
Euler systems (Iwasawa 2017 notes)

David Loeffler

Lecture 1. Galois representations

References for this lecture: for §1 and §2, Bellaiche’s CMI notes on the Bloch–Kato conjecture; for §3,
Diamond–Shurman, Darmon–Diamond–Taylor.

1. Galois representations

1.1. Definitions. Let K be a number field, K its algebraic closure, GK = Gal(K/K); and let p be a
prime. We’re interested in representations of GK on finite-dimensional Qp-vector spaces V .

We always assume that

(1) ρ : GK → Aut(V ) ∼= GLd(Qp) is continuous (where d = dim(V )), with respect to profinite topology
of GK and the p-adic topology on GLd(Qp).

(2) V is “unramified almost everywhere”: for all but finitely many prime ideals v of K, we have
ρ(Iv) = {1}, where Iv is an1 inertia group at v.

1.2. Examples.

The representation Zp(1). Let µpn = {x ∈ K× : xp
n

= 1}. Then µpn is finite cyclic of order pn and GK
acts on it.

P-power map sends µpn+1 → µpn and we define

Zp(1) := lim←−
n

µpn , Qp(1) := Zp(1)⊗Qp.

This is a 1-dimensional continuous representation, unramified outside the primes dividing p; GK acts by
“cyclotomic character” χcyc : GK → Z×p .

(Notation: for any V , n ∈ Z, we set V (n) = V ⊗Qp(1)⊗n.)

Tate modules of elliptic curves. E/K elliptic curve⇒ E(K) abelian group withGK-action. Let E(K)[pn]
subgroup of pn-torsion points.

Define

Tp(E) := lim←−
n

E(K)[pn] (w.r.t. multiplication-by-p maps), Vp(E) := Tp(E)⊗Qp.

2-dimensional cts rep, unramified outside {v : v | p} ∪ {v : E has bad reduction at v}.

1Iv depends on a choice of prime of K above v, but only up to conjugation in GK , so whether or not V is unramified at v
is well-defined.
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Etale cohomology. Let X/K be a smooth algebraic variety. We can define vector spaces

Hi
ét(XK ,Qp) for 0 ≤ i ≤ 2 dimX,

which are finite-dimensional p-adic Galois representations, unramified outside p and primes of bad reduction2

of X.

1.3. Representations coming from geometry. My second example is a special case of the third:
for an elliptic curve, it turns out that we have Vp(E) ∼= H1

ét(EK ,Qp)(1).

Definition. We say a Galois rep V comes from geometry if it is a subquotient of Hi
ét(XK ,Qp)(j) for some

variety X/K and some integers i, j.

So all my examples come from geometry. In these lectures we’re only ever going to be interested in repre-
sentations coming from geometry.

Remark. Conjecturally the representations coming from geometry should be exactly those which are contin-
uous, unramified almost everywhere, and potentially semistable at the primes above p (a technical condition
from p-adic Hodge theory). This is called the Fontaine–Mazur conjecture.

2. L-functions

2.1. Local Euler factors. Let V as above, v unramified prime. Then ρ(Frobv) well-defined up to
conjugacy, where Frobv arithmetic Frobenius.

Definition. Local Euler factor of V at v

Pv(V, t) := det(1− tρ(Frob−1
v )) ∈ Qp[t]

Examples:

V Pv(V, t)
Qp 1− t

Qp(n) 1− t
qnv
, qv = Norm(v)

H1(EK ,Qp) 1− av(E)t+ qvt
2

2.2. Global L-functions (sketch). Assume V comes from geometry, and V is semisimple (direct sum
of irreducibles). Then Pv(V, t) has coefficients in Q (Deligne); and there is a way of defining Pv(V, t) for bad
primes v (case v | p is hardest).

Fix an embedding ι : Q ↪→ C. Then we consider the product

L(V, s) :=
∏

v prime

Pv(V, q
−s
v )−1.

Miraculously, this converges for <(s)� 0.

E.g. for K = Q, V = Qp(n) this is ζ(s + n); for V = H1(EK ,Qp) it is L(E/K, s) (Hasse–Weil L-function
of E).

Conjecture. For V coming from geometry, L(V, s) has meromorphic continuation to s ∈ C with finitely
many poles, and satisfies a functional equation relating L(V, s) and L(V ∗, 1− s).

Note that if V is geometric and semisimple, so is its dual V ∗. This conjecture is of course super-super-hard
– the only cases where it is known is where we can relate V to something automorphic, e.g. a modular form.

2This is a little delicate to define properly if we don’t assume X to be proper over K. Formally, we say X has “good
reduction” at v if it’s isomorphic to the complement of a relative normal crossing divisor in a smooth proper OK,v-scheme.
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3. Modular forms

We’re particularly interested in the Galois representations coming from modular forms, which come from
geometry via modular curves. For simplicity, in these lectures we’ll only treat weight 2 modular forms.

3.1. Modular curves. For N ≥ 1 let

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : c = 0, a = d = 1 mod N

}
.

This acts on the upper half-plane H via τ 7→ aτ+b
cτ+d . It turns out that the quotient is naturally an algebraic

variety:

Theorem. For N ≥ 4 there is an algebraic variety Y1(N) over Q with the following properties:

• Y1(N) is a smooth geometrically connected affine curve.
• For any field extension3 F/Q, the F -points of Y1(N) biject with isomorphism classes of pairs (E,P ),

where E/F is an elliptic curve and P is a point of order N on E.
• Y1(N)(C) ∼= Γ1(N)\H, via the map sending τ ∈ H to (Eτ , Pτ ) where Eτ = C/(Z + Zτ) and
Pτ = 1/N mod Z + Zτ .

(Much stronger theorems are known – for instance, Y1(N) has a canonical model over Z with good reduction
away from the primes dividing N – but we won’t need this just now.)

We’ll also use the modular curve of level Γ(N), the kernel of SL2(Z)→ SL2(Z/NZ). The quotient Γ(N)\H
is also canonically the C-points of a curve over Q, which we’ll denote by Y (N). There’s a natural map
Y (N)→ Y1(N) defined over Q.

Because Γ(N) is normal in SL2(Z), the quotient SL2(Z)/Γ(N) ∼= SL2(Z/NZ) acts on the C-points of Y (N).
This action does not descend to Q; however, we have the following rather elegant picture:

Theorem (Shimura). The base-extension Y (N)Q(µm) has a left action of GL2(Z/NZ) such that

• the action of the subgroup SL2(Z/NZ) is the expected one on C-points,

• the action of Gal(Q(µm)/Q) ∼= (Z/NZ)× is given by matrices of the form

(
u 0
0 1

)
.

This is a little confusing, so let me make it slightly more concrete. We can write Y (N) = Spec(R) for some
Q-algebra R. Shimura’s theorem tells us that there is a (right) action of GL2(Z/NZ) on R ⊗ Q(µN ) for

which R is the invariants under

(
∗ 0
0 1

)
. However, we don’t get an action of GL2(Z/NZ) on Y (N)(C),

because not all GL2 elements act by Q(µN )-algebra automorphisms; only elements of SL2 do, so it is only
SL2(Z/NZ) which acts on the set of C-points of Y (N) (and the action is the one we expect).

Remark. There lots of choices of conventions for Q-models for Y1(N) and Y (N) in the literature. Everyone
agrees what Y1(N) means over C, but there are two different ways to descend it to Q. Our conventions
agree with Diamond–Shurman, for instance.

For Y (N) the situation is even worse, since many authors (including Kato, and some papers of my own) use
the notation Y (N) for a non-connected curve over Q whose C-points are the disjoint union of ϕ(N) copies
of Γ(N)\H; this is more natural from an adèlic viewpoint.

3.2. Modular Galois representations. Let f =
∑
anq

n be a cuspidal modular eigenform, of weight
2, new of level N , normalised so that a1 = 1.

Then there is a number field L such that all an ∈ L. I’m going to suppose4 that L embeds into Qp, and pick
such an embedding.

3Any Q-algebra, in fact; this is important if you want to make precise the idea that Y1(N) represents a functor.
4This is only because I didn’t set up the theory of p-adic Galois representations with coefficients in a finite extension of

Qp. The general case is no harder, it’s just a little more notation to keep track of.
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Definition. We let Vp(f) be the largest subspace of H1
ét(Y1(N)Q,Qp) on which the Hecke operators T (`),

for ` - N , act as multiplication by a`(f).

By construction, Vp(f) is a Galois representation coming from geometry. However, one can also show that

• Vp(f) is 2-dimensional and irreducible.
• Vp(f) is a direct summand of H1

ét (not just a subspace).

• For ` - pN , Vp(f) is unramified at ` and the trace of Frob−1
` on Vp(f) is a`(f). More precisely, the

local Euler factor P`(Vp(f), t) is 1−a`(f)t+ `χ(`)t2, where χ is the character of f . Thus the global
L-series L(Vp(f), s) is just the L-series of f ,

L(f, s) =
∑

an(f)n−s.

In particular if L = Q, so that f corresponds to an elliptic curve E, then Vp(f) ∼= H1
ét

(
EQ,Qp

)
.

• Vp(f)∗ = Vp(f ⊗ χ−1)(1).

(Warning: in Diamond–Shurman chapter 9, the representation they denote by ρf,p is the dual of our Vp(f),

which is cancelled out by the fact that they use Frobp rather than Frob−1
p to define the Euler factor.)

3.3. Products of modular forms. If you take two newforms f , g, and concentrate on the Galois
representation V = Vp(f)⊗ Vp(g), then using the Kunneth formula for étale cohomology you can show that

V is a direct summand of H2
ét

(
(Y × Y )Q,Qp

)
for Y = Y1(N) (any N divisible by Nf and Ng). The same

works, of course, for three (or more) modular forms.
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Lecture 2. Galois cohomology and Selmer groups

References for this lecture: Bellaiche’s notes are fantastic for §4. For §5, the best source is probably chapter
3 of Rubin’s orange book “Euler Systems”.

4. Galois cohomology

4.1. Setup. There is a cohomology theory for Galois representations5: for V a GK-rep, we get Qp-
vector spaces Hi(K,V ), zero unless i = 0, 1, 2. Mostly we care about H0 and H1, which are given as
follows

H0(K,V ) = V GK

H1(K,V ) =
{cts fcns s : GK → V such that s(gh) = s(g) + gs(h)}
{fcns of the form s(g) = gv − v for some v ∈ V }

.

These are well-behaved: short exact sequences of V ’s give long exact sequences of cohomology, for instance.
Unfortunately they’re not finite-dimensional in general.

4.2. The Kummer map. For V = Qp(1) the Galois cohomology is related to the multiplicative group
K∗. To see this, we have to first think a bit about cohomology with finite coefficients.

For any n, we have a short exact sequence

0 - µpn - K
× [pn]- K

× - 0

which leads to a long exact sequence

0 - µGK
pn

- K×
[pn]- K× - H1(K,µpn)

and thus an injection6

K× ⊗ Z/pnZ ⊂ - H1(K,µpn).

Passing to the inverse limit we get a map (Kummer map)

κp : K× ⊗ Zp ⊂ - H1(K,Zp(1)) or K× ⊗Qp
⊂ - H1(K,Qp(1)).

Remark. This already shows that H1(K,Qp(1)) can’t be finite-dimensional, because K× has countably
infinite rank.

The same argument works for elliptic curves: we get an embedding

E(K)⊗Qp
⊂ - H1(K,Vp(E)).

4.3. Selmer groups. Useful to “cut down to size” by imposing extra conditions on our H1 elements.
Note that we have maps

Hi(K,V )→ Hi(Kv, V ) for all primes v

Definition. A local condition on V at prime v is a submodule Fv ⊆ H1(Kv, V ).

Examples:

• strict local condition Fv,strict = {0}
• relaxed local condition Fv,relaxed = everything
• unramified local condition

Fv,ur = image
(
H1(GKv

/Iv, V
Iv )→ H1(Kv, V )

)
• Bloch–Kato “finite” condition Fv,BK – defined using p-adic Hodge theory, for v | p and V coming

from geometry

5Technical point: our representations are all continuous, so it makes sense to work with cohomology defined by continuous
cochains.

6In fact this is an isomorphism, because H1(K,K
×

) is zero (“Hilbert’s theorem 90”)
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Definition. A Selmer structure is a collection F = (Fv)v prime of K , satisfying the following condition: for
almost all v we have Fv = Fv,ur. If F is a Selmer structure we define the corresponding Selmer group by

SelF (K,V ) = {x ∈ H1(K,V ) : locv(x) ∈ Fv ∀v}.

Fact: The space SelF (K,V ) is finite-dimensional over Qp.

We’re mostly interested in three specific choices of Selmer structure, differing only in the choices of the
Fv at primes v | p: we define the strict Selmer group Selstrict(K,V ) by taking Fv = Fv,ur for v - p, and
Fv = Fv,strict for v | p; and similarly the relaxed Selmer group and Bloch–Kato Selmer group.

Hence the strict, relaxed, and Bloch–Kato Selmer groups satisfy

Selstrict(K,V ) ⊆ SelBK(K,V ) ⊆ Selrelaxed(K,V ).

Remark. As will soon become clear, it is SelBK(K,V ) which is the most important; but Selstrict(K,V ) and
Selrelaxed(K,V ) are easier to study, and will give us a stepping-stone towards SelBK(K,V ).

Remark. Recall that for V = Qp(1) we had the Kummer map K× ⊗ Qp

∼=- H1(K,Qp(1)). One can
check that the elements of K× whose image under κp lands in SelBK are exactly the global units O×K . The
relaxed Selmer group allows elements which are units except possibly at the primes above p. (The strict
Selmer group, on the other hand, should be zero; this is exactly Leopoldt’s conjecture for K.)

4.4. The Bloch–Kato conjecture. Let V be a representation coming from geometry.

Conjecture. We have

dim SelBK(K,V )− dimH0(K,V ) = ords=0 L(V ∗(1), s).

There are refined versions using Zp-modules in place of Qp-vector spaces, which predict the leading term of
the L-function up to a unit; but we won’t go into that here.

E.g. if V is Vp(E) for an elliptic curve E, then:

• the H0 term is zero;
• the Kummer map lands inside the Selmer group, and gives an embedding

E(K)⊗Qp ↪→ SelBK(K,V ),

so that dim SelBK ≥ rank(E/K), with equality iff the p-part of Sha is finite;
• ords=0 L(V ∗(1), s) = ords=1 L(E/K, s).

So this special case of Bloch–Kato is closely related to (but not quite the same as) the Birch–Swinnerton-Dyer
conjecture.

5. Euler systems

We’ll now introduce the key subject of these lectures: Euler systems, which are tools for studying and
controlling Selmer groups.

5.1. The definition. Let:

• V a GQ-representation (for simplicity)
• T ⊂ V a GQ-stable Zp-lattice
• Σ a finite set of primes containing p and all ramified primes for V

Since V is a GQ-rep, we can consider it as a GK-rep for any number field K and form Hi(K,V ), and there
are corestriction or norm maps

normL
K : Hi(L, V )→ Hi(K,V ) if L ⊃ K.

If K is Galois, Hi(K,V ) is a module over Qp[Gal(K/Q)]. Similarly for cohomology of lattices Hi(K,T ).
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Definition. An Euler system for (T,Σ) is a collection c = (cm)m≥1, where cm ∈ H1(Q(µm), T ), satisfying
the following compatibility for any m ≥ 1 and ` prime:

norm
Q(µm`)
Q(µm) (cm`) =

{
cm if ` ∈ Σ or ` | m
P`(V

∗(1), σ−1
` ) · cm otherwise

where σ` is the image of Frob` in Gal(Q(µm)/Q).

An Euler system for V is an Euler system for (T,Σ), for some T ⊂ V and some Σ.

Intuitively, the cm has “something to do with” the L-function L(V ∗(1), s) with its Euler factors at primes
dividing mΣ missing7; so when we compare elements for different m, the Euler factors appear.

This definition is bizarre, I admit! Fear not: we’ll see an example before too long. The main reason to
care about these objects is the following theorem, which is due to Karl Rubin, building on earlier work of
Kolyvagin:

Theorem. Suppose c is an Euler system for (T,Σ) with c1 non-zero, and suppose V satisfies various technical
conditions. Then Selstrict(Q, V

∗(1)) is zero.

Remark. More generally, one can also define Euler systems for GK-representations, for K a number field;
in place of cyclotomic fields, one has to have classes over every ray class field of K. However, we’ll only work
with K = Q here.

5.2. Cyclotomic units. We’re going to build an Euler system for V = Qp(1). Recall that we have
Kummer maps K× ↪→ H1(K,Zp(1)). Also, for L/K finite, we have a commutative square

L×
κp- H1(L,Zp(1))

K×

normL
K

?
κp- H1(K,Zp(1))

normL
K

?

where the left-hand norm map is the usual field norm, and the right-hand one is the Galois corestriction.
So we have to find good elements of the multiplicative groups of cyclotomic fields, satisfying compatibilities
under the norm maps.

Fix an embedding Q ↪→ C× and let ζm = ι−1(e2πi/m) ∈ µm.

Definition. For m > 1, set um = 1− ζm ∈ Q(ζm)×.

A pleasant computation (exercise!) shows that

norm
Q(µm`)
Q(µm) um =


um if ` | m
(1− σ−1

` ) · um if ` - m and m > 1

` if m = 1

This is almost what we need for an Euler system, but there are two problems: firstly, there is no sensible
way to define u1; secondly, we are seeing Euler factors at all primes, whereas we only want to see them for
primes outside Σ (and Σ can’t be empty because it has to contain p). We can get around both of these
problems by setting

vm =

{
um if p | m,
norm

Q(µpm)

Q(µm) (upm) if p - m (including m = 1).

Theorem. The classes cm = κp(vm) are an Euler system for (Zp(1), {p}). �

7This becomes more precise if you work with the equivariant L-function L(V ∗(1),Q(µm)/Q, s) which is a Dirichlet series
taking values in the group ring C((Z/mZ)×) rather than just in C. The definition of this only makes sense if you drop the

Euler factors at primes dividing m.
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5.3. Soulé twists. Rubin’s theorem applied directly to the cyclotomic unit Euler system isn’t actually
very interesting (it follows easily from class field theory that Selstrict(Q,Qp) = 0). However, there is a notion
of twisting for Euler systems.

Theorem. Let χ : GQ → Z×p be a continuous character unramified outside Σ (e.g. any power of the
cyclotomic character). Then there is a canonical bijection c 7→ cχ between Euler systems for T and for the
twist T (χ).

Note that the “bottom class” cχ1 is not uniquely determined by c1, so even if c1 6= 0 we might have cχ1 = 0;
thus we have to check carefully that the twisted Euler system satisfies the conditions for Rubin’s theorem.

The twists of the cyclotomic unit Euler system are very useful in Iwasawa theory; see §3.2 of Rubin’s book.
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Lecture 3. Euler systems from geometry

References for this lecture: not as many as there should be! For §6, Jannsen’s “Continuous étale cohomology”
has the details, but it is not an easy read. For §7, chapters 1 and 2 of Kato’s article in Asterisque 295 are
the definitive source; Lang’s “Elliptic Functions” is also useful.

6. Euler systems from geometry

6.1. Etale cohomology over K. We saw before that, for a variety X/K, the étale cohomology of its
base-extension XK was an interesting source of Galois representations.

But this isn’t the only thing we can do with étale cohomology. Rather than base-extending to K, we can
also take étale cohomology over K directly8; there are groups Hi

ét(X,Qp(m)) for all i and m. These are not
themselves Galois representations, but it turns out that these are related to the Galois cohomology of the
étale cohomology over K:

Theorem (Jannsen). For any variety X/K, and any m, there is a convergent “Hochschild–Serre” spectral
sequence

Eij2 = Hi
(
K,Hj

ét(XK ,Qp)(m)
)
⇒ Hi+j

ét (X,Qp(m)).

In particular, we get edge maps Hi(X,Qp(m)) → Hi(XK ,Qp(m))GK , and if F 1Hi denotes the kernel of
this map, there is a map

F 1Hi(X,Qp(m))→ H1
(
K,Hi−1(XK ,Qp(m))

)
.

So, if V is the Galois representation Hi−1(XK) (or a direct summand of it), we can try to construct an Euler
system for V by building lots of classes in F 1Hi(X).

How will we do this? We’ll use geometry! To be precise, we’ll rely on the following rather simple tricks:

• Cup products: étale cohomology has cup-product pairings

Hi(X,Qp(m))×Hj(X,Qp(n))→ Hi+j(X,Qp(m+ n)).

• Kummer maps: if f ∈ O(X)× is a unit in the ring of rational functions on X, then there is a
class κp(f) ∈ H1(X,Qp(1)).

• Pushforward maps: if Z ⊂ X is a closed subvariety of codimension d (and X and Z are both
smooth), then there are pushforward maps

Hi(Z,Qp(n))→ Hi+2d(X,Qp(n+ d)).

In particular, the pushforward of the identity class 1Z ∈ H0(Z,Qp(0)) is a class in H2d(X,Qp(d)),
the cycle class of Z.

So if we have a good supply of units on X, or of subvarieties of X (or of subvarieties of X with units on
them, etc) then we have some objects to play with; and we can try to write down classes landing in the
“right” cohomological degree to map into H1 of our target Galois representation.

If you have a random variety, it’s not clear how to find lots of subvarieties, or lots of units, on it; but we’re
going to home in on the case where X is a Shimura variety – a variety coming from automorphic theory,
such as a modular curve. Then we can try and write down units and subvarieties using automorphic ideas.

6.2. Numerology. For instance, let’s suppose we want to build an Euler system for Vp(f), where f is
a modular form. Since we can twist Euler systems, we can choose to work with Vp(f)(m) for any integer m.

Because Y = Y1(N)Q is affine, we have H2
ét(YQ,Qp) = 0. So the HS spectral sequence gives us a map

H2
ét(YQ,Qp(m))→ H1(Q, H1

ét(YQ,Qp)(m))→ H1(Q, Vp(f)(m)).

for any integer m. How can we get at the groups H2
ét(YQ,Qp(m)) using our geometric toolkit?

8Technical point: what we actually want here is “continuous étale cohomology” in the sense of Jannsen.
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• For m ≤ 0 this is hopeless, because our toolkit will only ever give classes in Hi(X,Qp(m)) for
m ≥ i

2 .
• For m = 1, you can use cycle classes of codimension 1 subvarieties of Y – i.e., points. This is

Kolyvagin’s original approach: to build an Euler system using cycle classes of Heegner points.
• For m = 2, you can use cup-products of units: the Kummer map gives you classes in H1

ét(Y,Qp(1)),
and the cup-product of two such classes lands in H2

ét(Y,Qp(2)). This is Kato’s approach.
• m ≥ 3 can also be made to work similarly (but gives no more information than for m = 2).

We can also ask the same question for Vp(f)⊗ Vp(g), using the geometry of Y × Y . Again, different twists
m give very different geometric setups; and taking m too small is hopeless – you want m ≥ 2 at least. The
sensible choices are:

• m = 3: we can get classes here as cup-products κp(f1)∪ κp(f2)∪ κp(f3), where f1, f2, f3 are units
on Y × Y .
• m = 2: we can get classes by taking a curve Z ⊂ Y × Y and a unit f ∈ O(Z)×, and pushing

forward κp(f) ∈ H1
ét (Z,Qp(1)) along the embedding Z ↪→ Y × Y .

The m = 3 approach has, I believe, never been successfully carried out (although people have tried). The
m = 2 case is where the Euler system of Beilinson–Flach elements lives. I’ll talk about this later in these
lectures.

7. Siegel units

As we saw above, we can get potentially useful cohomology classes if we have a source of units in the
coordinate rings of our varieties. Fortunately, for modular curves, we have lots of nice units at our disposal.

7.1. Modular units. Let Γ be a congruence subgroup of SL2(Z) (e.g. Γ1(N) for any N , or the principal
congruence subgroup Γ(N)).

Definition. A modular unit of level Γ is a nowhere-vanishing, Γ-invariant holomorphic function H → C,
with poles of finite order at the cusps.

In more algebraic language, the quotient Γ\H is the complex points of an algebraic curve Y (Γ)C over C,
and a modular unit is an element of O(Y (Γ)C)×.

We’re going to construct some “special” modular units, using nothing but classical 19-th century elliptic
function theory. These functions are called Siegel units and they are really amazingly powerful gadgets.
In fact, you can recover virtually every known example of an Euler system by starting from Siegel units!

Definition. Let α, β ∈ Q/Z, not both zero. Define the function gα,β : H → C as follows: write (α, β) =
(a/N, b/N) for some N ≥ 1 and a, b ∈ Z, with 0 ≤ a < N without loss of generality. Then

gα,β(τ) = qw
∏
n≥0

(
1− qn+a/NζbN

) ∏
n≥1

(
1− qn−a/Nζ−bN

)
,

where q = e2πiτ and w = 1
12 −

a
N + a2

2N2 .

This is well-defined (independent of the choice of common denominator N). We’d like to say it’s modular
of level N , but this doesn’t quite work: acting on it by an element of Γ(N) multiplies it by a root of unity,
so it defines an element of O(Y (N))⊗Q. The denominator can be killed by a very simple modification:

Definition (Siegel units). For c > 1 coprime to 6 and to the order of α, β in Q/Z, let

cgα,β =
(gα,β)c

2

gcα,cβ
.

Then cgα,β is Γ(N)-invariant, for any N such that Nα = Nβ = 0, so it is in O(Y (N)C)×. However, we can
do better than this: it descends to a number field.
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Proposition. The units cgα,β, for (α, β) ∈ ( 1
NZ/Z)⊕2 − {(0, 0)}, are all defined over Q(µN ). The action

of GL2(Z/NZ) on Y (N)Q(µN ) transforms these units via the rule

cgα,β | σ = cgα′,β′ , where (α′, β′) = (α, β)σ. �

In particular, because (0, 1
N ) is preserved by right-multiplication by matrices of the form

(
1 y

1

)
(giving

the action of Γ1(N)/Γ(N)) and matrices of the form

(
x

1

)
(giving the action of the Galois group), we see

that:

Proposition. The units cg0,1/N have level Γ1(N), and are defined over Q, with respect to the Q-model of
Y1(N) we chose above. �

7.2. Logarithmic derivatives and Eisenstein series. For any curve Y there is a canonical map

dlog : O(Y )× → Ω1(Y ),

where Ω1(Y ) denotes the holomorphic differential forms on Y , defined by

dlog u =
du

u
.

This map Y = Y1(N)C, this map target is the space of holomorphic Γ1(N)-invariant differentials on H with
(at worst) simple poles at the cusps; this is exactly the space of weight 2 modular forms M2(Γ1(N)), with

the modular form f corresponding to the differential f(q)dq
q = 2πif(τ) dτ .

Theorem. We have

dlog(gα,β) = F
(2)
α,β(q)

dq

q
,

where F
(2)
α,β is an explicit weight 2 Eisenstein series; for example

F
(2)
0,β = 1

12 −
∑
n≥1

qn

∑
d|n

n
d

(
e2πiβd + e−2πiβd

) .

So the Siegel units are a “lifting” of the weight 2 Eisenstein series to O(Y )×. This gives rise to their other,
scarier name: “motivic Eisenstein classes”.

Remark. There is another, deeper relation between Siegel units and Eisenstein classes: Kronecker’s limit
formula, which relates log |gb/N | to a non-holomorphic Eisenstein series of weight 0.

7.3. Changing the level: the basic norm relation.

Theorem. Let α, β ∈ Q/Z, not both zero, and let A ≥ 1. Then we have the three relations∏
α′:Aα′=α

cgα′,β(τ) = cgα,β(A−1τ),(1) ∏
β′:Aβ′=β

cgα,β′(τ) = cgα,β(Aτ),(2)

∏
α′,β′

A(α′,β′)=(α,β)

cgα′,β′(τ) = cgα,β(τ).(3)

Note that (1) and (2) imply (3), and (2) follows from (1) via the action of

(
0 −1
1 0

)
; so it suffices to prove

(1). This can be bashed out directly from the infinite product formula, but there is a much slicker argument
in Kato’s book, involving a 2-variable theta function cθ(τ, z) such that cθ(τ, ατ + β) = cgαβ .

This is hugely important, because it’s the underlying input for all of the Euler systems we will build out of
Siegel units.
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Remark. One can check that for ` prime ∏
α′,β′

`(α′,β′)=(0,0)
(α′,β′) 6=(0,0)

cgα′,β′ = `(c
2−1).

It follows that there is no way to define a modular unit cg0,0 in such a way that the (3) continues to hold.
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Lecture 4. The Kato and Beilinson–Flach Euler systems

In this lecture we’re going to write down the classes, and prove the norm relations, for two important
examples of Euler systems.

References for this lecture: here there is really no alternative to the original papers. For §8, see Kato’s Aster-
isque 295 article, or the alternative account in Colmez’s Bourbaki seminar on Kato’s work (“La conjecture
de Birch–Swinnerton-Dyer p-adique”). For §9, see my 2014 paper with Lei and Zerbes.

8. Kato’s Euler system

Let’s now concentrate on Kato’s Euler system. We want to build an Euler system for Vp(f)(2), where f
is some newform of level N ; and we’re going to do this by cupping together the Kummer-map images of
modular units on Y1(N).

Choose two integers c, d > 1 coprime to 6Np, where N is the level of the modular form f we want to study.
We’ll assume without further comment that all modular curves we consider have levels coprime to c and d.
(This will mean we only get classes over Q(µm) for (cd,m) = 1; but in fact it’s OK to throw away a finite
set of primes like this.)

We know some modular units on Y1(N) already – the units cg0,b/N – but these aren’t enough: because they’re

all defined over Q, we will end up with classes on H1(Q, Vp(f)(2)), while we want also to have classes over
cyclotomic fields with interesting Galois actions. So we need some modular units defined over bigger fields.

8.1. The units u and v.

Definition. Let N ≥ 2 be an integer coprime to c, and define modular units uN , vN by

uN (τ) = cg1/N,0(Nτ), vN (τ) = dg0,1/N (τ).

One checks easily that uN and vN both have level Γ1(N). We saw above that vN is defined over Q; but vN
is not – in fact it is defined over Q(µN ), and we have the following key compatibility:

Proposition. If A ≥ 1 such that N and AN have the same prime factors, and π denotes the natural map
Y1(AN)→ Y1(N), then

norm
Q(µAN )
Q(µN ) (uAN ) = π∗(uN ),(1)

π∗(vAN ) = vN .(2)

Proof. (sketch) Both the pushforward π∗, and the Galois norm map, can be described by sending a
unit to the product of its translates by coset representatives for subgroups of GL2. We know how GL2

acts on the Siegel units, and in both cases the products turn out to be exactly the ones coming up in our
Siegel-unit norm relations. �

8.2. Kato’s classes.

Definition. For integers m,N , with m ≥ 2 and m | N , we define

zN,m = κp(um) ∪ κp(vN ) ∈ H2
ét

(
Y1(N)Q(µm),Zp(2)

)
.

This is defined over Q(µm), since both modular units are definable over this field. The restriction to m | N
is annoying, and we’ll get rid of it by using a norm-compatibility in the level direction instead!

Proposition. If m | N | N ′, and N and N ′ have the same prime factors, then

(πN ′/N )∗ (zN ′,m) = zN,m,

where πN ′/N is the natural map Y1(N ′)→ Y1(N).
13



Proof. This relies on a crucial “adjunction formula” for étale cohomology: if f : X → Y is a (sufficiently
nice) map, then the pushforward, pullback, and cup-product maps in étale cohomology are related by

f∗ (f∗(α) ∪ β) = α ∪ f∗(β).

In our case, where f is the natural map from Y1(N ′) to Y1(N), one factor in our cup-product is κ(um), which
already lives at level m. So we can factor it out and write

π∗ (zN ′,m) = κ(um) ∪ π∗ (κ(vN ′)) .

We know that π∗(vN ′) is vN , and κ is well-behaved with respect to norm maps, so we get κ(um) ∪ κ(vN ) =
zN,m. �

It follows that we can define zN,m without assuming that m | N , by choosing any L ≥ 1 divisible by m and
N and with the same prime factors as mN , and setting

zN,m = (πL/N )∗ (zL,m) .

The proposition shows that this is independent of the choice of L, so it’s a reasonable definition.

8.3. The norm relation.

Theorem (Kato, Proposition 8.10). If ` is prime with ` | m, then

norm
Q(µm`)
Q(µm) (zN,m`) = zN,m.

If ` - mN then

norm
Q(µm`)
Q(µm) (zN,m`) =

(
1− 〈`〉−1T (`)σ−1

` + `〈`〉−1σ−2
`

)
zN,m,

where 〈`〉 and T (`) are the usual Hecke operators.

Proof. (sketch) For the first statement (the ` | m case), we can assume without loss of generality that
m` | N . Then we can use the same adjunction trick (the Galois-cohomology norm map is a special case of
étale-cohomology pushforward) to reduce to a statement about the units um` and um, which is exactly the
proposition we proved above.

The ` - mN case is more elaborate (Kato’s proof, which is §2.11–2.13 of his Asterisque article, takes a little
over three pages to write out), but still uses the same essential idea of reducing to a statement about the
individual factors of the cup product and then using the norm-compatibility relations of Siegel units. �

When we project to the quotient H1(Q(µm), Vp(f)(2)) of H2
ét(Y1(N)Q(µm),Qp(2)), the Hecke operators

T (`) and 〈`〉 will be acting as a`(f) and χ(`) respectively. So the Euler factor appearing above is (1 −
χ(`)−1a`(f)X + `χ(`)−1X2) evaluated at X = σ−1

` .

On the other hand, if V = Vp(f)(2), then V ∗(1) = Vp(f)∗(−1) = Vp(f ⊗χ−1). So the Euler factor is exactly

P`(V
∗(1), X) evaluated at σ−1

` , as it should be; these are the “correct” relations for an Euler system for
Vp(f)(2).

Remark. As with the cyclotomic units, we have Euler factors in our norm relations for all primes, including

p. We can kill these by replacing zN,m with z
(p)
N,m = normmp

m (zN,mp). This class z
(p)
N,m is a special case of the

cohomology classes appearing in (8.1.2) of Kato; he defines a class c,dz
(p)
1,N,m(k, r, r′, a(A), S), which reduces

to the one considered here if one takes k = 2, r = 0, r′ = 1, a(A) = 0(1), and S the set of primes dividing
pm.

(Observe that Kato’s cohomology class depends on eleven separate parameters {c, d, p,N,m, k, r, r′, a, A, S}.
Uncontrollable proliferation of indices is an occupational hazard in Euler system theory!)
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9. Beilinson–Flach elements

Now let’s turn our attention to Rankin–Selberg convolutions Vp(f)⊗ Vp(g). We saw above that one natural
line of attack is to find curves C ⊂ Y × Y , where Y = Y1(N), and units on C. This approach goes back to
Beilinson in 1984 (and was further refined by Flach in 1992, hence the name).

9.1. Strategy. An obvious first guess is to take C to be the diagonally-embedded copy of Y in Y × Y ,
and this is exactly what we’ll do for m = 1. However, how will we get classes over Q(µm) for m > 1?

In Kato’s world, one of our modular units (um) gave us norm-compatibility in m for m | N ; the other
one (vN ) gave us norm-compatibility in N ; and putting those together, via the adjunction formula, gives
norm-compatibility in m for all m. This trick won’t work here; we only have one unit to play with, and we
can’t find families of units that are simultaneously norm-compatible in the “field” and “level” directions (at
least, I don’t know how to do this).

So we have to make the curve C vary too, and get some contribution to our norm-compatibility this way
instead. In fact, we’re going to rig things so that

• the compatibility in the “level” direction comes from the unit,
• the compatibility in the “field” direction comes from the choice of C.

9.2. Mixed-level modular curves. For integers M | N , let

Γ(M,N) =

{(
a b
c d

)
: a = d = 1, c = 0 mod N ; b = 0 mod M

}
.

Notice that Γ(N,N) = Γ(N), and Γ(1, N) = Γ1(N).

Moreover, any matrix in SL2(Z/N) which is upper-triangular modulo N/M normalises Γ(M,N) (easy check).
One finds that the curve Y (M,N) has a Q-model, but the group action is only defined over Q(µM ).

Definition. For j ∈ Z/MZ, let CM,N ⊆ Y (M,N)2 be the curve defined by{
(P,Q) ∈ Y (M,N)2 : Q =

(
1 1
0 1

)
· P
}
.

This is defined over Q(µM ), and we have the following key compatibility. Suppose A ≥ 1 with AM | N , and
let φAMM : Y (AM,N)→ Y (M,N) be the natural quotient map.

Proposition. If M and AM have the same prime factors, then

(φAMM × φAMM )∗ (CM,N ) =
⊔

γ∈Gal(Q(µAM )/Q(µM ))

(CAM,N )σ.

Proof. This just reduces to the group-theoretic fact that the same set of matrices{(
1 1 + xM
0 1

)
: 0 ≤ x < A

}
⊂ GL2(Z/NZ)

is the orbit of

(
1 1
0 1

)
under either of two group actions:

• translation by representatives for Γ(M,N)/Γ(MA,N);

• conjugation by matrices

(
u

1

)
with u = 1 mod M , which give the Galois action. �

(Note the formal similarity to Kato’s units uM : the Galois norm of an object defined over Q(µM ) equals the
pullback of something from a smaller level.)
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9.3. Beilinson–Flach elements. One more piece of the jigsaw: as well as the natural map φM1 :

Y (M,N)→ Y (1, N) = Y1(N), there is a “twisted” map φ̂M1 : Y (M,N)→ Y1(N), corresponding to z 7→ z/M
on H.

Definition. For M | N , and c > 1 coprime to 6N , we define

ξM,N =
[
(φ̂M1 × φ̂M1 )∗ ◦ (ιM,N )∗ ◦ κp

] (
cg0,1/N

)
∈ H3

ét

(
Y1(N)2

Q(µM ),Zp(2)
)
.

where ιM,N is the inclusion CM,N ↪→ Y (M,N)2.

As in Kato’s construction, these elements turn out to satisfy norm-compatibility in N (with respect to the
usual degeneracy maps), and we can use this to extend the definition of cξM,N to all M by norming down
from some cξM,L, where L is divisible by both M and N .

Theorem. If ` is prime with ` |M and ` | N , we have

norm
Q(µM`)
Q(µM ) (cξM`,N ) = [U(`)′ × U(`)′] · cξM,N .

Here U(`)′ is the transpose Hecke operator (defined by the double coset of

(
` 0
0 1

)
, while the usual U(`) is(

1 0
0 `

)
).

Proof. After some unravelling this follows directly from the Proposition about the CM,N,j : comparing

the two sides, we end up with the term (φ̂`1 × φ̂`1)∗(φ
`
1 × φ`1)∗ coming out, and this is exactly the definition

of the Hecke operator U(`)′ × U(`)′. �

If we don’t have ` |M and ` | N then (after a lot of rather intricate calculations of double cosets) one obtains
an analogous proposition involving an Euler factor.

Remark. The appearance of the U(`)′ factors has interesting consequences. Consider the case where M = pr

is a power of p. When we project to the (f, g)-eigenspace this tells us that the classes (αfαg)
−r

cξpr,N are
norm-compatible, where αf is the Up-eigenvalue of the conjugate form f∗. This is fine if f∗ and g∗ are
ordinary (so αfαg is a p-adic unit) but makes life more difficult, and more interesting, in the supersingular
case: we have potentially introduced some “denominators” into our classes.

10. Further directions

10.1. P-adic regulators. We’ve constructed a bunch of Euler systems (cm) for some interesting repre-
sentations V , but do they have c1 6= 0? This is very much non-obvious from our constructions. One approach
to this problem goes via Besser’s rigid syntomic cohomology. This is a cohomology theory for varieties over
p-adic fields with a (somewhat) explicit description in terms of p-adic differential forms.

On one hand, there are comparison maps between étale and syntomic cohomology (due to Nizio l). For étale
cohomology classes coming from geometric data, as in our examples, the images of the global étale classes
under localisation at p agree with their syntomic versions via these comparison maps.

On the other hand, as Darmon and his co-authors have shown, rigid syntomic cohomology is sufficiently
computable that one can relate the syntomic versions of the Euler system classes to p-adic L-functions
(cf. Shin-ichi Kobayashi’s lectures at this conference for the Heegner point case). Combining these two
results allows one to prove that the localisations at p of Euler systems are related to p-adic L-functions.

10.2. More Euler systems. Our toolkit for constructing Euler systems seems to work in quite a lot
of Shimura variety setups, e.g. Hilbert and Siegel modular varieties: roughly, whenever you have a Shimura
variety for a group which contains GL2, or a product of copies of GL2, with the “right” codimension then
you are in good shape.

16


