulation)
and “subjective fuzzy measurement theory” (with W *-algebraic formulation). Also we define “measurement
error” in a quite general situation under the J7*-algebraic formulation. Compared to Kolmogorov’s probability
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theory, our proposal has a lot of advantages. Of course, its “objectivity” (i.e., “reality”) is most essential.
Also, for example, we can directly see “membership functions” (=“fuzzy sets”) in this theory. Therefore, in
Section 5 [resp. Section 6], we can introduce the subjective [resp. objective] method of membership func-
tions. And we show that these methods provide precise analysis to “fuzziness”. As one of the conclusions,
we formulate “Shannon’s entropy” and “Bayes’s postulate” in this subjective theory. Also, we can emphasize
the objective (or, individualistic) aspect of “Zadeh’s fuzzy sets theory”. Lastly, as a quantum application, in
Section 7 we clarify “measurement error” in Heisenberg’s uncertainty relation.

According to [9], we now introduce “(objective) fuzzy measurement theory”. In order to propose “subjective
fuzzy measurement theory” (in Sections 3 and 4), we must completely understand this objective theory.
This theory is formulated in terms of C*-algebras (cf.[15,9]). (In this paper we mainly devote ourselves to
commutative C*-algebras, so the deep knowledge of C*-algebras is not needed.) Let </ be a C*-algebra
and let .&/* be the dual Banach space of .. That is, «/* = {p : p is a continuous linear functional on
s/} with the norm || - ||z~ (i-e., ||p]|o= = sup{|p(T)|: ||T||xr<1}). The linear functional p(7') is sometimes
denoted by .«(p,T).s. Define the mixed-state class S™(=/*) such that S"(/*) = {p € &*: ||p|[or- = 1
and p=0 (ie., p(T*T)=0 for all T € /)}. A mixed state pP (i.e., pP € S (Z*)) is called a pure state if
it satisfies that “pP = Ap; + (1 — A)p, (for some p1,p; € S"(/*) and 0 < A < 1)” implies “pP = p; = p,”.
Define GP(/*) = {pP € G™(/*): pP is a pure state }. An element T (€ /) is called positive (and denoted
by 7>0) if there exists an element Tp(€ o) such that T = T;T,. Also, a positive element 7' is called a
projection if T = T? holds.

Remark 1.2. In general, a C*-algebra ./ has no identity element I, ie., T = IT = TI(VT € /). In this
case, we can easily construct the C*-algebra o/ with the identity element I as the C*-algebra generated by
{T+al: T €.o,0€C,ie., oisacomplex number} with the norm ||T +al|| 7= sup{||TS +aS||: [|S]l.s =
1}. Thus, it holds that .= {(p,T 4+ ol) ;= 4= {p, T) .y + &||p||ss~ for all p (€ /™) such that p=0.

Now we provide the elementary examples (i.e., Co(2), C(Q) and €(V')) of C*-algebras, which will be used
frequently in this paper. Thus, these examples should also be regarded as “notations”.

Example 1.3 (Co(Q) and €(V)). (i) Let Co(£2) be the algebra, under pointwise multiplication, of all complex
valued, continuous functions on a locally compact Hausdorff space € that vanish at infinity. Define the
norm ||f||cy@) = Maxeeo | f(w)], and f*(w) = f(w), ie., the complex conjugate. Then, o/ = Co(<2) is a
commutative C*-algebra, that is, f|f2 = f2/1 holds for any 11, f2(€ Co(£2)). If Q is compact, the Cp(£2) is
often denoted by C(£2). Here note that “Q is compact” < “Co(£2) has the identity /7. It is well known that
Co(Q)(= ) = C(QU {o0}), where QU {co} is the one point compactification of Q. Also, Gelfand theorem
says that any commutative C*-algebra .o/ can be identified with some Cy(£2).

(ii) Put B(V) = {T: T is a bounded linear operator from a Hilbert space ¥ into itself}. Define ||T|[p) =
sup{||T¥||y: ||W|lyr <1}, and (T T2)(Y) = T1(T2y) (Vi € V). And T* is-the adjoint operator of 7. This B(V)
is of course a non-commutative C*-algebra. Here note that €(V) = {T € B(V): T is a compact operator} is
a C*-subalgebra of B(V). It is clear that “the dimension of ¥ is finite” < “%(}) has the identity /7. Also

note that (V) ={T +al: T € 4(V),a € C} CB(V).

Example 1.4 (Continued from the above example). (i) It is well-known (cf. [17]) that Co(2)* = #(L2) and
SM(Co(Q)*) = M\(RQ). Here M(Q) = {p: u is a regular signed measure on Q}, and /4 1(Q) = {u €
AM(Q): u is non-negative and u(Q) = 1}. Also we see that SP(Co(Q)*) = M1 (Q) = {00, € M +1(Q) :
wy € Q}, where J,, is a point measure at wy, .., 0o, (f) = [, f(@)0w,(dw) = f(wo)(Vf € Co(£2) ).

(i) When . = 4(V), we see that €(V)* = Tr(V), the class of trace operators, and S (G (V)*) =
Tr (V) = {p € Te(V): p=0,]|p||mry = 1}. Also, it is well known that “p € S (4(V)*)” « “there exists
v €¢V(Wl|y = 1) such that p = |y)([”, where the [)(|(€ B(V)) is defined by ([Y¥){Y)¢ = (¥, ¢), ¥ for
all p € V. '
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The concept of “fuzzy observable” was first introduced in quantum mechanics for a W *-algebra B(V)
(cf. Definition 4.2 in Section 4) by Davies [2]. Thus, the following definition (for fuzzy systems) is the
C*-algebraic version of his idea.

Definition 1.5 (C*-observable). Let </ be a C*-algebra. A C*-observable (or, continuous observable, fuzzy
observable, or in short, observable) O = (X, 2(X),F) in .o is defined such that it satisfies that

(1) a label set X is a countable (or finite) set, and 2o(X)={ECX: & or X \ £ is finite},

(ii) for every £ € 2o(X), F(Z) is a positive element in </ (or precisely, in .o, cf. Remark 1.2) such
that 7()) = 0 and F(X) =1, where 0 is the O-element and / is the identity element, and

(iii) for any countable decomposition {Z},5,,...,5,,...} of &, (&, 5, € 2y(X)), it holds that p(F(5)) =
limy o0 P( ey F(En)) (¥p € ).

Also, if F(E) is a projection for every & (€ 2y(X)), a C*-observable (X,2y(X),F) is called a crisp
C*-observable.

Remark 1.6. The above condition (i) in Definition 1.5 may be weaken as “(i)’ 2y(X) is a subfield of the
power set Z(X) = {Z: ZCX}”. Even under this weak condition (i)', we can, by Hopf extension theorem
(cf. [17]), get the probability measure space (X, Zo(X), p™(F(-))) for any p™ € S™(/*), where Zo(X) is
the smallest o-field that contains 2((X). However, in this paper we assume the condition (1) in Definition
1.5. In particular, if X is finite, then 2¢(X) = 2(X) clearly holds. We believe that, without loss of generality
(or essence), we can assume that X is finite. Therefore, most arguments in this paper are treated under the
condition that X is finite.

Let (X,2(X),F) be a C*-observable in a C*-algebra .«7. Let g be a “measurable” map from X into Y
(ie., gHI) € Po(X) for all I € Z0(Y)). Then, we can define the C*-observable (Y, Z2(Y),G) in o/ such
that G(I') = F(g~'(I"))(VI" € 2y(Y)). This C*-observable (Y, 20(Y),G)(= (Y,20(Y),F(g~'(+)))) is called
the image observable of g for (X, 2y(X),F).

Example 1.7 (Fuzzy numbers observable). Let A be any positive number. Define the membership function
(i.e., triangle fuzzy number) 2 4(€ Co(R), where R is the real line with the usual topology) such that

1 —w/4, 0<w<4,
Z,(w)=1{ w/d+1, —4<w<0,
0 otherwise.

Put Z,={4dk: k € Z={0,+1,%2,...}}. Define the C*-observable Oy, =(Z4,Po(Zy), C(A,)) in the commutative
C*-algebra Cy(R) such that Cé(a)):zxeg Z (0 —x)VE€Py(Zy),Yw € R). This C*-observable is called a
fuzzy numbers observable in Co(R). Putting 4 = 1, we frequently use the fuzzy numbers observable O, =
(Z,20(Z),((.y) in this paper.

Remark 1.8 (Fuzziness). It should be noted that Co(R) (or precisely, Co(R)) has only two projections, i.e.,
two constant functions 0 and 1. Thus, the concept “crisp observable” has no generality in Co(R). Therefore,
the (objective) fuzzy measurement theory cannot start from “crispness” but “fuzziness”. That is, “fuzziness” is
essential for this theory. As seen later (in Section 4), “crispness” plays an important role in the W *-algebraic
formulation of (subjective) fuzzy measurement theory.

Remark 1.9 (Fuzzy sets). Let O = (X = {x1,x2,...},Zo(X), f(.)) be a C*-observable in a commutative C*-
algebra Co(£2). Note that the C*-observable O can be identified with D = { f (x}> f {x}s---- That is because
any fz(w) is obtained by fz(w) = - f (x}(@). Also, membership functions f (x,}’s clearly satisfy that
0<f{x3(@w)<1 and Z;ilf{xj}(a)) = 1(Vo € Q). Therefore, if we are allowed to use the word “fuzzy

sets”, the D is regarded as the “decomposition” of Q by fuzzy sets f {x,}’s- That is, the C*-observable O
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is equivalent to the “fuzzy decomposition” D of Q. Though this view-point is interesting (and we often use
“fuzzy sets”), our fuzzy theory is formulated by C*-algebras and not “sets theory”.

Now we can propose “(objective) fuzzy measurement theory” (cf. [9]). As the most basic requirement for
a fuzzy theoretical description of a fuzzy system we have the following axiom:

Axiom 0 (Fuzzy system, state, observable, measurement, measured value, true value). With any fuzzy sys-
tem (or in short, system) S, a C*-algebra </ can be associated in which the fuzzy measurement theory of
that system can be formulated.

(i) A state © of the fuzzy system S is represented by a pure state pP (€ GP(L™*)). And an observable
Ox(with a label set X) is represented by a C*-observable O = (X,2y(X),F) in the C*-algebra <Z. Also,
the measurement M (Ox,Se), i.e., the measurement of the observable Uy for the system S with the state
O, is represented by M, (0O, Sy») in the C*-algebra /.

(ii) We can get a measured value x (€X) by the measurement M (Ux,Se).

(iii) Let Oy be an observable, which is represented by the image observable (Y,2y(Y),G) of g: X — Y for
0 = (X, Py(X),F). (Here Oy is also called an image observable of g for Ox.) When we get the measured
value x by the measurement M (0Ox,Se), we consider that the value (or, true value) of Oy (for the system
S with the state @) is equal to g(x).

Another axiom presented below is analogous to (or, a kind of generalizations of) Born’s probabilistic
interpretation of quantum mechanics.

Axiom 1 (Measurement axiom). Consider a measurement M (Ox,Se), which is represented by M4(O =
(X, 20(X),F),Sp) in a C*-algebra <f. Assume that x (€ X) is the measured value obtained by the mea-
surement M (Ox,Se). Then, it holds that

(%) the probability that the x (€X) belongs to a set E (€ Po(X)) is given by pP(F(E))= o+ (p°, F(E)),,
or precisely, = 4+ (p?, F(E)).7).
(For the reason that we use the word “probability”, we will provide the precise arguments in Section 2.)

The (objective) fuzzy measurement theory is completely characterized by the two axioms (i.e., Axioms 0
and 1) described above. From now on, we often identify .#(0x,Se) with M,(0O, S, ). We hope that the
reader does not confuse .#(0x,Se) with M (O, Sy ). It is obvious that we can take an actual measurement
M(Ox,Se) even if we do not know its mathematical representation M./(O, Sy ).

Remark 1.10 (Commutative fuzzy theory). When o/ = €(V), Axiom 1 is just Born’s axiom in quantum
mechanics. (Also, see Remark 4.6.) We introduce the following classification in fuzzy measurement theory:
commutative fuzzy theory (for classical systems),
fuzzy measurement theory{ .
non-commutative fuzzy theory (for quantum systems),
where a C*-algebra ./ is commutative or non-commutative. In this paper, we mainly devote ourselves to
commutative fuzzy theory. The relation between “classical” and “quantum” is not simple in general. There
may be an opinion that a principle should not exist for classical systems. For example, Newtonian equation
is not a principle because it should be derived from Schrédinger equation. Similarly, Axiom 1 for Co(£2)
should be derived from Axiom 1 for €(V). (We also consider that it may be possible under some restricted
conditions.) And therefore, some may consider that commutative fuzzy theory is not needed. Though this
opinion has a reason in some sense, we consider that a classical fuzzy system should start from Axiom 1 for
a commutative C*-algebra Co(Q). Therefore, we may agree to the opinion that the commutative fuzzy theory
is not “ultimately objective”. '
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The following example is one of typical classical measurements. Though it is quite simple, we believe
that it does not miss the essences of classical measurements. In this paper, we will state several variants of
this example (i.e., Remark 3.9, Examples 3.11, 4.9, 4.13 and 5.1). Also, for interesting examples of quantum
measurements, see [5].

Example 1.11 (The measurement of pencil’s length). We investigate the measurement of the length of a pen-
cil. Let S be a system of a pencil with the length /o (cm), for example, Iy = 10v/2 = 14.14213 ... Therefore,
we assume that the system § is formulated in the commutative C*-algebra ./ = Co(R). Also, the pure state
of the system S is represented by the point measure 6;, (€ .#%,(R)) on {lo}. Let Oy = (Z,Py(Z), {(y) be
the fuzzy numbers observable in Co(R) (cf. Example 1.7). Now consider the measurement MCO(R)(O%S(S,O)
in Cy(R), that is, the measurement of the fuzzy numbers observable O for the system S with the pure state
01,- Here we see, by Axiom 1, that
() the probability that the measured value z (€Z) belongs to & (€ 2y(Z)) is given by

w0 L = | L(@)(dw) = L) (L1)
A simple calculation shows that, for any x(€ Z = {0, 41, 42, == P
0.85786--- if x = 14,
(1L.1) = {n(h) = {0.14213.-- if x = 15, (1.2)
0 otherwise.

The measurement . (0, Sg) (or, its mathematical representation M., (O, Spr)) is sometimes called a simul-
taneous measurement if Oy (or, its mathematical representation Q) is a quasi-product C*-observable, i.c., the
label set X is considered as the product set X ;¢ Xi(= 1%, X)) X € Xk € K = {1,2,...,|K|}}).
For simplicity, consider a quasi-product C*-observable O, = (X; X X2, Po(X1 X X3),F) in a C*-algebra .o7.
Put Fl(El) = F(El X XQ)(VE] € yo(Xl)) and Fz(Ez) = F(X1 X Ez)(VEQ S e@O(AXVQ)) For each k = 1,2,

the C*-observable Oy = (X, Po(Xi),Fy) in <o is called the kth marginal C*-observable of Oy,. Also, we
sometimes denote Oy, by O X °? 0, or (X; X Xp, Zo(X; x %), F; X" Fy), that is, F = F; X" F,.

Similarly, the simultaneous measurement M./(012,8») (= M4(0; X O 0,,S,0)) is sometimes denoted by

O
X k=1,2 M&'/(Oka SpP )

Remark 1.12 (Quasi-product observable in commutative fuzzy theory). Let Oy = (Xi, Po(Xi), f é‘.)), k=12,

be C*-observables in a commutative C*-algebra Cy(2). Then, the quasi-product observable O,
(= 0, X% 0,) = X X X, Po(Xy X X), f1 X O £2 with the marginal observables O, and O, al-

ways exists. For example, it suffices to put (f! X 12 )z xz,(0) = fL (w): [} (w). Though the uniqueness
1s not guaranteed in general, the following inequalities hold (cf. [9]):

O,

max{0, fz, () + f2,(w) - 1} < <f1 X f2> (@) < min{fz (o), /Z,(0)}

(VEr € Po(Xe),k = 1,2, Yo € Q). (1.3)

This implies that, if at least one of O; and O, is crisp, the quasi-product observable Oj, is uniquely de-
termined. (This will be again studied in the general situation; cf. Theorem 4.11.) When the uniqueness is

guaranteed, the quasi-product observable O; X Oz O, is sometimes denoted by O x"0,.
Consider a fuzzy system S formulated in a C*-algebra .«/;. We sometimes hope to investigate the fuzzy
system S in another C*-algebra .«/,. Let @ : &/, — &/, be a C*-homomorphism (i.e., @ is a continuous
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linear map such that &(7177) = D(T)I(T>) and O(T*) = &(T)*). Note that @ is also regarded as the C*-

homomorphism from .«/| into of,. And let @* : o5 — 7t (and so, 9*: 52/2 — /1) be the dual operator of
@. Let O = (X, 2¢(X),F) be a C*-observable in Lszfl and let p7 € CP(/5). Then we easily see that PO,
(X, Po(X), PF}) be a C*-observable in ./, and ®*ph € SP(/ ). Also it is clear that W/*<@*p2,F1( )) o

<p2, OF|(8)),;, for all £ € Po(X). Therefore, we can assume the following 1dent1ﬁcat10n

H I

M., (01 = (X, 2o(X ), F1), Sp+ pp) = M, (P01 = (X, Zo(X), PF1), Spp)- (1.4)

Remark 1.13. A fuzzy system S always has its state pP (€ GSP(o/*)). Thus, it should be denoted by Sp.
However, in some cases we do not know the state pP of the fuzzy system S. For example, if we know the
pure state §;, in Example 1.11, we may not need to measure the length of the pencil. Hence, we sometimes
denote Sy [resp. M,(O,S)] by S or Sy [resp. M(O,S) or My(O,S())]- Under the assumption that we
do not know the pure state pP, M (O, S(,)) is sometimes identified with O.

Remark 1.14. In [9], we proposed the identification: “measurement” = “inference”. And, as a consequence of
Axioms 0 and 1, we proposed Axioms 1’ (simultaneous measurement) and Axiom 1” (inference). Though
these are quite important, we omit them. We will state them (Methods 2’ and 2”) in the J#*-algebraic
formulation in Section 4.

2. Measurement of a frequency probability

The meaning of “probability” in Axiom 1 seems to be a matter of common knowledge in quantum me-
chanics. However, we, for completeness, discuss about this “probability”, i.e., its objective (or, individualistic)
aspect. The arguments in this section will also be useful for the investigation in the next section, Section 3.

For each k = 1,2,...,n, consider a measurement M., (O = (X, @(X),Fk),Spi) in a C*-algebra <7,
where we assume, for simplicity, that X is finite (so Z(X) = W’(X )). Put o = ®Z:1 o/, 1.e., the tensor
product C*-algebra of {/4: k = 1,2,...,n}. And so, o i </;. Though the general theory of
tensor product C*-algebras (X)k A 1s not easy (cf. [15]), we only use the following properties (i)—(iil):
AL - . ®T, s for any Tkeﬂk,k =12,...,n, (1)) py@®p2® - Qpn € Gp(% ) for any

pr €SP(LF)k =1,2,...,m, (iil) (11 ®P2® - @P)1 QT2 Q- ®Ty) = HZ 1 pi(Ty) for any pp € </}
and any Ty € Ay, k =1, 2 ,n. (If the reader concerns himself to only commutatwe cases, it is sufficient to
know the fact that );_, Co(Qk) = €yl Xk 1 Q) and @;_, M (i) = M( Xk 1 Q). Therefore, for example,
the above (iii) implies the elementary property of product measure (Fubini’s theorem), i.e., fQ st fi(wy) -
f2(02)(p1 @ p2)(dwdwy) = fQ] f1(w)pi(dwy) - fQ fa2(w2)pa(dwy).) Here, consider the tensor-product C*-
observable ®/_, Oy = (X", 2(X"),F = ®}_, Fi) in /(= Q_, ) such that

F(E\ x By x - X E)=Fi(E1)@F(E2) ® - ®Fy(En) (VEr € P(X), k=1,2,...,n).

Therefore, we get the measurement Mg, (&) _, Ok, Sgy_,p) in &), _; <k, which is also denoted by

Z:l M., (O, S Pf) and called the repeated measurement (or, “parallel measurement”) of My, (O, SPE),S'
Put .#41(X) = {v: v is a probability measure on X, i.e., W(X) = 1} and define the map g : X" — A 1(X)
such that

_ #{k: xp € E}] _
o120 018 = TEHEEN ¢ oy e
where #[B] = “the number of the elements of a set B”. Then we have the C*-observable (.. (X),

Po(M1(X)),F(g7'(-))) in o/ as the image observable of g for ®)_, Ok, which is called a frequency
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probability observable. Though .#,(X) is not countable, this is not essential (cf. Remark 1.6). That is
because the observable can be replaced by (/' (X), 2(M' (X)), F(g='(-))). Here the set .’ LX) =
g X" W C M 4+1(X)) is clearly finite.

Now we have the following proposition, by which we can show Theorems 2.2 and 3.6.

Proposition 2.1 (The “fuzzy theoretlcal” weak law of large numbers). Suppose the above notations. For any
¢ > 0 and any B (e P(X)), define Ez, (€ P(X™)) by

B s = {32 = (X155 ¢ w3 5 X ) € X

1 n
l90KE) — 5 SAEUE) <.
k=1
Then we see that

1 n A
= aa S (®p£> (F(Eze))<1, (VE € 2(X),Ve > 0,Vn). (22)
k=1

Proof. We easily see that [g(X)](E) = %Zzzl K= (X))(VE = (x1,x0,...,%,) € X*), where I : X" —» X
is defined by Li(X) = Li(x1,x2,...,%,...,X%,) = x; and %= : X — R is the characteristic function of =
(ie, x:(x) =1 (x € 5),= 0 (x ¢ Z)). Note that y.(L(-)),k = 1,2,...,n, are independent variables on
a probability measure space (X", 2(X"), P(-) = (®}_;p)(F())). Also it is clear that [y, x-(l(£))P(dF) =
| P [XE(Ik()E))]ZIS(ch”) = p,‘i(Fk(E )k =1,2,...,n). Therefore, by éebyéev inequality, we see that

oy p<{x€ o ’Zzlx(fkof))) >y lpk<Fk<u>)’ })

1
S 27 Z (2=(I(2)) — o} P(dx)
X"
1 d - s
= ;z;k; 1-k(2)) — pR(F(E))*B(d%)
1
<z max [ FE))1 ~ pREEN)] < 1,

which implies (2.2). This completes the proof. [J

Now we can show the following theorem as an immediate consequence of Proposition 2.1. It clarifies the
“probability” in Axiom 1 from the statistical point of view.

Theorem 2.2 (Frequency probability). Put o/, = o, pi =p? and O =0 = (X, 2(X),F),k =1,2,...,n, in
Proposition 2.1. Consider the repeated measurement Mg.(Q_, O,Sei_ ) in @j_, /. Then, we see that

e <®p> ((éF) ({feX": P(r(E)) - kR € B s})) <1,
k=1 n

(VE € P(X),Ve > 0,Vn). (2.3)

Here note, by Axiom 1, that (®Z PR F(E %)) is the probability that a measured value by Mg
(i, O, Sgi_ ) belongs to 5. Therefore, if n is sufficiently large, for a measured value £(= (x1,x, .. s Xp) €
X"y by M@,g/(®k:1 O,Sgy_p»), we can consider (in the sense of (2.3)) that

#{k: xx € E}]
-

PP(F(E)) ~ 24)
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Remark 2.3. This theorem (i.e., the above (2.4)) connects “individualistic probability” (i.e., “probability in
Axiom 1”) with “frequency probability”. Though some may hope to start from “frequency probability” and
not “individualistic probability”, it may be impossible. However, we can replace the statement (*) in Axiom
1 by the following (x):

(xx) if pP(F(ZE)) =~ 1, we can “almost surely” believe that x € Z.

(Here note that the concept “almost surely” belongs to the “individualistic”-category.) Under the condition
(**), we can also show Proposition 2.1 (and so Theorem 2.2), and therefore, by (2.4), we can character-
ize “pP(F(Z))” as “frequency probability”. That is, the statement (*) in Axiom 1 and the above () are
equivalent.

3. Subjective fuzzy measurement theory

In the previous section, we investigated the objective aspect of fuzzy measurement theory. Under these

preparations, in this and the next sections we propose “subjective fuzzy measurement theory”. We think
that the relation between “objectivity” and “subjectivity” is not simple in general. If we have no “objective
theory”, we must provide a lot of philosophical arguments for “subjectivity”. However, since we already
have it, our opinion for “subjectivity” is quite simple. That is, “subjective fuzzy measurement theory” is
characterized as “measure theoretical (i.e., statistical) method of (objective) fuzzy measurement theory”. (Note
that a commutative C*-algebra Cy(Q) belongs to the category of “topology” in mathematics.) Therefore, it
may also be called “statistical fuzzy measurement theory”. We construct this theory such as it always and
naturally has an objective interpretation. Therefore, “subjective fuzzy measurement theory” (proposed in this
and the next sections) is never “purely” subjective. Also, it is quite proper to consider that the relation between
“objective fuzzy measurement theory” and “subjective fuzzy measurement theory” corresponds to the relation
between “Newtonian mechanics” and “statistical mechanics”.
Remark 3.1. In this paper we frequently use the ambiguous words such as “objective”, “subjective”, etc. In
most cases, we use them under the identification: “objective” = “real” = “individualistic”, and “subjective”
~ “imaginary” =~ “statistical”’. As it will be seen throughout this paper (particularly, see Remark 6.5), we
believe that this identification is rather pertinent.

We first introduce “imaginary probability” (i.e., “subjective probability””), which is different from “(objec-
tive) probability” in Axiom 1.

Definition 3.2 (Imaginary C*-measurement). Let of be a C*-algebra. Let O = (X,2(X),F) be a C*-
observable in o/ and let p™ € &"(«/*). Then, the mixed state p™ is also called an imaginary state (or,
subjective state). Also, the symbol M(O,S(p™)) is called an imaginary C*-measurement ( or, subjective
C*-measurement) in .o7.

Note that “imaginary C*-measurement” is defined in mathematics. Thus, it has no reality in itself since the
state of a system S is always represented by a pure state pP and not a mixed state p™ (cf. Axiom 0). Therefore,
the following “method” (i.e., “subjective fuzzy measurement theory”) should be read in mathematics. That is
because we have no experiment that tests the statement in Method 1 directly (cf. Theorem 3.6).

Method 1. Consider an imaginary C*-measurement M (0 = (X, 2y(X),F),S(p™)) in a C*-algebra /.
Then, we consider that

(x) the “imaginary probability” (or, “subjective probability”) that x (€ X), the measured value by the
imaginary C*-measurement M (0, S(p™)), belongs to a set E(€ Py(X)) is given by p"(F(E)) =+
(0™ F(8)) o) |
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As stated later (in Section 4), “subjective fuzzy measurement theory” is also described in a W/ *-algebraic
formulation (cf. Method 2 in Section 4). In order to bridge the gap between Axiom 1 and Method 2, Method
1 is useful. However, we do not think that Method 1 is temporary. It is quite important in itself.

Remark 3.3 (Kolmogorov’s method). Again note that Method 1 is meaningless from the objective point of
view. Here recall Kolmogorov’s probability theory (cf. [11]). He did not propose a principle (such as Axioms
0 and 1) but only gave the mathematical definition of the probability space (X, ,P). And furthermore, he
introduced the “method” (i.e., Kolmogorov’s method) such as

(x) “the probability that an event Z (€% ) occurs is given by P(Z)”.

In spite of its utility, his method is also clearly meaningless from the objective point of view. Though it
seems to be somewhat strange that a meaningless statement is quite important, this is a fact. (The reason will
become clear throughout this paper; cf. Remark 6.5.)

As general arguments, we first mention two main advantages of Method 1 in the following Remarks 3.4
and 3.5.

Remark 3.4 (Preciseness). Note that one of the most important (subjective) interpretation of Kolmogorov’s
method (#) is obtained by putting (X, Z,P(-)) = (X, Z(X), p™(F(-))) in Method 1 (cf. Remark 1.6 or
Definition 4.5). Therefore, we can find “Kolmogorov’s theory” everywhere in fuzzy measurement theory.
Though these two methods (i.e., Method 1 and Kolmogorov’s method) are meaningless, we may say that
Method 1 is more “precise” than Kolmogorov’s method. That is, Method 1 is near Axiom 1. Therefore,
it is natural to expect that Method 1 will produce rather precise results. For example, we can directly see
“membership functions” ( =*“fuzzy sets”) in Method 1. Therefore, we can propose useful methods concerning
membership functions (cf. Sections 5 and 6).

Remark 3.5 (Objectivity). In general, the mathematical concept has many interpretations. Therefore, if we
want to assert an objective statement by using “method” (i.e., “mathematics™), we must always add an objective
interpretation to “mathematics”. In fact, Kolmogorov said himself that his theory should be used like this.
However, this is impossible in the strict sense. That is because he did not teach us “What is objective?” (that
is, he did not propose “objective theory”). On the other hand, we can state the objective interpretation of
Method 1 within Axioms 0 and 1 (cf. Theorem 3.6 and Remark 4.8).

After all, all advantages are due to the fact that we already have (objective) fuzzy measurement theory.
Of course, we can state many other advantages, for example, Method 1 is applicable to quantum mechanics.
However, we mainly concern ourselves to the above two advantages.

First, we study the advantage concerning “objectivity” (cf. Theorem 3.6 and Remark 4.8). The reader will
find the advantage concerning “preciseness” everywhere in Sections 5 and 6. Let M,(O=(X, Z(X), F), S(p™))
be an imaginary C*-measurement in a C*-algebra .o/ where X is, for simplicity, assumed to be finite. Let
{pP 12, be a sequence in SP(.7*) such that

n
% Spp—p" asn— oo (in the weak* topology o(./*;.«/)). (3.1)
k=1
(The existence of the {pP}72, is guaranteed by Krein—Milman theorem (cf. [17]). Let ¢ be any positive real
number. The (3.1) implies that there exists a natural number N (= N(e, O)) such that

1 n
p ]; p‘;(F(E)) — p"(F(E))| <¢/2 VE e 2(X), Vn=N). (3.2)
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Consider the repeated measurement Mg,/ (X", 2(X"), @}, F).Sg_,r) in X, . For any Z(e P(X)),
define &z (€ 2(X")) by

Bge={%=(1,%-...%) €X": [[gBE) — pP™(F(E))| <e}, (3.3)
where ¢g: X" — (X)) is defined as in (2.1). Assume that n > N. Then we see, by (3.2) and (3.3), that

n 1z A
g, D2 €X™: |[gDE)— = 3 pp(F(E))| <e/2¢ (= Eg,).
n =1

Here note, by Proposition 2.1, that
1 n n ~0
1-——< | @} RF |(Ez,) | < L.
&’n k=1 k=1 -
Thus, we get the following theorem.
Theorem 3.6 (An objective interpretation of “imaginary C*-measurement”). Let My, (0O = (X, 2(X), F),

S(p™)) be an imaginary C*-measurement in a C*-algebra of. Let {p}}i2, be a sequence in SP(/*) that
satisfies (3.1). Let N be such as (3.2). Then we see that

- 2L <(épi> <<®F> ({)e € X" | PN (F(E)) — FILk: x € E}]‘ <e}>> <1,
&n k=1 k=1 L

(VE € (X), Ve>0, Vn = N). (3.4)

Therefore, if n is sufficiently large, for a measured value (= (x1,X2,...,%,) € X") of the repeated measure-
ment Mg (Q;_; O, Ser_ o ), we can consider (in the sense of (3.4)) that

#[{k: xx € 5}]

n

P (F(E)) ~ 3.5)
That is, in the sense of (3.4) or (3.5), the imaginary C*-measurement M,(O, S(p™)) is realized by the
repeated measurement Mg /(Q);_, O, S i ).

This theorem is most fundamental in “subjective fuzzy measurement theory”. That is because it guarantees
that we can always and naturally add an objective interpretation to Method 1. In other words, the above
theorem instructs us how to read Method 1 from the objective point of view (cf. Remark 3.5). For a fixed
{pP}22,, we can conduct an experiment that tests Method 1.

Example 3.7 (The principle of equal weigh in statistical mechanics). Let Q be a compact Hausdorfl space.
And consider a commutative C*-algebra o/ = C(Q). Let ¢: Q — Q be a bicontinuous map. And furthermore,
assume that ¢ is unique ergodic. That is, there exists a unique probability measure v on Q such that v(D) =
v(¢(D)) for any Borel set D in . Here the v is sometimes called the equilibrium state. Then we see, by the
ergodic theorem concerning Markov operator (cf. [12]), that, for any wqo (€ ),

1 n

7 > Ok — vV 8S B — 0O (in the weak* topology a(#(Q2); C(R2))),
k=1

where ¢Fwy = ¢(¢*~'wp). Therefore, when Q is a compact subset of the phase space R®' and {¢* : k =
0,£1,42,....} is a unique ergodic dynamical flow on @, Theorem 3.6 gives an objective interpretation to
“the principle of equal weight” in statistical mechanics. That is, for any C*-observable O, the imaginary
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C*-measurement Mc()(0,S(v)) is realized by the repeated measurement Mgc(o)(Q);_, O, Sev_s,, ) for

=1 /l‘u
sufficiently large n.

Remark 3.8 (Classical mechanics). As the background of Example 3.7, we of course assume that a classi-
cal mechanical system is a kind of fuzzy system, that is, we view “classical mechanics” (i.e., “Newtonian
mechanics™) as

“classical mechanics” = “commutative fuzzy theory” + “Newtonian equation”. (3.6)

This is natural since “measurement” is most basic in every science. Here note that the standard syllogism
(shown in [9]) is frequently used (as an obvious fact) in classical mechanics. Also, this view-point (3.6) is
a matter of common knowledge in quantum mechanics, that is, “quantum mechanics” = “Born’s axiom (i.e.,
non-commutative fuzzy theory)” + “Heisenberg’s kinetic equation”.

Under the hypothesis (3.6), we can explain Example 1.11 (the measurement of pencil’s length) from the
physical point of view.

Remark 3.9 (Physical explanation for the measurement of pencil’s length). Assume that the pencil (in Ex-
ample 1.11) is composed of N-particles. Let Q = R%" be a phase space, whose point represents the state of
N-particles system. Therefore, we consider that the pencil is represented by a certain point wg (€ Q). Define
the continuos map ¢: 2 — R such that ¢(w)=“the actual length (or, diameter) of the N-particles system
represented by a phase space point @w”. Thus we see that /j = ¢(wg). And define the C*-homomorphism
@: Co(R) — Co(2) such that Co(R) 5 f(-) > f(¢()) € Co(Q). Let Oy = (Z, Zo(Z),((.)) be the fuzzy
numbers observable in Cy(R) as in Example 1.11. Here we see, by (1.4) and %4, = J;,, that

Mc,rev (PO 2, S5, ) = Mcyr) (02, S5, )-

)

Note that the Mc,grev (PO, Ss,,, ) has the reality under the hypothesis (3.6). Therefore, the measurement
MCO(R)(O:X,S&,O) in Example 1.11 also has the reality.

There seems to be an opinion that an imaginary C*-measurement does not always need an objective
interpretation. We partially agree to this opinion. That is, if our concerning is not “true or not true” but
“useful or not useful”, we do not consider that we must explicitly show the objective interpretation of the
imaginary C*-measurement.

Definition 3.10 (Objective and subjective C*-measurement). Let o/ be a C*-algebra. Let pP € SP(o/*) and
p™ e S"(e/*). Then, the symbol M,,(O, S, (p™)) is called a real and imaginary C*-measurement (or, objec-
tive and subjective C*-measurement) in .o7. That is, we consider that M (O, Sy (p™)) = M,(0,S») from
the objective point of view, and M (O, S»(p™)) = M,(O,S(p™)) from the subjective point of view.

Example 3.11 (The subjective probability in the measurement of pencil’s length). Now we investigate the
measurement of pencil’s length from the subjective point of view. Let .«Z = Cyo(R), S, Ip = 14.1421...,04 =
(Z,2y(Z),(.)) be as in Example 1.11. Assume that the (subjective) state of the system S is po (€ S™(A*) =

A+ (R)). For example, put po(D) = 11—0]1200 yp(w)m(dw) (VD € %g) where m is the Lebesgue measure on R.
(There is no absolute reason that the pgy is absolute continuous with respect to the Lebesgue measure m.)
Probably, the subjective state po is determined by a rough eye measurement. Now consider the objective
and subjective C*-measurement Mc,g)(O #,55,,(po)). Note that this is equal to Mc,g)(Oz,S(po)) from the
subjective point of view. Then, by Method 1, we consider the following.
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(%) the (subjective) probability that the measured value z (€ Z) belongs to Z(€ P (Z)) is given by
®(po, (Ve = Jr La(@)po(d) s [ (s(@)m(dw).
Therefore, if Z = {x}, it holds:
55 if x = 10,20,
a@poem =14 1 fx=1112,...,18,19, (3.7)
0  otherwise.

Of course, from the objective point of view, we get the same result as (1.2). However, in the above situation,
we do not know the pure state 6.

Remark 3.12 (Fuzzy measure theory). Since Method 1 is meaningless in itself, we have no absolute reason
that the “subjective state” p™ should be taken in &™(s/*). The only one reason is due to Krein—Milman
theorem (and so, Theorem 3.6). That is, if we want the “objectivity” (i.e., if we want to test the statement
represented by Method 1), we can always and naturally add an objective interpretation to Method 1. Therefore,
if our concerning is not “true or not true” but “useful or not useful”, we have no reason to consider that
p™ € G&™(Z*). As this kind of the generalization, “fuzzy measure” seems to be standard in the case that
o = Co(R) (cf. [16]). This is “purely” subjective and never statistical. Therefore, “fuzzy measure theory” is
the exceptional case of Remark 3.1 (Also, see Remark 6.5.)

4. W*-algebraic formulation of subjective fuzzy measurement theory

In order to develop “subjective fuzzy measurement theory”, in this section we introduce the W *-algebraic
formulation of subjective fuzzy measurement theory.

We have an opinion that a principle (i.e., “objective theory”) should be described by a “topological”
formulation (i.e., C*-algebraic formulation). On the other hand, a “measure theoretical” formulation (i.e., W*-
algebraic formulation) is convenient to describe “methods”. (Though Method 1 is formulated by C*-algebras,
we have several restrictions such as the label set X is countable.)

Let /" be a W*-algebra (i.e., von Neumann algebra), that is, /4" is a C*-algebra with the predual Banach
space N, (i.e., A = (A%)*). Then, we can define the normal state-class &"(A;) such as

(M) ={pe N ||pllo. =1and § =0 (ie., H(T*T) >0 for all T € A)}.

The element j of G"(A;) is called a normal state (or, density state). The linear functional p(T') is sometimes
denoted by . (p, T).». Also, note that a ¥ *-algebra ./" has a lot of projections, that is, the set of all finite
linear combinations of projections is dense in ./ in the weak™ topology o(A"; A%).

Example 4.1. (i) Let (2, %gq, 1) is a measure space. For any 1 < p < oo, define LP(; 1) = {f: f is a com-
plex valued measurable function such that || f||» = [, | f(0)Pu(dw)]'/P < co}. Then, the A" = L®(2; 1) is
a commutative W *-algebra with the predual Banach space 4 = LY(Q; p). Of course S"(A5) = Lil(Q; w) =
{p € LNQu):p=0,[,p(0)u(dw) = 1, ie, p is a density function}. Also, it is well known that any
commutative W*-algebra " is represented by some L(£2; p).

(ii) When 4" = B(V), we see that A4 = Tr(V) (cf. Example 1.4) and S"(N)=Trp (V)= {p € Te(V):
,5 = O, HﬁHTr(V) = 1} AISO, note that Tr(V)(ﬁy T>B(V) = tr[ﬁ 0 T]V, where tI'[A]V = 22€A<€;M,A8;L>V. Here, it is
well known that the value tr[4]y is independent of the choice of a complete orthonormal basis {e; |4 € A}
in V. Also, any 5 (€ Tr, (V)) is represented by g =, ; %:|e;)(es| (in the trace norm || - ||zr)) for some
complete orthonormal basis {e;|A € A} in ¥ and some sequence {a,},e4 of non-negative numbers such that
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The following definition is the W *-algebraic version of Definition 1.5.

Definition 4.2 (W*-observable). Let A" be a W*-algebra. A W*-observable (or, measure theoretical obser-
vable) O = (X, Z,F) in A is defined such that it satisfies that

(1) (X, F)is a measurable space, that is, # is a o-field on X

(ii) for every £ € &, F(E) is a positive element in 4" (ie., 0 < F(E) € A) such that F(0) = 0 and
F(X) =1, where 0 is the 0-element and [ is the identity element in A", and

(iii) for any countable decomposition {Z;}$2, of &, (&,,5 € ), F(&) = Z _; F(E;) holds where the
series is convergent in the sense of the Weak* -topology a(A"; A%) in A

If F(Z) is a projection for every Z(€ %), a W*-observable (X, %,F) in /" is called a crisp W *-observable
in A

Example 4.3 (Crisp W*-observables). (i) As a typical crisp W*-observable in L°°(Q; 1), the fundamental
observable Opnp = (2,%0q, y.)) 1s frequently used where yz is the characteristic function of Z(€ %q). This
observable is finest in L*°(L; p), i.e., it includes all projections.

(i) Consider the commutative W *-algebra L*°(Q; u). Let a: Q — R be a measurable function. Then, we
can define the crisp W *-observable O, = (R, BR, f()) In L=(L, 1) such that fz(w) = y,—1z(w) (VE €
ABr,Yo € Q). Note that we can identify the a(w) with the O,. That is because Fevon@) =0 (Gf 4 <
a(w)) = 1 (if A = a(w)), and therefore, the a(w) is determined by the equality a(w) = fR Ag(wy(dA) =
Jr Afar(w) (ae. ).

(ii1) Next consider the quantum version of the above (ii). Let 4 be a self-adjoint operator (not necessarily
bounded) on a Hilbert space V. Note that it has the spectral representation: 4 = fR AE4(dA). Here, the spectral
measure O4 = (R, Br, E. 1) 1s of course the crisp W *-observable in B(V'). Conversely, any crisp W ™*-observable
(R, %R, F) in B(V) determines a unique self-adjoint operator 4z on V such that Ap = fR AF(dA). Therefore,
under the identification: 4 < O, the spectral measure O, is often denoted by [4].

Remark 4.4. Note that the above examples are all crisp. As mentioned before, a 7 *-algebra has a lot of
projections, and so, sufficiently many crisp observables. (Also, compared to Remark 1.8.) Thus, in most cases,
we can do well without “fuzzy observables” in the J/*-algebraic formulation. This fact sometimes makes us
blind to the importance of “fuzzy observables”. However, we must not overlook it because the W *-algebraic
formulation is one of methods of (objective) fuzzy measurement theory.

Definition 4.5 (Imaginary W*-measurement). Let A" be a W*-algebra. Let O = (X, Z,F) be a W*-obser-
vable in A and let j € &"(A;). Then, the symbol M. -(O,S(5)) is called an imaginary W *-measurement
(or in short, W*-measurement) in A4". Also, the normal state p is called an imaginary state (or, subjective
state). Define the set function P: # — R such that P(E) = p(F(8)) (VE € &). Then we can easily see,
from the g-additivity of (iii) in Definition 4.2, that the (X, %, P) is a probability space.

The following “method” is a W *-algebraic version of Method 1. Therefore, it also has no reality in itself
(cf. Remark 3.3).

Method 2. Consider a W*-measurement M_y-(O = (X, Z,F),S(p)) in a W*-algebra N". Then, we consider
that

(x) the “imaginary probability” (or,“subjective probability”) that x(€ X ), the measured value obtained by
the W*-measurement M_-(0,S(p)), belongs to a set E(e F) is given by p(F(E)) =4 (0, F(E)) ).
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Remark 4.6 (Quantum theory). Note that Method 2 (as well as Method 1) is meaningless from the objective
point of view. However, it should be noted that Born’s axiom is usually regarded as Method 2 for A4~ = B(V).
This is due to the peculiarity of quantum mechanics. That is, it holds that €(V)* = Tr(V') = B(V ). Therefore,
for any pP € GP(G(V)*NCS™(F(V)*) = S"(B(V).)) and any W *-observable (X,Z,F) in B(V), we can
naturally define the “linear functional” ¢y« (pP, F(Z))p(y). Therefore, Method 2 for MB(V)((-),S(pp)),can be
regarded as the principle (i.e., Born’s axiom) in quantum mechanics. On the other hand, “objectivity” and
“subjectivity” are completely separated in classical systems.

Remark 4.7 (Normalized W*-measurement in commutative W*-algebra). Let Mpe (g, ,t)(O = (X7 f( )
S(p)) be a W*-measurement in a commutative W*-algebra L°°(Q; u). Define the probability space (i.e.,
normalized measure space) (Q, Zo,P) such that P(D) = |, 1 p(w)u(dw) (VD € Bq). Then, we have the nor-
malized W*-measurement Mjeo(q; p)((_) S(1)) in the normalized commutative W *-algebra L°°(Q2;P), where
1 (e I} 11(2;P)) is the constant function on  with its value 1. We of course identify these two W*-
measurements, that is,

Moo (0:1)(0,S(5)) = Myee(o,py(0, S(1)). (4.1)

Also, it is clear that ;1. (P, fz)1oo@n) = 110 Py(1, fz)1°o(@:py holds for all E (€ #).

Now we consider the relation between Methods 1 and 2. Though this should be done for general imaginary
C*-measurements in 7 (by using GNS-construction, cf. [15]), for simplicity we restrict ourselves to only
commutative cases (i.e., & = Cp(£2)).

Let Mc,@)(O = (X, Zo(X), f()), S(p™)) be an imaginary C*-measurement in a commutative C*- algebra
Co(Q). Note that the label set X is always assumed to be at most countable. Here consider the commu-
tative WW*-algebra L®(Q; p™). For any Z(€ #(X)), define the membership function f~ such that fz(w) =
eru fi(@) (Vo € Q). Note that f~ = fz holds for Z(€ 2¢(X)C 2(X)). Then, we get the W *-observable

= (X, 2(X), f( y) In L=(€2; p™). Consider the W *-measurement My (q; pm)(O X, 2(X), f( y)>S(1)), which
is regarded as a (normalized) W*-algebraic representation of Mcy)(0,S(p™)). We also denote that

Mcy@)(0 = (X, Zo(X), (1) S(P™)) Ry Mie(@ipm)(O = (X, 2(X), /1), S(1)). (4.2)

Here note that x (@) (0", f2)5my = i@ (1, Fz)1eo(@: pmy for all E(€ Po(X)C 2(X)). The representation is

not of course unique. For example, consider the measure u (on ) and the normal state p(€ L +1(Q, 1)) such
that p™(D) = |, o p(w)u(dw) (VD € %q). Then, by using (4.1) and (4.2), we get the following representation:

Mcy2)(0 = (X, 2o(X), £, S(p™)) == Miso(a, (O = (X, 2(X), f.)), S(P)). (4.3)

Next consider the reverse of the above argument. Without loss of generality (cf. Remark 4. 7), we begin
with the normalized W*- measurement Mje(g.p) (O = (X, # f( y)»S(1)). Here assume that € is a locally
compact space, and X is separable metric space. Let 4 be any (small) positive real number. Take a countable
decomposition {Dy,D,,...} of X, Dy is a Borel set in X, such that “the diameter of D;” < A(Vk). Let N
be a natural number such that > .- foDA(cu)P(da)) < A.Put f{D} _fDA (k=12,...,N—1) and f{'DN}
1— 2’ llfD Then, we get the W *-measurement Mz (o, (04 = X' = {D1,Ds,.. DN} ?(X’),f_(’.)),S(l)).
From this, we can also get the imaginary C*-measurement Mc,)(0% = (X' = {Dl,Dz, LDy} PX), fE)
S(P)) such that |, 1f{Dk}(a)) — {Dk}(a))lP(da)) < A/N (1 <Vk < N). Here it is clear that the imaginary

C*-measurement Mc,(0)(0%,S(P)) approximates to Myes(q; P)((-), S(1)) if 4 is sufficiently small.

Remark 4.8. The above arguments bridge the gap between Methods 1 and 2. Also, it should be noted that
Theorem 3.6 connects Axiom 1 with Method 1. This is quite important. That is because we consider that all
results in this paper should be consequences of “objective fuzzy measurement theory”. :
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Example 4.9 (The subjective probability in the measurement of pencil’s length). Consider the (objective
and subjective) C*-measurement MCO(R)(O;/],S()‘IO(po)) as in Example 3.11. Note that MCO(R)(OL%S(S[O(PO)) =
Mec,r)(Oz,S(po)) from the subjective point of view. Let MLoo(R’pO)(ng =(Z,2(2), {—(,)), S(1)) be the nor-
malized W*-algebraic representation of Mc,r)(Oz,S(po)). Here we see, by Method 2, that

() the subjective probability that the measured value z (€ Z) by Myeo(r. po)((_)g,S(l)) belongs' to B (e
e = = 20 5
P(2)) is given by piwipo) (1, {z)roemipn) = [ (a(@) po(dw) = 15 [i; {e(@)m(dw).
Therefore, if & = {x},
55 if x = 10,20,
LR po) {1, {5) oo (R ooy = if x =11,12,...,18,19, (4.4)

< 3~

otherwise,

which is of course the same as the result (3.7) of Example 3.11.
Now we introduce “quasi-product observables” in the ¥ *-algebraic formulation.

Definition 4.10 (Quasi-product W*-observable). Let A" be a W *-algebra. Let K be a set. Let {0y = (X, 7,
Fi): k € K} is a family of W*-observables in A", Let ( X,cx X;, XkeK Z) be the product measurable space

of {(Xx, #%): k € K}. A W*-observable O = ( Xk Xk Xrek T, F) in A is called a quasi-product W*-
observable with marginal 7 *-observables {Ok k € K}, if O satisfies the following condition (x):

(%) for each ky € K, the kyth marginal observable of O is equal to the observable Oy, that is, it satisfies
that F( Xyex E) = Fiy(Ex,) (VEr, € Fiy), where 5y = Fp (k = ko) = X; (k # ko) in Xiek k.

The quasi-product 7 *-observable O = ( Xiek Xies Xyex T, F) (with marginal W*-observables {Oy: k € K b

is sometimes denoted by ( Xcx Xi, Xicx i, X?EK Fy), or xfeK O;.

Here we can state the following methods (Methods 2’ and 2”) as a consequence of Method 2 (cf.
Remark 1.14).

Method 2’ (Subjective simultaneous measurement). Consider a simultaneous W*-measurement M. (0, S(p))
= o

where O = ( Xyex Xi, Xiex T Xyex Fr) is the quasi-product W*-observable in N'. Assume that x(=

(i kex € Xyex Xi) is a measured value obtained by the W*-measurement M (0, S(p)). Then we consider

(i) the imaginary probability that the x(= (x;)rex) belongs to a set E(e Xiex Fr) is given by p(( X,\GK

F)(&)), )
(ii) the xx, k € K, is regarded as the value of the observable Oy for the system S(p).

The following is a consequence of the identification: “measurement” = “inference” (cf. Remark 1.14 or [9]).
Also, by a similar reason mentioned in Remark 1.13, we sometimes identify M (O, S(x)) with O.

Method 2 (Subjective inference). Let S be a fuzzy system with the imaginary state p(€ S"(A%)), which is
Jormulated in a W*-algebra A" Let 0= X x X, 71 X 7, F XO Fy) be a quasi-product W*-observable
with the marginals O, = (X1, Z1,F)) and O, = (Xa, 2, F2). Then,

() when we know the value x,(€ Xi) of the W*-observable 01 Jor the system S(p) [resp. S, we can infer,
by the subjective inference M i-(0, S)(=~ O) [r esp. Mi(0,8(p))], that the imaginary pr obability that
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xX2(€ X2), the value of the observable 0, for the system S(p) [resp. S, belongs to a set Ey(€ Fy) is
given by P(x,,E,), where

N I
P(X1,52)= E]-_i}R} p((Fl X(_)F2)(‘—’l XHZ))‘ (45)
Aszan P((F1 X F)(E X X2)) '

This (4.5) is of course the symbolic representation. For the mathematical definition of conditional probability,
see [7] or [8].

The following theorem is essential for the definition of “measurement error” (cf. Definition 4.12). Also,
recall Remark 1.12.

Theorem 4.11. Let N be a W*-algebra. Let Oy = (X1, %1, F)) and O, = (X2, %2, F,) be W*-observables
in N such that at least one of them is crisp. (So, without loss of generality, we assume that O, is crisp).
Then, the following statements are equivalent:

() There exists a quasi-product observable O = (X X Xa, 7 X P, Fi )(0'2 F») with marginals O,
and 02

(i1) 0, and O, commute, that is, FI(EF(Ey) = Fa(E2)F1(E1) (VE| € #1,VE; € 772).
Furthermore, if the above statements (i) and (ii) hold, the uniqueness of Oy, is guaranteed. (So, we can
write that 012 = (X1 X X2, X 7, F, X )= 01 X 02)

Proof. When O = (X1, %1, F) and 0, = (X5, #,,F,) are both crisp observables, it is proved in [2]. By the
same way, we can prove this theorem. It is clear that (ii) = (i) since we can construct a W/ *-observable
(X1 X X, 7 X 5, H) such that H(E| x By) = F](E])Fz(Ez) (V& € I,NE, € F,). Thus, it suffices to
prove that (i) = (ii). Assume that (i) holds. Let Z; and &, be any element in #; and &, respectively. Put

(0 I
El =5, B2 =X)\E,, B} = &, and 5} = X,\E,. Put H = F; X " F,. Note that
0<H(E x Ez)<H(X1 X B )—~F2( ) (= “projection”). (4.6)

This implies that H(E}| x L_,z) and Fz(uz) commute, and so, H(E5} x u2') and / — Fz(:z') commute. Hence,
Fi(E)) (= H(E] x EN+ H(E] x uz)) and F5(Z,) (= F2(E})) commute. Therefore, we get that (1) = (i1).

Next we prove the uniqueness of H under the assumption (i) (and so (ii)). Note that 0 <H (ulxuz) S H(E: %
Xp) = F1(E!). This implies, by the commutativity condition (ii) and (4.6), that

0<H(E! x B))<SFo(E)F\(EVF2(E]) = Fi(E})Fa (5

Therefore, we see that I = 21/ IZH(_J1 % u2)<zlj 12 F1(E)F(E ) = I. Then, we obtain that H(Z; x
5y) = F1(E)F,(E&,), that is, H is unique. Therefore, we finish the proof B

Now we shall introduce several statistical quantities in fuzzy theory. Consider a #'*-measurement M (O =
(R, %, F),S(p)) in a W*-algebra 4. Then, &(M_ (0, S(p))), the expectation of M 4(O,S(p)), is of course
defined by

SOMAO.5()) = [ 4P, (4.7)
R
Also, var(M._-(0,S(p))), the variance of M_-(0,S(p)), is defined by

- _ 2
var(M_;-(0,5(p))) = /R 2= 60, 5(5)) | AP, (4.8)

Here, we can define “measurement error”, which is one of our purposes.
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Definition 4.12 (Measurement error). Consider two W *-measurements M (O, =(R, #x, F),S(5)) and M.

(0, = (R, By, F»), S(p)) in a W*-algebra A". And consider the simultaneous W *-measurement M - (012

= (R?, Bg2, F) XO"Fz) S(p)) (The existence is not guaranteed in general). Then, A(M_ (O12,S(5))), the

measurement error of M_;-(01,S(p)) for M_-(0s,S(p)), is defined by
1/2

0[2
ALy (012, 5(5))) = / [ 1= aPB( X F)dadia))

Of course this depends on the choice of the quasi-product observable 01, in general. However, if at least one
of them (i.e., O; and O,) is crisp, the uniqueness is guaranteed by Theorem 4.11.

Now we can state the main example (i.e., the measurement error of pencil’s length), which should be
compared with the error in Heisenberg’s uncertainty relation in Section 7. In this example we assume Bayes’s
postulate, which will be prepared in the next section (cf. Remark 5.3).

Example 4.13 (The measurement error of pencil’s length). Let Q = {w),w,,...,oy} be a set of pencils
with various lengths. (If the physical foundation is required, it suffices to consider that Q C Q where Q is a
quite large phase space in which these pencils are formulated. Cf. Remark 3.9.) Define the map ¢: Q2 — R
such that ¢(w,) = “the length of a pencil w,”, which induces the C*-homomorphism @ : Co(R) — C(Q)

such that Co(R) 3 f(-) LA f(@()) € C(Q). Assume the equal weight v, on Q (cf. Remark 5.3). Then, we
can define the image measure P on R of v, (i.e., P(D) = v,(¢~1(D)) (VD € %R), that is, P = &*v,). Here,
it should be noted that the P (€ .#,(R)) has the subjective aspect since v, is so. Under the hypothesis
that NV is sufficiently large, we assume that P(D) = |, p P(x)m(dx) where m is the Lebesgue measure on R.

Recall fuzzy numbers observables Oy = (Z,2¢(Z),{(.y) in Co(R) and Oy = (Z,2(Z), f(,)) in L=(R;m)
(cf. Example 4.9). Then, we see, by (4.3), that Mc,r)(Oz,S(P)) ~p+ Mpeo®;m)(0z,S(p)). Define the W*-
observable Ol = (R, Zr,{() in L=(R;m) such that {a(x) = Fanz(x) (vx € RVE € ), which is clearly
identified with O. Here consider the W *-measurements Moo (r; ,,,)(O _Z,S(p)) and Moo (g, m)(OFND,S(p))
where Opnp is the fundamental observable in L*°(R;m) (cf. Example 4.3). And consider the simultaneous

W*-measurement MLOO(R;,,,)(OQa X" OFND,S(p)) (cf. Theorem 4.11). Here, assume, for convenience sake,
that p(x) = % (10 < Vx < 20),= 0 (otherwise). Then we see that

-rR ! = _
AM oo (r;m)(05 X Opnp, S(P)))

r Y 1/2
= / Ay = Aa? ( / L) - %, (x)ﬁ(x)m(dx))]
R2 R

] 1/2
— /(/ Iil—XIzp'(X)ng](X)> m(dx)}
LJ/R \/R

20 1

_ 1/2
1 20< . )
= |— n—x|"Cen(x) | m(dx =— =04082--.
_10 10 nzzml | {}( ) ( ) \/6

Now we show the strong law of large numbers from the fuzzy theoretical point of view. This suggests that
Kolmogorov’s theory is one of the mathematical aspects of fuzzy measurement theory. :
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Theorem 4.14 (The “fuzzy theoretical” strong law of large numbers). Let M 4 ((RN,L@I'\{J, X,?GN F.),S8(p))
be a W*-measurement. Put v(E) = p(( X?eNF,Z)(é)) (VE € BY) and v,(E) = v(( Xi— R) X & X( -
R)) (Vn e N, VE € #Br). Assume the following conditions (i)—(iii):
(i) (independency), v( X,en En) = [I,en Va(En) where B, = R except for a finite number ofn
(ii) (identical distribution), v, (E) = v,,(Z) (Vn1,ny € N, VE € %By),
(iii) (L'-condition), Jgv x1v(d%) =y (where £ = (x1,X,,...) € RN) is finite.
Then, we have the following statement:

(%) the imaginary probability that % = (x1,x2,...) (€ RV), the measured value obtained by the W*-

Zf:lzl *n
N

measurement M_-(R", By, XnoeN F,),S(p)), belongs to 5, = {% € RV | limy_ oo = yl g

given by 1.

Proof. Note that “the statement (x)” < “v(év) = 17. Therefore, this theorem is an immediate consequence
of the usual strong law of large numbers for the probability space (RN,E@;\;‘,\J).

Example 4.15 (The strong law of large numbers). Let MLOO(_Q;ﬂ)((_) = (R, @R,f_(_)), S(p)) be a W*-measure-
ment in a commutative 7*-algebra L>(€; 1) such that [ A( [, fq,(@)p(w)u(dw)) = y. And let Myo<(o, p)(O,
S(1)) be the normalized W *- measurement (of Mz (g, ,)(O, S(p))) in the (normalized) W *-algebra L>°(£2; P)
where P(D) = |, p P(0)p(dw). Consider the infinite-dimensional product probability space (N, BN, @,enP).
Define the quasi-product J#*-observable ), O O =R", BY, RN £) in L®(QN; ®,enP) such that (R en
) xpeng (@1, 02,...) = H"eNf_”(co,,) (a.e. ®uen P) where E, = R except for a finite numbers of n. Then,

we get the simultaneous 7 *-measurement Moo (on g, r) (&) en (0} S(&),cn 1)), which is also equal to the

repeated /7*-measurement of ),y Mzes(o; p)((_), S(1))’s. It is clear that this satisfies the conditions (i)—(iii)
in Theorem 4.14. Therefore, we get the statement (*) in Theorem 4.14 for the #*-measurement Mo (on g, p)

(Rpen 0:S(®,en D)

Example 4.16 (Coin-tossing problem) Consider the probability space (£2,2({2),P) such that = {face, tail }
and P({face}) = P({tail}) = 1. Define the crisp W*-observable O = (R, %R,ﬂ y) in L°°(£; P) such that
fe(face)=1 (if 1€ &), =0 (1f 1¢5) and f5(tail) =1 (if 0 € ), =0 (if 0 ¢ E). Thus, we get the W*-
measurement Mo (g, #(0,5(1)) and its repeated J¥*-measurement Ry Moo, 7(0,8(1)) as in the above
example. Hence, we see that

*) the imaginary probability that X (€ RM), the measured value obtained by the repeated W*-measurement
p
Qo Moo, p)(O S(1)), belongs to a set &1y = {£ = (x1,%2,....): limy— o0 L = > i Xk = 1/2} is given
by 1.

5. Subjective method of membership functions

Since we can directly see “membership functions” (=“fuzzy sets”) in fuzzy measurement theory, it is
easily expected that membership functions play an important role in this theory. In this section we propose
the subjective method of membership functions (i.e., density function method). And we formulate “Shannon’s
entropy” and “Bayes’s posulate” in this subjective method. That is because we believe that important concepts
should be formulated in terms of “measurement”.

Let Mcy0)(0O = (X, 20(X), f(.)),S(po)) be an imaginary C*-measurement in a commutative C*-algebra
Co(£2). Here note that the subjective state pg (€ #.1(2)) is determined by an observer. And therefore,
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another may consider a different (subjective) state. Let M (g, po)(f) = (X, 2(X ),f_(,)), S(1)) be its normalized
W*-algebraic representation. Now we have the following question.

(*) How can the observer guess the new (subjective) state p. (€ LLI(Q; po)) of the system S under the
hypothesis that he gets the measured value x by the W *-measurement Moo (g 5,)(0,S(1))?

We solve this question in the following thought experiment. Let Opnp = (2, o, %)) be the fundamental ob-
servable in L°°(£2; po) as in Example 4.3. Now consider the iterated measurement (i.e., “series measurement”)
of the observable O and Opnp (that is, firstly the measurement of O is taken, and next the measurement
of ()FND is taken). The iterated measurement is formulated by the simultaneous measurement M0 po)
(0 X" Opp, S(1)) where O X" Opyp is defined by (X X Q,2(X) X Bo, i = [ x" ) (in L®(Q; po))
such that ﬁg,xgz(w) =f_5|(co) e (w) (VE| € P(X),VE,; € Bg, Vo € Q). (The uniqueness is guaranteed by
Theorem 4.11.) Then, we see, by Method 2", that

(++) when the observer knows the measured value x (€.X) of the W *-observable O for the system S, he
infers, by the ( subjective ) inference Mo (q, ) (o) X" Ornp, S(1)), that the imaginary probability
that y (€ Q), the value of the W *-observable Opnp for the system S, belongs to a set I’ (€ %Bq) is
given by P(x, "), where

JoS ey (@)xr(0)po(dw) (@)
Pl )= = = = dw). 5.1
B e Tl mliw) /Q T oot | 0olee) e
Therefore, he will consider that the new (subjective) state 5, (€ LL,(£2;po)) of the system S is equal to
- ];{r}(w)
= = €. Po)- 52
(@) T (@)pe(@@) (a.e. po) (5.2)

That is because the imaginary probability that the measured value by the #*-measurement Myso(q; ) (Ofnp,
S(p,)) belongs to I' (€ #q) is also given by (5.1). Namely, the following reduction of density function
occurs:

Li1(2500) 3 1 p(w) € L} (2; po) (53)

by the fact (or information) that the observer gets the measured value x (€X) by My (g, ) (O, S(1)). This
of course occurs in his brain. Note that (5.2) has the form such as

“membership function”
“normal factor (with respect to subjective state py)”"

“density function” = (5.4)

Of course this is not all of density functions. For example, recall Example 4.13, in which the density function
is created under the hypothesis that the Lebesgue measure on R is quite natural.

Example 5.1 (The reduction of density function in the measurement of pencil's length). Consider the W*-
measurement Mo (R;p)(Oz = (Z,2(Z),(),S(1)) as in Example 4.9. Assume that we get the measured-value
x (€ Z). (Note that its imaginary probability is given by (4.4)). Then, by (5.3), we see the following reduction
of the density function:
10Z (w — x)

20

10 Z(@ —x)m(dw)
Here, p,(w) = 10Z%(w —_x) ifx=11,12,...,19, =20%(w — x) if x = 10 or 20. If we assume that the W *-
measurement Mo r;,,)(Oz,S(1)) is the subjective aspect of the (objective and subjective) C*-measurement

Ly (R; po) 3 1+ p(w) = € L1 (R; po). (5.5)
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Mc,r)(Oz, S5, (po)), the actual measured value x is of course only 14 or 15 as in Example 3.11. However,
it should be noted that we do not know the pure state d;, in the above situation.

As one of the applications (of the reduction of a density function), we now study the “entropy” of the
measurement. Here we have the following definition.

Definition 5.2 (The entropy of measurement). Without loss of generality (cf. Remark 4.7), consider a nor-
malized W*-measurement Mo (o) (0 = (X, 2(X), f( ), S(1)) in a normalized commutative ¥ *-algebra
L>®(L; po) (i-e., po(2)=1), where the label set is assumed to be at most countable, i.e., X = {x1,x2,...,%p,...}.
Then, the H(M), the entropy of MLoo(Q;pO)((_),S(I)), is defined by

H(Mi=(0;0)(0,5(1)))
z Fray (@) Fray (@)
= d - log
S a7 Ty @po(d) % Jy Ty (@)po(de)”

Particularly, when the W *-measurement MLoo(g;po)((_), S(1)) is the normalized W *-algebraic representation of
an imaginary C*-measurement Mc,0)(O = (X, Zo(X), f(.)), S(po)), the entropy H(Mc,2)(0,S(po))) is also
defined by H(Moo(a;p) (O,S5(1))).

po(dw). (5.6)

The definition is derived from the following consideration. Assume that we get the measured value x (€ X)
by the W*-measurement Mo (g, po)(O S(1)). Note that its imaginary probability P(x) is given by P(x) =
D@p s f{x}>LOO(Q 00) = fQ f{x}(w)po(da)) Also, we consider, by (5.2), that the new density function p,

is given by p.(®) = f {x}(co)/ fQ f (1 (@)po(dw), whose information quantity /(x) is of course determined
by I(x) = fQ p(w)log p.(w)po(dw). Thus, the average information quantity, i.e., entropy, is given by

H (MLOO(_Q;pO)((_), S(1))) = >, P(xn) - I(x,), which is clearly equal to (5.6). Also it should be noted that the
formula (5.6) can easily be calculated as follows:

HOD = 3 [ Fiop(@log Fro @)palden) = 3 (s log Pl (5.7)

n=1 n=1

Therefore, if O is crisp, we see that H(M) = — Z;’il P(x,)log P(xy).

Remark 5.3 (Bayes’s postulate). Let Q = {w, wa,...,wy} be a finite set with the discrete topology. Consider
the fundamental C*-observable Opnp = (2, 2(Q2), x(.y) in C(£2), which is of course the finest observable in
C(Q). Let pg' be arbitrary subjective state (i.e., py' € #1(£2)). Then, by (5.7), we see that

H(Mc(2) (O, S(p5'))) = — Zp ({wn})log pg'({wn}).

Also, it is well known that (i) sup{H(Mc(@)(Orp,S(p§))): pf € #1(R2)} = logN, (ii) “pf({w,}) =
1/N(Vn)” < “H(M) = log N”. Therefore, the equal weight v, (i.e., v,(D) = #[D]/N (VD C Q) is sometimes
called the state representing “knowing nothing” (i.e., Bayes’s postulate). That is because, if we know nothing
for the system, we of course get maximal information by Mc(o)(Ognp,S). This is the fuzzy theoretical
explanation of “knowing nothing”. All concepts should be defined in terms of “measurement”. That is because
we must always start from the principle (i.e., Axioms 0 and 1) and not the ambiguous word such as “knowing
nothing”.

Example 5.4 (Crisp and fuzzy informations). Let Q = {w;, w,,..., w100} be a set of pupils in some school.
Let O, = (X = {yb,mp}, P(X),b, ) be the crisp C*-observable in the commutative C*-algebra C(Q) such

2 )
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that b¢)y(w,) = 0 (n is odd),= 1 (n is even), and bimy(wn) = 1 = by y(wy,). Also, let O = (¥ =
{ye.ne}, 2(Y), f(.y) be the C*-observable in C*-algebra C(Q2) such that Sy (wn) = (n—1)/99 (Yo, € Q)
and f{,lf}(a)n) =1 — f{y,y(@y). Let pg € M 11(RQ), for example, assume that po = vy, i.e., the equal weight
on Q. Thus, vy({w,}) = 1/100 (Vn). Then, we see, by (5.7), that

H(Mc@)(O06, S(vu))) = —by3 1z log 13l — 1By |0 Log 1By ||
=—3log} —Llogl =log,2 =1 (bit),

H(Me(o)(Or, S(v))) = /Q £ () 108 Fpypy (@Ya(deo) + /Q i} (@) 108 iy (@)a(dd)

—Hf{yf}HL‘ log Hf{yf}HL’ - ||f{nf}HL' log ||f{nf}|lL‘

1
%2/ Alogy AdA+1 = — +1=0278--- (bit).
0

2log,2
For example, assume that the symbol “yy,” [resp. “n,”] in X is interpreted by “boy” [resp. “girl”]. And e
[resp. “n¢”] in Y is interpreted by “fast runner” [resp. “not fast runner”]. When we guess the pure state (%)
of the system S (= S(.)(v4)) in the above situation, it is proper that the crisp information “boy or girl” is
more efficient than the fuzzy information “fast or not fast”.

Remark 5.5 (Fuzzy information theory). “Shannon’s entropy” is usually defined as follows (cf. [1]). Let
(£2,%,P) be a probability space. Let D = {D1,D,,...} be the countable decomposition of Q. Then, the
entropy H(D) of D is defined by H(D) = — >, P(D,)log P(D,). Note that Definition 5.2 is the natural
extension of Shannon’s entropy if we regard the observable O as a “fuzzy decomposition” (cf. Remark 1.9).
However, by the same reason mentioned in Remark 5.3 (or, as emphasized throughout this paper), we should
never start from the mathematical concept “probability space”.

6. Objective method of membership functions

In this section, we introduce “objective method of membership functions” (or in short, “membership function
method”), which is characterized as the objective aspect of “subjective method of membership functions” (cf.
Remark 6.4). And we formulate Zadeh’s theory as the membership function method.

Let o/ = Cp(£2) be a commutative C*-algebra on some locally compact Hausdorff space Q. Let O, =
(X, 20(X), fiy) and Oy = (¥, 20(Y),g,.,) be C*-observables in Co(2). And let O = (X X ¥,2,(X X Y),

h=f )(012 g) be the quasi-product observable with the marginals O, and O,. Here note that the Oy, is
restricted by the condition (1.3) in Remark 1.12.

Let po (€.#11(£2)) be a (subjective) state of the system S. That is, an observer assumes that the system
has the subjective state py. Consider the imaginary C*- measurement Mc,2)(012,5(po)) and its normalized
W *-algebraic representation MLoo(Q;pO)((-)lz,S( 1)). And assume that the measured value is equal to (x,y)
(€ X x Y). Thus, the observer considers, by (5.2), that the new state (i.e., new density function) p T} (=

ﬁ(x,y) = LI{-I(Qa pO)) is equal to

h{<.\:_r>} (w)
Jo By (@)po(dw)’

Pl (@) =
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That is, the reduction “L!(R; pg) > 1 — 5 w) € L! (R; pg)” occurs in observer’s brain. More generally,
. +1 {@n} +1
it 1s reasonable to consider that

(1) [S] when the observer knows that the measured value belongs to & X I' (€ Z¢(X X Y)), he considers

that the new state g, (€ LL,(2;po)) is equal to

_ N fQ h{(.\‘.)')} (w)po(dw) _ . hsxr(w)
pEXF(w) B (x,y)EZEXF fQ hsxr(w)pﬂ(dw) ' p{(x,y)}(w) a fQ hEXf(w)pO(dw)‘

Here recall (5.4), and note that “density function” is meaningless from the objective point of view (since
po 1s subjective, i.e., it depends on observer’s knowledge). Therefore, from the objective point of view, the
above subjective statement [S] implies (and is implied by) that

(1) [O] when the observer knows that the measured value belongs to & X I' (€ Z¢(X X Y)), he considers

that the new membership function is equal to %, ..

We believe that this statement [O] (i.e., the objective aspect of the subjective statement [S]) is the essence of
Zadeh’s theory. Of course the statement [O] is more fundamental than the above [S]. That is because there
should always exist “objectivity” before “subjectivity”.

In general, let O = ( Xcx Xi, Po( Xicgx Xk )s X,?eK /%) be any fixed quasi-product C*-observable in a
commutative C*-algebra Cy(£2). The C*-observable O can be regarded as the following correspondence:

(6]
@()(XX]C)SElXEzX”-XE'mH<ka> € Co(92).
By XEy X XE |k

keK kek

That is, the O determines the “fuzzy sets operation” such as

“usual sets operation” on X X; — “fuzzy sets operation” on Q.
keK

Example 6.1 (Label, density function, membership function). Consider the simultaneous measurement Mc(g)

(Op X" 0f = X XY,2X X7Y) (b x" F)y),S(po)), where Oy, and O are as in Example 5.4 (crisp and
fuzzy informations). Then, we get the following diagram:

(Label) (Density function) (Membership function)
BOY(= {»} x {yr.n¢}) T b{i{}ygc}j;))z(dw) biyy(@)
FAST(= {1} x (1) N fon@)
BOY A FAST(= {1} x {3}) -~ T b{i{}yfi,()cjfzf}y(f;;z(dw) by (@) fiyy (o)
bimy(@)

—BOY(= {m} x {ys,n}) b,y (@)

fQ b{izb}(a))pO(dw)
and so on. Here note again that “density function” is meaningless from the objective point of view since py is
subjective , i.e., it depends on observer’s knowledge. From the objective point of view, “fuzzy sets operation”
(i.e., the correspondence “label” — “membership function”) is essential.

Remark 6.2 (“Extension principle”). Without loss of generality (cf. Remark 1.3), assume that ©; and Q, are
compact. Consider a continuous map ¢ : ; — €, which induces the C*-homomorphism @ : C(2,) — C(Q;)
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such that C(£,) 3 f5(+) 2 f2(9(-)) € C(£21). Let f be a membership function in C(Q;). We recommend the
reader to calculate inf{ f3(w2): f7<Dfr, 0< /o<1, f2 € C(2,)}. He will easily find “extension principle”
(cf. [16]) in this exercise.

Remark 6.3. We must always consider a membership function as the element of an observable. This does not
impose restrictions on our theory. That is because, for any membership function f (€ Co(Q)), we can always
construct a C*-observable O = ({y,n}, Z({y,n}), f.)) such that f{1(w) = f(w) (Vo € Q) and Sfiny(w) =
I — f(w).

Remark 6.4. In this section we introduce “objective method of membership functions” as a consequence of
“subjective method of membership functions”. However, it is clear that “objective method of membership func-
tions” is independent of “subjective method of membership functions”. That is, we can jump from Section 2
to this section. The reason that we did not do so is that “objectivity” and “subjectivity” should be appreciated
in comparison with each other.

Remark 6.5. In quantum mechanics, “objectivity” and “subjectivity” are sometimes mixed (cf. Remark 4.6).
Therefore, if we restrict ourselves to commutative case, we can sum up the actual relation between “objective

fuzzy measurement theory” and “subjective fuzzy measurement theory” in the following diagram:
[“objectivity™] [“subjectivity”]

principle, “true or not true” method, “useful or not useful”

individualistic, real statistical, imaginary

C*-algebra, Cy(2), topology W*-algebra, L°°(Q; i), measure theory

membership function density function

1171171

Newtonian mechanics statistical mechanics.

(Also, see Remark 4.8.) Kolmogorov’s theory is the mathematical theory concerning the probability space
(X,7,P) induced by M - (X, 7, F), S(p)) (i.e., P(-) = p(F(-))). Therefore, “fuzzy sets” cannot be found
in his theory. Also, Shannon’s entropy (or more generally, “fuzzy information theory” in Remark 5.5) and
Bayes’s postulate (cf. Remark 5.3) belong to the category of “subjectivity”. And furthermore, “fuzzy measure
theory” (cf. Remark 3.12) is purely subjective, i.c., beyond “subjectivity”. On the other hand, Zadeh’s theory
completely belongs to the category of “objectivity”. Now we can achieve the second purpose of this paper,
that is, these fuzzy theories are characterized as some aspects of fuzzy measurement theory. Namely, behind
these theories, Axioms 0 and 1 exist. This is the reason that these theories are quite applicable in spite that
they have no principle but only method (cf. Remark 3.3).

In this section we emphasized the objective aspect of Zadeh’s theory. This may not be a usual opinion. In
fact, his theory was first invented as the mathematical tool to analyze the ambiguity of the words. Therefore,
some may consider that the essence of Zadeh’s theory is “subjective”. However, we believe that Zadeh’s
theory is objective (= individualistic) as the method to analyze the ambiguity of the words.

As stated in [9], the “words” are not essential in our theory. That is because “observables” exist before
“words”. However, we think that we must mention something about the “words problem” in our theory. Thus,
let us mention it. It is quite reasonable to consider that, in order to represent what he want to assert, the
researcher can choose a suitable mathematical theory. The researchers (of fuzzy sets theory) do not choose
“measure theory”. In other words, they consider that “measure theory” is not proper for analyzing the ambiguity
of the words. The reason is clear, that is, they are not satisfied with “statistical” statements such as “She is
beautiful in the average sense”. They want to analyze the ambiguity of the words from the “individualistic”
point of view. '
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Now consider a tensor product commutative C*-algebra C(Q1) ® C(£,) = C(2; X ;). And consider a
C*-observable O = (X = {x1,x2,..., %, }, 2(X ), h(.)) in C(; X €,). Assume that the O is objective, that
is, it is the mathematical representation of a certain actual observable Ox. For any fixed x; (€ X), the A,y is
of course regarded as a “fuzzy set” on Q; X €,. Here note that L = {g € C(22): 0<g(m2)<1(Vw, € ),
ie., g is a “fuzzy set” on ,} is a lattice. Therefore, for any fixed x; (€ X) and any fixed a)? (e Q)), the
hix, }(w?, -) can be regarded as a “fuzzy set” on €, i.e., an element of L. That is, the /i, is also regarded
as “L-fuzzy set” on Q; (cf. [3]). Therefore, the C*-observable O in the tensor algebra C(Q2; X €,) may be
called a L-fuzzy observable.

Also, consider a certain mixed state p¥' (€ S"(C(22)") = M +1(2,)). And consider the “C*-measurement”
Mc(@, x0,)(0,S(x @ p3')). This may be called a “probablistic C*-observable in C(£21)” since the pair [/,
(s, %), p5'] is a “probabilistic set on £2,” in the sense of [4]. Also, define the C*-observable O = (X, 2(X), 1))
in C(€Qy) such that fi. (1) = ¢y (03, ey (@1, ))C(Q ) (Vxr € X,Vw, € Q;), which should be called the
average C*-observable of the probabilistic C*-observable Mc(q, x0,) (O, S(*®p5'). The average C*-observable
O, clearly has the subjective (= statistical) aspect since the mixed state p5' is hidden in this C*-observable.

Here consider the reverse of the above arguments. That is, let us start from the average C*-observable O,
in C(Q;). The researchers (of fuzzy sets theory) may not be concerned with this observable O, since they
are not satisfied with “statistical” statements. They want to analyze the O; more precisely. And, after some
observations, they will find the “probabilistic C*-observable” Mc(q, x2,)(O0,S(x ® p3')) in C(£2;). However,
the subjective state pJ' may not concern them. And finally they reach the conclusion that the most impor-
tant is the (objective) observable O (= (x) in a tensor algebra C(Q; X €,), which is also regarded as a
L-fuzzy observable. This is the standard way in the research of fuzzy sets theory. Therefore, we assert that
the researchers (of fuzzy sets theory) investigate the ambiguity of the words from the objective (~ individu-
alistic) point of view. This is no wonder if we consider that many words were created in order to represent
“observables”.

7. Heisenberg’s uncertainty relation

Most physicists confuse two “uncertainty relations” in quantum mechanics. Now let us explain this.

One is statistical uncertainty relation. Let QO and P be a position quantity and a momentum quantity,
respectively (i.e. Q and P are self-adjoint operators on a Hilbert space V' satisfying that QP — PQ = ih, fi is
the Plank constant), and let p be a state (i.e. p € S"(B(V).) = Tr,,(V)) of a quantum system. Consider two
W -measurements MpH([O] = (R, R, Ep),S(p)) and Mp([P] = (R, Br,Ep),S(p)). The expectations are
defined by 6(Mp)([QL,S(5))) = [g 4 P(Eg(dA)) = tr[f- Oly and (Mg ([P1.S(p))) = tr[p- Ply (cf. the
formula (4.7)). Also, the variances are as follows (cf. the formula (4.8)):

var(Mp(r)([0],5(p))) = N &M\ (101, S(P)))I* p(Eg(d2))

=te[p - (Q — tr[pQlr )]y
and var(Mp(y\([P],S(p))) = tr[p - (P — tr[pP]y)*]y. From this and a simple calculation, we can easily obtain
the following uncertainty relation:
- 1_h
[var(Mp(y([Q1, S(5))]* - [var(Mpr([P), S(5))]* = Z7
This is called the statistical uncertainty relation (discovered by Robertson [14] in 1929).

Another is the individualistic uncertainty relation, which was discovered by Heisenberg in 1927 usmg the
famous thought experiment of y-rays microscope. He asserted as follows:
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(A) The particle position q and momentum p can be measured “simultaneously”, if the errors A(q) and
A(p) in determining the particle position and momentum are permitted to be non-zero. Moreover, for any
¢ > 0, we can take the “simultaneous” measurement of the position q and momentum p such that A(q) < ¢

(or A(p) < e).
(B) However, the following Heisenberg’s uncertainty relation holds:

4(q)- A(p)=h

for all “simultaneous” measurements of the particle position and momentum.

We of course call it Heisenberg’s uncertainty relation.

Most physicists confuse Heisenberg’s uncertainty relation with statistical uncertainty relation. That is, sta-
tistical uncertainty relation is usually regarded as the mathematical representation of Heisenberg’s uncertainty
relation (though von Neumann commented on this gap in his famous book [13]). The “error” is clearly
different from “[variance]'/?”. In [6], we pointed out this misunderstanding among physicists and proposed
Proposition 1.1 (in Section 1) as the mathematical foundation of Heisenberg’s uncertainty relation. However,
we do not think that Proposition 1.1 is the final version of Heisenberg’s uncertainty relation. That is because
the meaning of the quantities ||(dx — 4 ® I)(¥ @ ¢o)|lreu, k = 1,2, is not yet clear in Proposition 1.1.

Here note that Heisenberg’s uncertainty relation includes “paradox” in itself. That is, it is “reasonable”
to consider that “error” = |“true value” — “measured value”| and “true value” = “measured value by exact
measurement”. If it is true, the “error” in Heisenberg’s uncertainty relation cannot be defined. That is because
the statement (B) asserts that exact measurement does not exit. Therefore, the question “What is error ?”
is significant. This is the original motivation that we propose “(objective and subjective) fuzzy measurement
theory”.

We begin with the following definition.

Definition 7.1 (Approximate simultaneous measurement and its error). Let V be a Hilbert space. Let 4 and
A, be self-adjoint operators (i.e., physical quantities ) in a Hilbert space V. Put [4x] = (R, %R, Ey,), e, the

spectral measure of A;. Then, a W *-measurement MB(V)((_)12 = (Rz,QE‘Rz,F = F Xolez), S(x)) is called
an approximate simultaneous measurement of 4; and 4,, if it satisfies the following conditions (i) and (ii):
(1) for each k = 1,2, the kth marginal W ™*-observable Or = (R, By, Fy) (of O,,) and the crisp W*-
observable [4x] = (R, #Rr, E4, ) commute,
(ii) for each k = 1,2, EMpr)(Or S(W) (W) = EMry([4x], S(W) (¥]))) holds, that s,

/kaW,Fk(dxk)WV :/R/1<lp:EAk(d/1)l/j>V (= (Y, 4x)y) (VY € Dom(4y)).

Also, the kth measurement error of the approximate simultaneous measurement Mp(y) (012,5(p)) of 4, and
A4, is defined by A(Mp)(Or X"[44],5(5))) (cf. Definition 4.12).

Here we prepare two lemmas.

Lemma 7.2. Let A) and A, be self-adjoint operators in a Hilbert space V. Let [/fl,/fz, U,A o] be an approx-
imate simultaneous measurement of A, and A, in the sense of Proposition 1.1. Put [A;] = (R, %R, E q ).

Define the W*-observable 0y = (Rz,gﬁ’Rz, F=F XODFZ) such that

(Y1, F(E\ X Ex )y = <¢1 ® o, <<EA”, X EA‘2> (&1 X 52)) (V2 ® ¢o)> (7.1)

reu

(Y, YW € VVE| € Br,VE, € HBR).
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(Here note that the uniqueness of E; X"E i, 1S guaranteed by Theorem 4.11). Then, we see

(1) the W*-measurement MB(V)(C)]Z,S(*)) is an approximate simultaneous measurement of A, and A, in
the sense of Definition 7.1.

(i) AMpy (O X (4L SUWY WD) = || (A — 4 @ (W @ ¢o) ||vou for all Y € Dom(Ay).

Proof. Note that (7.1) implies that (Y1, Fx(Z)W2)r = (¢ ®¢0,EA~k(E)(1//2 R bo)Yyreou (YWY, € V,YE € BR).
Therefore we see, from the commutativity of E 4, and E4, g, that

(Y1, Fe(E)E4, (B W)y = (1 @ 0, E4,(E) - (E4(E") @ I)(¥2 ® do))veu
= (V1 @ ¢o, (E4(E)RT) E; (B)2 ® do))reu = ‘<¢1,EAA. ENF(EWa)r,

which implies that £, and F; commute. Also, we see that, for any Y in Dom(4;),

[ APy = [ 1o 0B @00 © dolvou
= (Y ® po, Ax(¥ ® d0))vou = (W, A)y = /R/1<¢=EAk(di)lﬁ>V.
Therefore, we get (i). Next we see that, for any i € Dom(4;),

| (A — 4k @ DY ® o) |lveu
12
= [//RZ(M — /12)2(‘// X ¢0>EA}.(dil) (Eg(d) @ DY ® ¢0)>V®U}

1/2 "
= [//Rz(/h = /12)2(¢,Fk(d/11)EAk(dlz)lMV} =4 (MB(V) (Ok X [Ak],S(Il,D)W[))) _ (7.2)

This completes the proof. [J

Remark 7.3. Put O; = (R, Zw.E; ), k = 1,2. Then, the above (7.2) implies that

Ak — 4 @ W @ o) ||reu = 4 <MB(V®U) <6k X [Ar @ 11,8(|¢ ® o) (¥ ® ¢0|)>> : (7.3)

Thus, if we consider Heisen‘tgerg’s uncertainty relation in the tensor Hilbert space V' ® U, this (7.3) has already
clarified the meaning of || (4x —Ar ®1)(Y R do) ||rou. Therefore, Theorem 7.5 (stated later) is another answer
without a tensor Hilbert space.

Lemma 7.4. Let Ay and A, be self-adjoint operators in a Hilbert space V. Let Mp V)(Olz = (Rz,@Rz,F =

F XO'2 F3),8(%)) be an approximate simultaneous measurement of Ay and A, in the sense of Definition 7.1.
Let [F, U, ¢po] be any Naimark—Holevo extension of Oy, that is, it satisfies the following conditions (a) and
(b): (a) (R*, By:,F) is a crisp W*-observable in B(V @ U) and ¢ € U such that l|pollu =1, (b) it holds
that <l//1,F(El X EzA)l//2>V = <lp1 X Qbo,F(El X ) ® ¢0)>V®U My, Y, € V, VE| € By, VEAZ € XBR).
(The existence of [F,U,¢o] is guaranteed by Naimark—Holevo theorem; cf. [5]). Put E;(E) = F(E x R),
E;(E)=FR % &) and Ay = [ JE; (d1). Then, we see

(i) the quartet [Ay, 4y, U, do] is an approximate simultaneous measurement of Ay and A, in the sense of
Proposition 1.1.

(i) A(May(Or X T4xL, SV (W)) = || (dk — 4 @ DY @ o) |lyou for all y € Dom(Ag).
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Proof. By the same way in the proof of Lemma 7.2, we can easily get the proof.

Now we can propose the mathematical foundation of Heisenberg’s uncertainty relation. The reader should
remark the analogy between the measurement error of pencil’s length (Example 4.13) and that of Heisenberg’s
uncertainty relation.

Theorem 7.5 (Heisenberg’s uncertainty relation). Let A, and A, be physical quantities (i.e., s‘elf-adjoint
operators) in a Hilbert space V. Then, the followings hold: _
(A) There exists an approximate simultaneous measurement Mp\(O12, S(x)) of 41 and 4,. Furthermore,

Jfor any positive €, we can take this MB(V)((_)D = (R%, By, F = F ><012 Fy), S(x)) such that

A <MB(V) <6k X [Ak]aS(ﬁ)>>

e(tr[pA3]y)?  Vp € Dom(A) N Tr,, (V)  if k=1,
e~ N (te[pA21)Y? Yp € Dom(4) N Tr, (V) if k=2,

where “p € Dom(A4)” implies that [y * tr[f - E4(dA)]y < oo. )
- O

(B) For any approximate simultaneous measurement Mpy (012 = (R?, Bge, F = F, X " Fy), S(x)) of
Ay and A, and for any p € Dom(A;)NDom(4,)NTro(V), the following inequality (Heisenberg’s uncertainty

relation) holds:

u u
4 (MB(V) (01 X [Al],S(ﬁ)>> L (MB(V) (02 X[Az],5(5)>>
>hﬂﬁ-QﬁA2—ubA1ﬂVV2
Proof. First we assume that p is a pure state, i.e., p = |)(|. Then, the statement (A) immediately follows
from Proposition 1.1 (A) and Lemma 7.2. Also, we can easily see, by Lemma 7.4 and Proposition 1.1 (B),
that the statement (B) holds since it holds that tr[p - (414s — 4241y = (A1, Ay — (Ao, A1)y

Next we consider the general case that p = >, o;[Yp) (Y|, where {y|4 € A} is a complete orthonormal
basis in V and {a,};c is a sequence of non-negative numbers such that seq @2 = 1. Note that

o 12
A (MB(V) (ok X[Ak],S(m)) 5 [ J[ - z|2tr[ﬁFk<dxk>EAk(dz)]V}
- 12
= | S [ b= AP D) Frc@mIB @0l

LAeA
27 1/2
} . (74)

Therefore, from this and the statement (A) for [y;)(;|, we see, for example (i.e., £ = 1), that, for any
p € Dom(4y), i.e., p =, V) (Ys] such that >, o||A1n|[3 = [g A2tr[f - E4,(dA)]y < oo,

=| Y, o

LEA

4 (MB(V) <Ok >“< [Ak],S(WH(‘/’A[)))

" 2
{A (MB(V) <01 X[f‘h]ﬁ(ﬁ)))} = > wmed|lplly = 3 weual(Y) (Wa)4ily

reA r€A

ek [( > a;~m><w,~h|) A%} = 2ulpdl]).
l/

reA
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|te[p - (A1dy — 424Dy (/2 = | 3 (A, Aon) v — (Ao, A1) v)

Thus this completes the proof of (A) for mixed states. Also, from (7.4) and the statement (B) for [y;) (Y],
reA
< X wl{din, dan) v — (Ao, Ardn)v|/2

we see that
/ >
reA

<> a4 <MB(V) (01 >“< [A1]>S(|l/’)~><%|)>> -4 (MB(V) <(_)2 >“< [Az],S(|l//A><¢A|)>>

rEA
2} 1/2

2 1/2
jl (by Schwarz inequality)

A <MB(V) <61 ;<[A1],S(1Wz><lﬁz|)>>

reAd

<{ZO€A

.[Zm

ISV

A <MB(V) <62 ;<[A2]>S(|%><%|)>)

=4 <MB(V) (Ol X [Al],S(ﬁ)>> A <MB(V) <(_)2 X [Az],S(ﬁ)>) -

This completes the proof. [

8. Conclusions

In this paper, we proposed “subjective fuzzy measurement theory”. This theory was characterized as the
subjective (or, statistical) method of “objective fuzzy measurement theory”. The original motivation was to
define “measurement error” in a general situation. In fact, in order to appreciate Example 4.13 (the measure-
ment error of pencil’s length), we must understand almost contents in this paper except the arguments (i.e.,
fuzzy sets theory) in Section 6. And, under these preparations, we clarified Heisenberg’s uncertainty relation.

We think that our motivation was proper. That is because “subjective fuzzy measurement theory” is a
general fuzzy theory. Other fuzzy theories (except fuzzy sets theory) are characterized as some aspects of
subjective fuzzy measurement theory (cf. Remark 6.5). Also we can assert the objective aspect of fuzzy sets
theory, that is, it belongs to “objective fuzzy measurement theory”. However, the most important assertion is
not “generality” but “objectivity”. That is, all results in this paper are consequences of Axioms 0 and 1 (i.e.,
objective fuzzy measurement theory). In this sense, Theorem 3.6 is essential (cf. Remark 4.8).

We believe that our observation is merely the first step in fuzzy measurement theory. Thus we expect the
developments of this theory.

Note added in proof

For the further arguments concerning fuzzy sets theory, see my paper “Fuzzy logic in measurements”
(submitted to Fuzzy sets and Systems). The preprint can be found on my homepage [http://www.math.
keio.ac.jp/"ishikawal].
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