論文リスト

  1. R. Nemoto and T. Iguchi, Solvability of the initial value problem to the Isobe-Kakinuma model for water waves, arXiv:1705.08872. PDF

  2. M. Aiki and T. Iguchi, Motion of a vortex filament in an external flow, arXiv:1704.04003. PDF

  3. T. Iguchi, Isobe-Kakinuma model for water waves as a higher order shallow water approximation, arXiv:1704.02419. PDF

  4. H. Ueno and T. Iguchi, A mathematical justification of a thin film approximation for the flow down an inclined plane, J. Math. Anal. Appl., 444 (2016), 804--824. LINK

  5. H. Ueno, A. Shiraishi, and T. Iguchi, Uniform estimates for the flow of a viscous incompressible fluid down an inclined plane in the thin film regime, J. Math. Anal. Appl., 436 (2016), 248--287. LINK

  6. Y. Murakami and T. Iguchi, Solvability of the initial value problem to a model system for water waves, Kodai Math. J., 38 (2015), 470--491. LINK

  7. H. Fujiwara and T. Iguchi, A shallow water approximation for water waves over a moving bottom, Adv. Stud. Pure Math., 64 (2015), 77--88.

  8. M. Aiki and T. Iguchi, Motion of a vortex filament with axial flow in the half space, Ann. Inst. H. Poincare Anal. Non Lineaire, 31 (2014), 1311--1335. LINK

  9. T. Iguchi, Initial value problem for water waves and shallow water and long wave approximations, Emerging Topics on Differential Equations and Their Applications, 24--40, Nankai Ser. Pure Appl. Math. Theoret. Phys., 10, World Sci. Publ., Hackensack, NJ, 2013. LINK

  10. M. Aiki and T. Iguchi, Solvability of an initial-boundary value problem for a second order parabolic system with a third order dispersion term, SIAM J. Math. Anal., 44 (2012), 3388--3411. LINK

  11. M. Aiki and T. Iguchi, Motion of a vortex filament in the half-space, Nonlinear Analysis, TMA, 75 (2012), 5180--5185. LINK

  12. T. Iguchi, A mathematical analysis of tsunami generation in shallow water due to seabed deformation, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 551--608. LINK

  13. T. Iguchi, A shallow water approximation for water waves, J. Math. Kyoto Univ., 49 (2009), 13--55. LINK

  14. K. Ohi and T. Iguchi, A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation, Discrete Contin. Dyn. Syst., 23 (2009), 1205--1240. LINK

  15. T. Iguchi, A long wave approximation for capillary-gravity waves and the Kawahara equation, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 179--220. LINK

  16. T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom, Comm. Partial Differential Equations, 32 (2007), 37--85. LINK

  17. T. Iguchi, A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves, Kyushu J. Math., 60 (2006), 267--303. LINK

  18. T. Iguchi and P. G. LeFloch, Existence theory for hyperbolic systems of conservation laws with general flux-functions, Arch. Ration. Mech. Anal., 168 (2003), 165--244. LINK

  19. T. Iguchi, On steady surface waves over a periodic bottom: relations between the pattern of imperfect bifurcation and the shape of the bottom, Wave Motion, 37 (2003), 219--239. LINK

  20. T. Iguchi and S. Kawashima, On space-time decay properties of solutions to hyperbolic-elliptic coupled systems, Hiroshima Math. J., 32 (2002), 229--308. LINK

  21. T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves, Funkcial. Ekvac., 44 (2001), 219--241. LINK

  22. T. Iguchi, On steady irrotational flow of incompressible ideal fluid in a circular domain with free surface, Ann. Univ. Ferrara Sez. VII Sc. Mat., 46 (2000), 35--60. LINK

  23. T. Iguchi, N. Tanaka and A. Tani, On a free boundary problem for an incompressible ideal fluid in two space dimensions, Adv. Math. Sci. Appl., 9 (1999), 415--472.

  24. T. Iguchi, On the irrotational flow of incompressible ideal fluid in a circular domain with free surface, Publ. Res. Inst. Math. Sci., 34 (1998), 525--565. LINK

  25. T. Iguchi, Two-phase problem for two-dimensional water waves of finite depth, Math. Models Meth. Appl. Sci., 7 (1997), 791--821. LINK

  26. T. Iguchi, N. Tanaka and A. Tani, On the two-phase free boundary problem for two-dimensional water waves, Math. Ann., 309 (1997), 199--223. LINK

  27. T. Iguchi, The incompressible limit and the initial layer of the compressible Euler equation in Rn+, Math. Meth. in the Appl. Sci., 20 (1997), 945--958. LINK

戻る

更新日: 2017年5月25日