GEYSERS, WIND, FINANCIAL RETURNS AND HOMICIDES; APPLICATIONS OF HIDDEN MARKOV MODELS

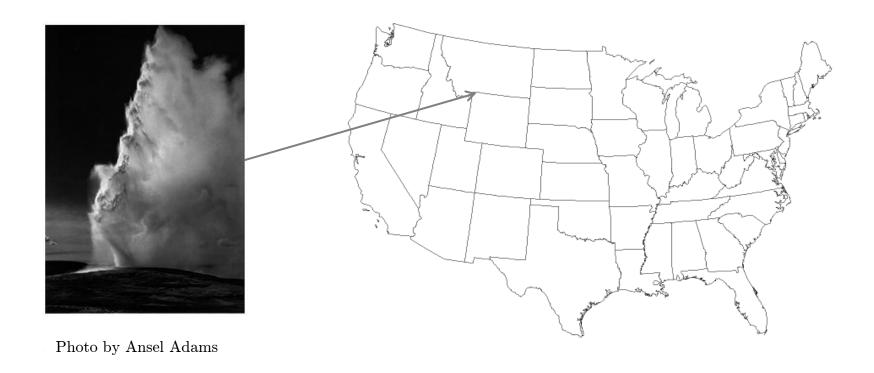
Walter Zucchini University of Göttingen Iain MacDonald University of Cape Town

Outline

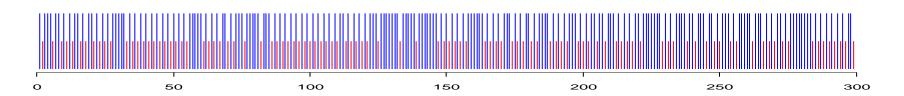
Applications of Hidden Markov Models

- 1. Eruptions of the Old Faithful geyser
- 2. Wind direction at Koeberg
- 3. Daily returns on the Tokyo Stock Price Index (TOPIX)
- 4. Cape Town homicides and suicides

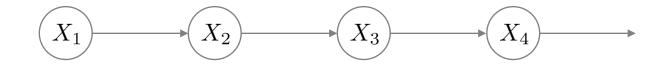
Eruptions of Old Faithful geyser



Data: Successive eruptions 01.08.1985 - 15.08.1985 (299 observations) Classified as **short** $(x_t = 0)$ or **long** $(x_t = 1)$



Markov Chain



Notation: $X^{(t)}$ denotes the history up to time t, i.e. $\{X_t, X_{t-1}, \dots, X_1\}$.

Markov property:
$$Pr(X_t | X^{(t-1)}) = Pr(X_t | X_{t-1})$$

Transition probability matrix of the homogeneous Markov chain:

$$\Gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} = \begin{pmatrix} \Pr(0 \to 0) & \Pr(0 \to 1) \\ \Pr(1 \to 0) & \Pr(1 \to 1) \end{pmatrix} \qquad \frac{\gamma_{11} + \gamma_{12} = 1}{\gamma_{21} + \gamma_{22} = 1}$$

Initial state distribution: $\delta = (\delta_1 \ \delta_2)$

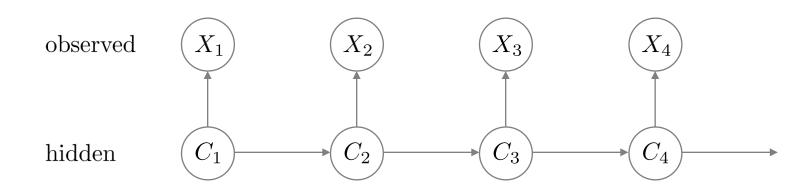
If the chain is also stationary: $\delta = \delta \Gamma$

$$\widehat{\Gamma} = \left(\begin{array}{cc} 0.00 & 1.00 \\ 0.54 & 0.46 \end{array}\right) \qquad \widehat{\delta}' = \left(\begin{array}{c} 0.35 \\ 0.65 \end{array}\right)$$

Two-state Bernoulli-Hidden Markov Model

State series: C_1, C_2, \cdots homogeneous two-state Markov chain Observed series: X_1, X_2, \cdots mixture of two Bernoulli distributions

Assumption: conditional independence



Definition of a HMM

$$\begin{array}{lll} \textbf{Markov property} & \Pr(C_t \,|\, C^{(t-1)}) & = & \Pr(C_t \,|\, C_{t-1}) \\ \textbf{Conditional independence} & \Pr(X_t \,|\, X^{(t-1)}, C^{(t)}) & = & \Pr(X_t \,|\, C_t) \\ \end{array}$$

State-dependent distributions
$$\begin{cases} X_t \mid C_t = 1 & \sim \text{ Bernoulli}(\pi_1) \\ X_t \mid C_t = 2 & \sim \text{ Bernoulli}(\pi_2) \end{cases}$$

Two-state Bernoulli HMM

unobserved state

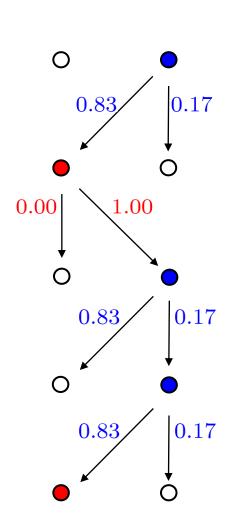
state-dependent distribution

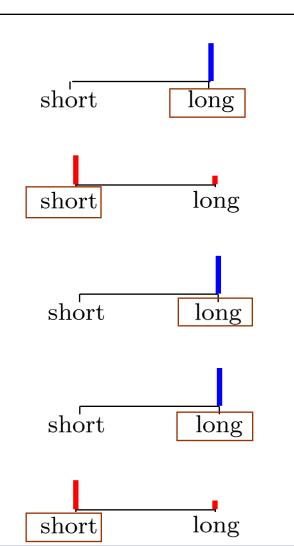
transition prob. matrix

$$\pi_1 = P(\log | \text{state 1}) = 0.23$$

 $\pi_2 = P(\log | \text{state 2}) = 1.00$

$$\Gamma = \left(\begin{array}{cc} 0.00 & 1.00\\ 0.83 & 0.17 \end{array}\right)$$





$\underline{\text{observation}}$

$$\log (x_1 = 1)$$

short
$$(x_2 = 0)$$

$$long (x_3 = 1)$$

$$\log (x_4 = 1)$$

short
$$(x_5 = 0)$$

Two-state Bernoulli HMM

observation

long $(x_1 = 1)$

hidden

short $(x_2 = 0)$

 $\log (x_3 = 1)$

 $\log (x_4 = 1)$

short $(x_5 = 0)$

Likelihood of an homogeneous HMM

$$L_T = \delta P(x_1) \Gamma P(x_2) \Gamma P(x_3) \cdots \Gamma P(x_T) 1'$$

Two-state HMM

$$\Gamma P(x_t) = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \begin{pmatrix} p_1(x_t) & 0 \\ 0 & p_2(x_t) \end{pmatrix}$$

Three-state HMM

$$\Gamma P(x_t) = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{pmatrix} \begin{pmatrix} p_1(x_t) & 0 & 0 \\ 0 & p_2(x_t) & 0 \\ 0 & 0 & p_3(x_t) \end{pmatrix}$$

State-dependent distributions: $p_1(x), p_2(x), p_3(x)$.

Likelihood of a two-state Bernoulli-HMM

Observations: x_1 x_2 x_3 \cdots x_T

Likelihood: $\delta P(x_1) \Gamma P(x_2) \Gamma P(x_3) \cdots \Gamma P(x_T) 1'$

Two-state Bernoulli-HMM:

$$\Gamma P(x) = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \begin{pmatrix} \pi_1^x (1 - \pi_1)^{1-x} & 0 \\ 0 & \pi_2^x (1 - \pi_2)^{1-x} \end{pmatrix}$$

Model parameters: γ_{12} , γ_{21} , π_1 , π_2 (and δ_1 if non-stationary)

Parameter estimation:

- EM algorithm (Baum-Welch algorithm), or
- direct numerical maximization (e.g. nlm in R).

The likelihood of a three-state Poisson-HMM

Observations: x_1 x_2 x_3 \cdots x_T Likelihood: $\delta P(x_1) \Gamma P(x_2) \Gamma P(x_3) \cdots \Gamma P(x_T) 1'$

Three-state Poisson-HMM

$$\mathbf{\Gamma}\mathbf{P}(x) = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{pmatrix} \begin{pmatrix} \frac{e^{-\lambda_1}\lambda_1^x}{x!} & 0 & 0 \\ 0 & \frac{e^{-\lambda_2}\lambda_2^x}{x!} & 0 \\ 0 & 0 & \frac{e^{-\lambda_3}\lambda_3^x}{x!} \end{pmatrix}$$

Model parameters:
$$\begin{pmatrix} - & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & - & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & - \end{pmatrix}$$
, $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$

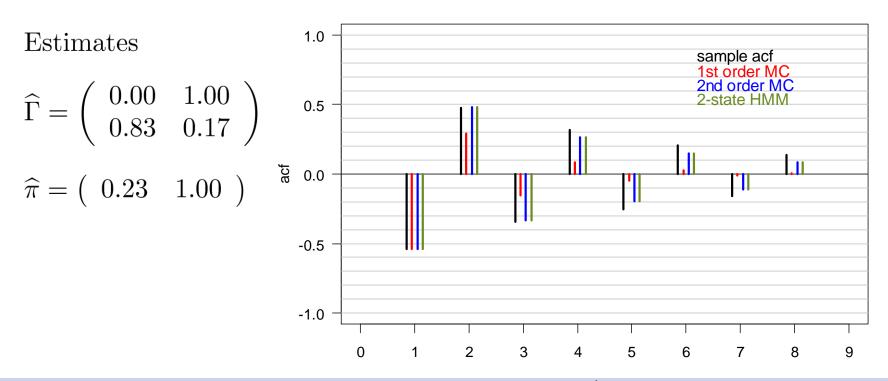
Models for the Old Faithful series

Azzalini and Bowman (1990) fitted

- a first order Markov chain: The fit is reasonable, except the acf.
- a second order Markov chain: The fit is reasonable, including the acf.

MacDonald and Zucchini (1997) fitted

• a two-state Binary-HMM. The fit is reasonable, including the acf.



Additional issues and model selection

Additional issues:

- model checking pseudo residuals
- model selection
- forecasting and monitoring
- decoding (identify the most likely states)

Model selection criteria

model	k	$-L_T$	AIC	BIC
1-state hidden Markov (indep.)	1	193.80	389.60	393.31
First-order Markov chain	2	134.24	272.48	279.88
Second-order Markov chain	4	127.12	262.24	277.04
2-state hidden Markov	4	127.31	262.62	277.42
3-state hidden Markov	9	126.85	271.70	305.00
4-state hidden Markov	16	126.59	285.18	344.39
2-state second-order HM	6	126.90	265.80	288.00

Interval-censored durations

t	recorded
1	4.0
2	2.1
3	long
4	long
5	long
6	short
7	4.4
8	4.3
241	1.9
242	4.4
243	medium
244	long
245	2.0
246	long
247	3.3
248	1.8
295	4.1
296	2.1
297	long
298	long
299	short

recorded	interval (min)
short	$0.0 \le duration \le 3.0$
medium	$2.5 \leq duration \leq 3.5$
long	$3.0 \leq duration$

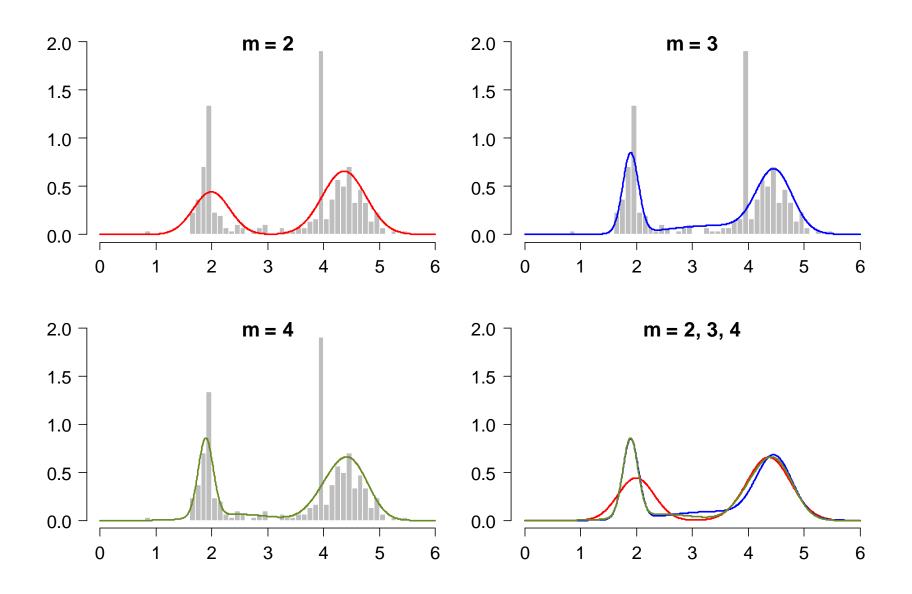
obs:
$$x_1^-, x_1^+ = x_2^-, x_2^+ = x_3^-, x_3^+ = \cdots = x_T^-, x_T^+$$

 $L_T = \delta P(x_1) = \Gamma P(x_2) = \Gamma P(x_3) = \cdots = \Gamma P(x_T) = 1$

$$\Gamma P(x_t) = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{pmatrix} \begin{pmatrix} p_1(x_t) & 0 & 0 \\ 0 & p_2(x_t) & 0 \\ 0 & 0 & p_3(x_t) \end{pmatrix}$$

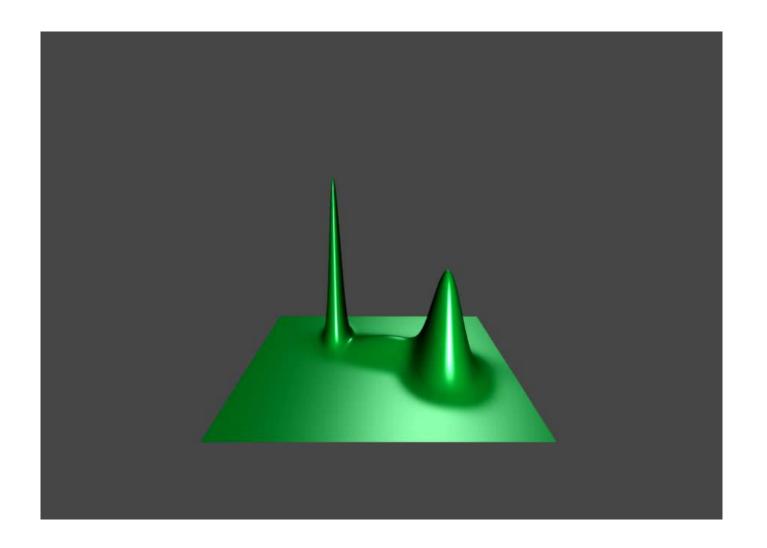
$$p_i(x_t) = \int_{x_t^-}^{x_t^+} \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(z-\mu_i)^2}{2\sigma_i^2}} dz$$
$$= \Phi\left(\frac{x_t^+ - \mu_i}{\sigma_i}\right) - \Phi\left(\frac{x_t^- - \mu_i}{\sigma_i}\right)$$

Marginal distribution of duration

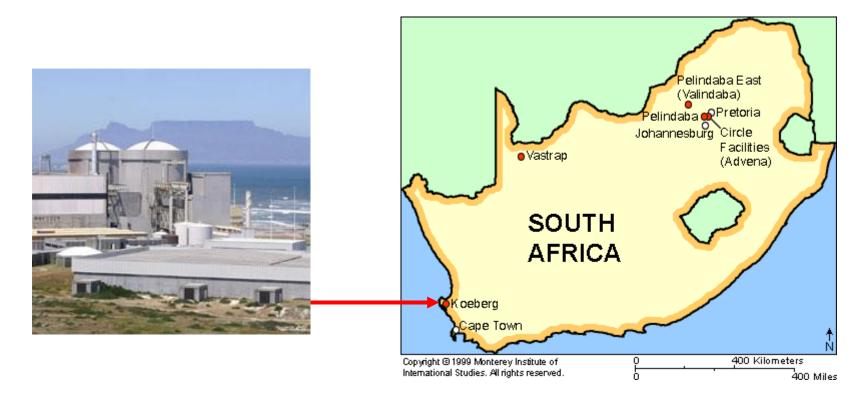


Bivariate model for durations and intervals between eruptions

Given state $i: (x_t, y_t) \sim \text{bivariate normal}, \quad i = 1, 2, 3$



Wind direction at Koeberg



Data: Average hourly wind direction and speed

Period: 01.05.1985 - 30.04.1989

Length: 35 064 observations

Aim: Short-term forecasting for radioactive plume modelling

Wind direction at Koeberg

Models for the hourly wind direction

- 0. First-order Markov chain baseline model
- 1. Multinomial–HMMs
- 2. Two-state seasonal multinomial-HMM

Observations: One of 16 compass directions

Code: N=1, NNE=2, ..., NNW=16

Models for the hourly change in wind direction

- 1. Von-Mises-HMM
- 2. Von-Mises-HMM with wind speed as covariate

Observations: Wind speed (s) and direction (x)

Two-state multinomial-HMM

State-dependent model:
$$\Pr(X_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1 \\ \pi_{j2}, & \text{for } i = 2 \end{cases}$$

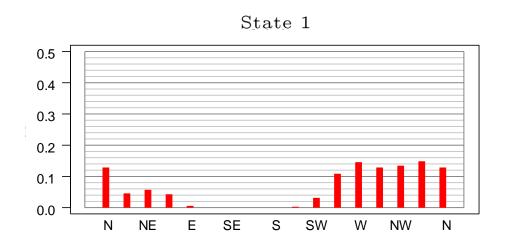
Estimates

$$\hat{\Gamma} = \left(\begin{array}{cc} 0.964 & 0.036 \\ 0.031 & 0.969 \end{array} \right)$$

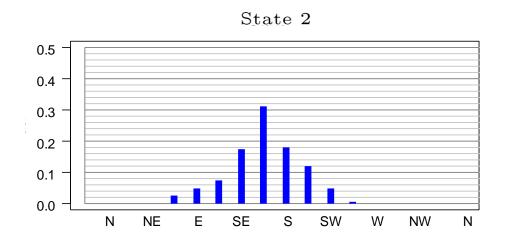
$$\hat{\delta}' = \left(egin{array}{c} 0.462 \\ 0.538 \end{array}
ight)$$

j	Direction	π_{j1}	π_{j2}
1	N	0.129	0.000
2	NNE	0.048	0.000
3	NE	0.059	0.001
4	ENE	0.044	0.026
5	${ m E}$	0.006	0.050
6	ESE	0.001	0.075
7	SE	0.000	0.177
8	SSE	0.000	0.313
9	\mathbf{S}	0.001	0.181
10	SSW	0.004	0.122
11	SW	0.034	0.048
12	WSW	0.110	0.008
13	W	0.147	0.000
14	WNW	0.130	0.000
15	NW	0.137	0.000
16	NNW	0.149	0.000

Two-state multinomial-HMM – Estimates of state-dependent distributions



"North-west"
(Most probable: NNW)



"South-east"
(Most probable: SSE)

Three-state multinomial-HMM

State-dependent model:
$$\Pr(X_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1 \\ \pi_{j2}, & \text{for } i = 2 \\ \pi_{j3}, & \text{for } i = 3 \end{cases}$$

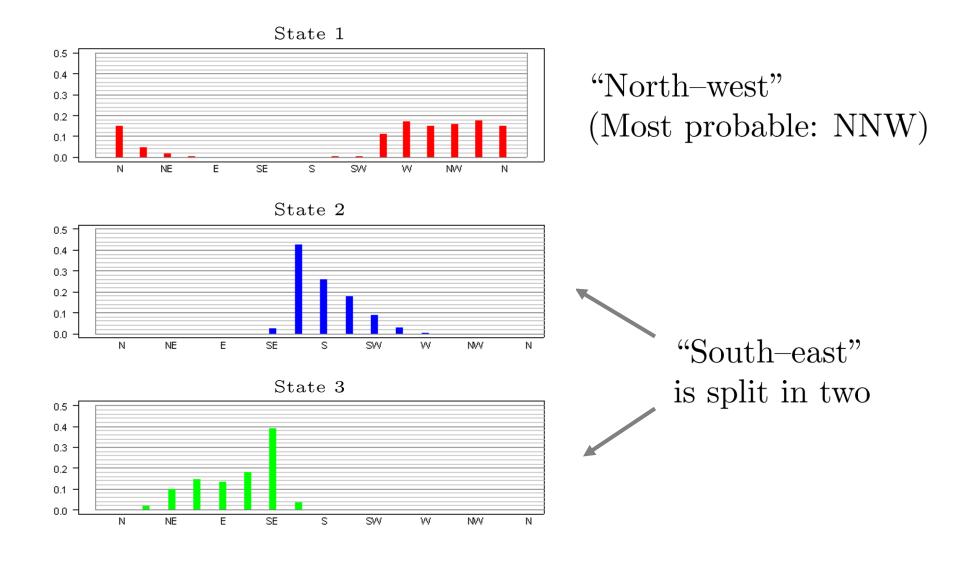
Estimates

$$\hat{\Gamma} = \left(\begin{array}{ccc} 0.957 & 0.030 & 0.013 \\ 0.015 & 0.923 & 0.062 \\ 0.051 & 0.077 & 0.872 \end{array} \right)$$

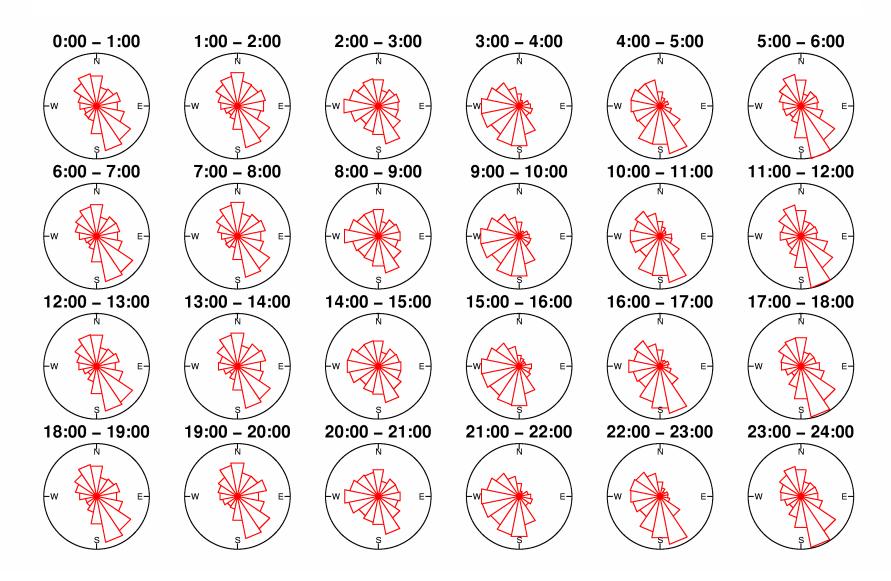
$$\hat{\delta}'=\left(egin{array}{c} 0.400 \ 0.377 \ 0.223 \end{array}
ight)$$

j	Direction	π_{j1}	π_{j2}	π_{j3}
1	N	0.148	0.000	0.001
2	NNE	0.047	0.000	0.016
3	NE	0.016	0.000	0.097
4	ENE	0.003	0.000	0.148
5	${ m E}$	0.001	0.000	0.132
6	ESE	0.000	0.000	0.182
7	SE	0.000	0.023	0.388
8	SSE	0.000	0.426	0.033
9	S	0.000	0.257	0.002
10	SSW	0.002	0.176	0.000
11	SW	0.020	0.089	0.000
12	WSW	0.111	0.028	0.000
13	\mathbf{W}	0.169	0.002	0.000
14	WNW	0.151	0.000	0.000
15	NW	0.159	0.000	0.001
16	NNW	0.173	0.000	0.000

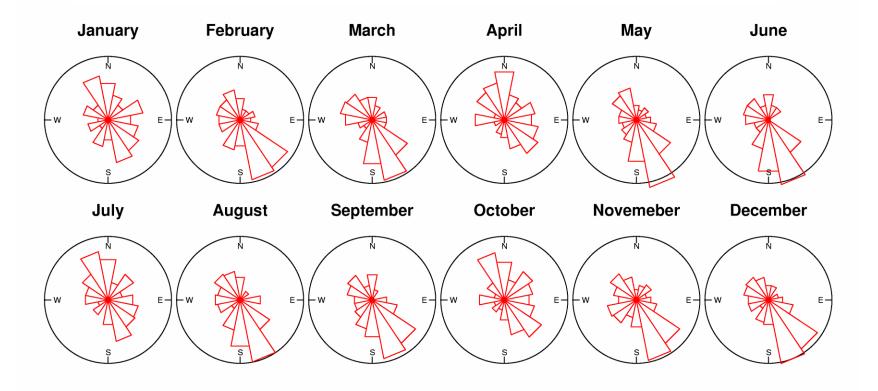
Three-state multinomial-HMM – Estimates of state-dependent distributions



Wind direction at Koeberg by time of day



Wind direction at Koeberg (23:00 - 24:00)



Two-state seasonal multinomial-HMM

State-dependent model
$$\Pr(X_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1 \\ \pi_{j2}, & \text{for } i = 2 \end{cases}$$

$$\Gamma = \left(egin{array}{cc} \gamma_{11}(t) & \gamma_{12}(t) \ \gamma_{21}(t) & \gamma_{22}(t) \end{array}
ight)$$

Transition probabilities are now functions of a covariate, **time**.

$$\operatorname{logit}(\gamma_{12}(t)) = a_1 + b_1 \cos\left(\frac{2\pi t}{24}\right) + c_1 \sin\left(\frac{2\pi t}{24}\right) + d_1 \cos\left(\frac{2\pi t}{8766}\right) + e_1 \sin\left(\frac{2\pi t}{8766}\right)$$

$$logit(\gamma_{21}(t)) = a_2 + b_2 cos\left(\frac{2\pi t}{24}\right) + c_2 sin\left(\frac{2\pi t}{24}\right) + d_2 cos\left(\frac{2\pi t}{8766}\right) + e_2 sin\left(\frac{2\pi t}{8766}\right)$$

daily cycle

annual cycle

Two-state seasonal multinomial-HMM - estimates

State-dependent model
$$\Pr(X_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1 \\ \pi_{j2}, & \text{for } i = 2 \end{cases}$$

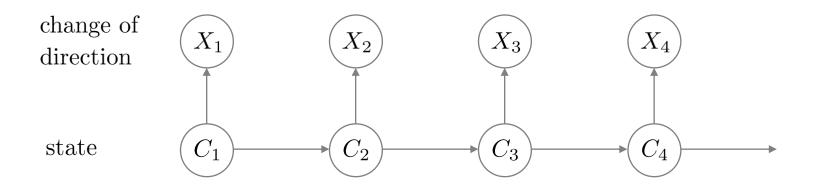
Parameters of	of	Γ	(t)
---------------	----	----------	-----

	i = 1	i = 2
\hat{a}_i	-3.349	-3.523
$\hat{b}_{\pmb{i}}$	0.197	-0.272
\hat{c}_i	-0.695	0.801
\hat{d}_i	-0.208	0.082
\hat{e}_i	-0.401	-0.089

This model has fewer parameters (40) than the three-state HMM (51), which doesn't take seasonality into account.

j	Direction	π_{j1}	π_{j2}
1	N	0.127	0.000
2	NNE	0.047	0.000
3	NE	0.057	0.002
4	ENE	0.027	0.040
5	${ m E}$	0.004	0.052
6	ESE	0.001	0.076
7	SE	0.001	0.179
8	SSE	0.000	0.317
9	\mathbf{S}	0.001	0.183
10	SSW	0.007	0.121
11	SW	0.059	0.026
12	WSW	0.114	0.003
13	W	0.145	0.000
14	WNW	0.128	0.000
15	NW	0.135	0.000
16	NNW	0.147	0.000

Model 1 for change in direction: von Mises-HMM



Likelihood: $L_T = \delta P(x_1) \Gamma P(x_2) \Gamma P(x_3) \cdots \Gamma P(x_T) 1'$

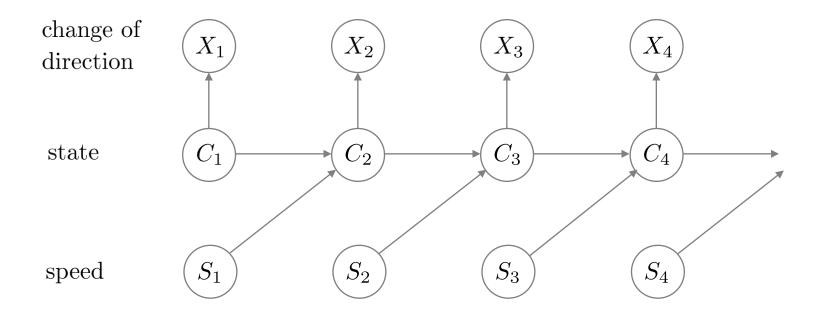
$$\Gamma P(x_t) = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \begin{pmatrix} p_1(x_t) & 0 \\ 0 & p_2(x_t) \end{pmatrix}$$

Von Mises distribution $vM(\mu_i, \kappa_i)$:

$$p_i(x) = \frac{1}{2\pi I_0(\kappa_i)} e^{\kappa_i \cos(x-\mu_i)}, \quad \kappa_i \ge 0, \ \mu_i \in [0, 2\pi),$$

where $I_0(\kappa)$ is the modified Bessel function of order 0.

Model 2 for change in direction: von Mises-HMM – wind speed affects Γ



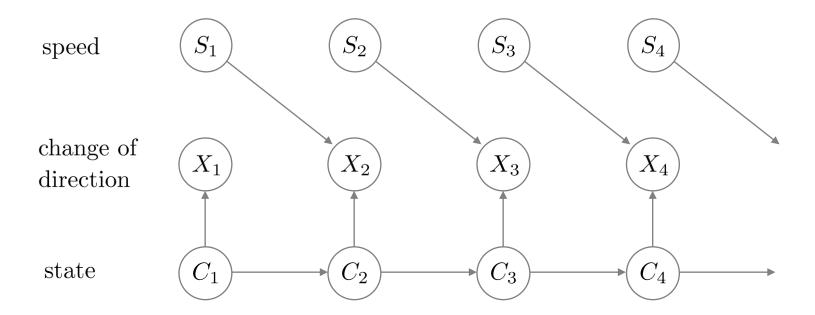
Transition probability matrix is a function of of s_{t-1} , e.g.,

(a)
$$\Gamma(t) = g(s_{t-1})$$

(a)
$$\Gamma(t) = g(s_{t-1})$$

(b) $\Gamma(t) = g(\sqrt{s_{t-1}})$

Model 3 for change in direction: von Mises-HMM – wind speed affects κ



Idea: The higher the wind speed the less likely it will change direction.

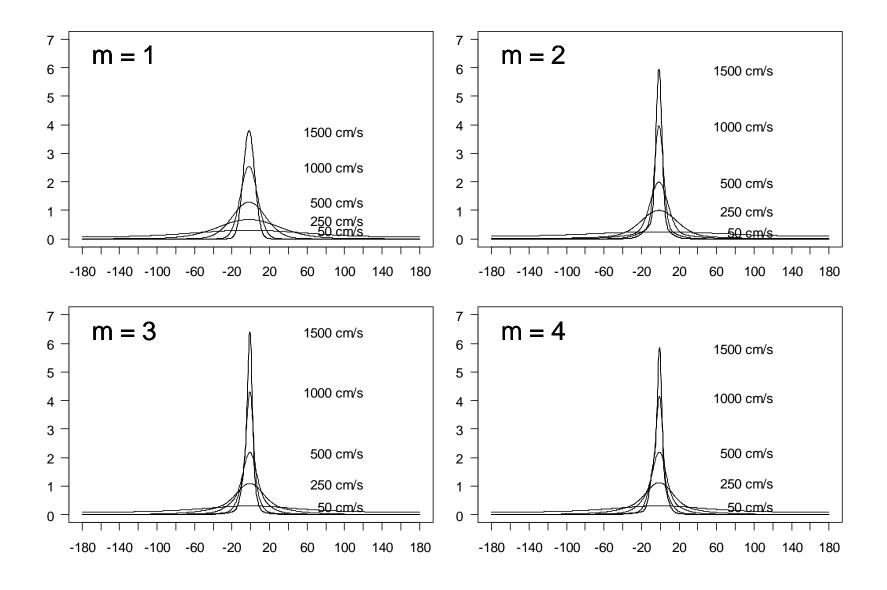
Von Mises parameter κ is a function of s_{t-1} , e.g.,

(a)
$$\log \kappa_i = \zeta_{0i} + \zeta_{1i} \sqrt{s_{t-1}}$$

(b) $\kappa_i = \zeta_{0i} + \zeta_{1i} s_{t-1}^2$ \Leftarrow the best we could find

(b)
$$\kappa_i = \zeta_{0i} + \zeta_{1i} s_{t-1}^2$$

Model 3(b) – marginal distributions for increasing numbers of states



Model 3(b) estimates – four-state Von-Mises-HMM

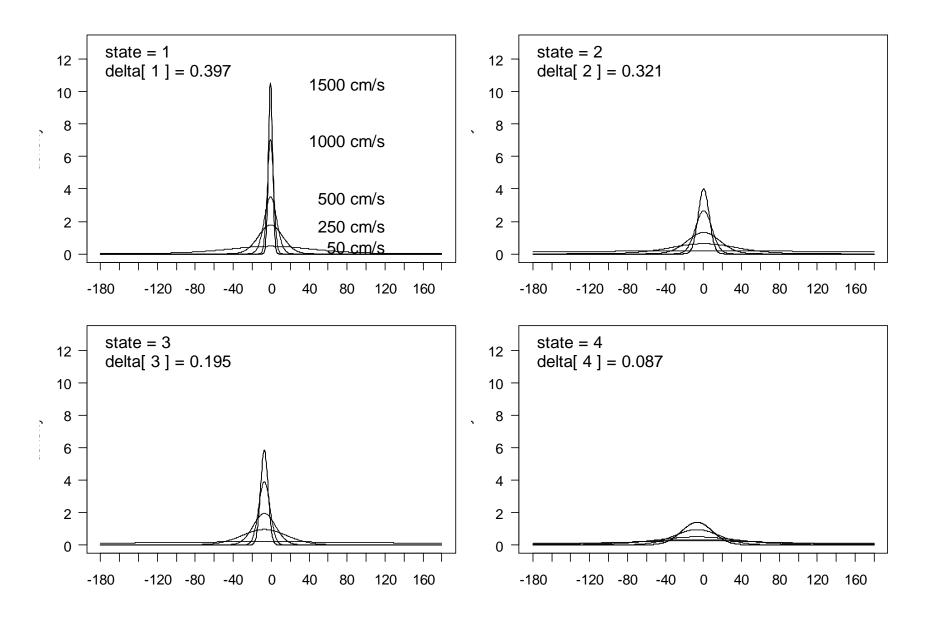
$$\widehat{\Gamma} = \begin{pmatrix} 0.755 & 0.163 & 0.080 & 0.003 \\ 0.182 & 0.707 & 0.045 & 0.006 \\ 0.185 & 0.000 & 0.722 & 0.093 \\ 0.031 & 0.341 & 0.095 & 0.533 \end{pmatrix}$$

$$p_i(x) = \frac{1}{2\pi I_0(\kappa_i)} e^{\kappa_i \cos(x - \mu_i)},$$

$$\kappa_i = \zeta_{0i} + \zeta_{1i} s_{t-1}^2, \quad i = 1, 2, 3, 4$$

i	1	2	3	4
$\widehat{\delta}_i$	0.397	0.321	0.195	0.087
$\widehat{\mu}_i$	-0.0132	0.0037	-0.1273	-0.1179
$\widehat{\widehat{\zeta}}_{i0}$	0.917	0.000	0.000	0.564
$\widehat{\zeta}_{i1}$	31.01×10^{-5}	4.48×10^{-5}	9.61×10^{-5}	0.53×10^{-5}

Model 3(b) – state-dependent distributions for four-state von-Mises-HMM



Financial Series

Data: Daily opening prices of the Tokyo Stock Price Index (TOPIX)

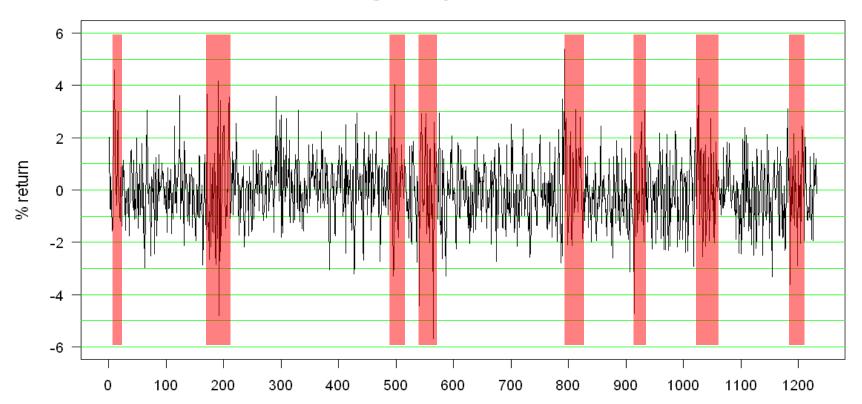
Period: 30.12.1997 - 30.12.2002

Length: 1233 trading days

Aim: Fit a Stochastic Volatility (SV) model to the daily returns

Volatility Clustering

Percentage Daily Returns on TOPIX



Periods of high volatility

Stochastic volatility models

The returns y_t , t = 1, 2, ..., T, on an asset satisfy:

$$y_t = \epsilon_t \beta e^{g_t/2}$$

$$\epsilon_t \stackrel{\text{iid}}{\sim} N(0,1)$$

the observation process

$$g_{t+1} = \phi g_t + \eta_t$$

$$\eta_t \stackrel{ ext{iid}}{\sim} N(0, \sigma^2)$$

an AR(1) state process

SV without leverage:

 ϵ_t and η_t independent

parameters:

 ϕ , σ , β

SV with leverage:

 $cor(\epsilon_t, \eta_t) = \rho$

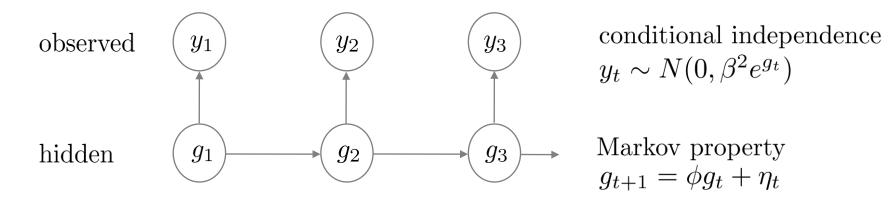
parameters:

 ϕ , σ , β , ρ

Stochastic volatility without leverage

SV models are bedevilled by the difficulty of evaluating the likelihood.

They have an HMM structure.



The state variable, g_t , is continuous, not discrete. The likelihood is a T-fold integral which does not simplify.

Shephard (1996): "[There is a] vast literature on fitting SV models".

Trick: Discretize the state space into m states.

This results in a HMM with three parameters (β, ϕ, σ^2) , whose likelihood is easy to compute and maximize.

Stochastic volatility without leverage

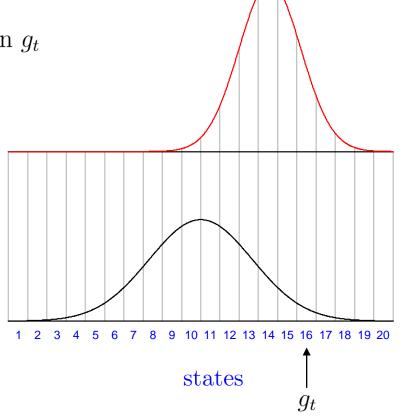
Approximation with m = 20 states

Conditional distribution of g_{t+1} given g_t

$$g_{t+1} \sim N(\phi g_t, \sigma^2)$$

Marginal distribution of g_t

$$g_{t+1} \sim N(0, \frac{\sigma^2}{1-\phi^2})$$



Transition probability matrix: $\Gamma : \gamma_{ij} = \Pr(g_{t+1} \in \text{state } j \mid g_t \in \text{ state } i)$

State-dependent distribution: $p(y_t|g_t)$ is $N(0, \beta^2 e^{g_t})$

Both are available in terms of ϕ , σ^2 , and β .

Stochastic volatility with leverage

A drop in return, y_t , is often followed by an increase in volatility g_{t+1} . (Cappé et al., 2005, p. 28)

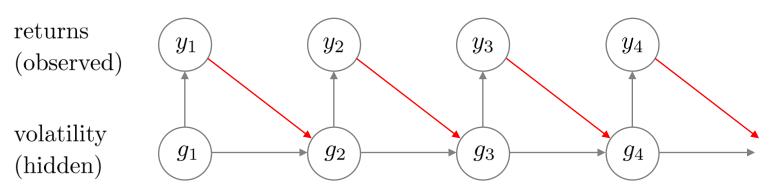
SV model with leverage

$$y_{t} = \epsilon_{t} \beta e^{g_{t}/2} \qquad \qquad \epsilon_{t} \stackrel{\text{iid}}{\sim} N(0, 1)$$

$$g_{t+1} = \phi g_{t} + \eta_{t} \qquad \qquad \eta_{t} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2})$$

$$\begin{pmatrix} \epsilon_{t} \\ \eta_{t} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \sigma \\ \rho \sigma & \sigma^{2} \end{pmatrix} \end{pmatrix}$$

There is **feedback** from past returns to volatility.



Stochastic volatility with leverage

Application: TOPIX daily opening prices, 30.12.1997 - 30.12.2002

Omori, Y., Chib, S., Shephard, N. and Nakajima, J. (2007). Stochastic volatility with leverage: fast and efficient likelihood inference. *Journal of Econometrics* **140**, 425-449.

Estimates: HMM with m states and those given in Omori et al. (blue)

m	ϕ	σ	eta	ho
10	0.935	0.129	1.206	-0.551
25	0.949	0.135	1.205	-0.399
50	0.949	0.140	1.205	-0.383
100	0.949	0.142	1.205	-0.379
200	0.949	0.142	1.205	-0.378
posterior means	0.951	0.134	1.205	-0.362

Confidence intervals: HMM case based on m = 50 and parametric bootstrap.

	ϕ	σ	$oldsymbol{eta}$	ho
95 % interval	(0.827, 0.973)	(0.078, 0.262)	(1.099, 1.293)	(-0.675, -0.050)
95 % interval	(0.908, 0.980)	(0.091, 0.193)	(1.089, 1.318)	(-0.593, -0.107)

¹The unweighted version.

Homicides and suicides in Cape Town

Source¹: S.A. Police mortuary,

Salt River, Cape Town

Period: 01.01.1986 - 31.12.1991

Length: 5 series of length 313 weeks

Recorded: Counts categorized as follows:

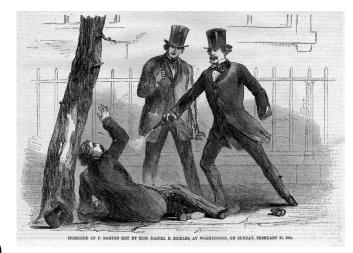
• firearm homicide (FH)

• nonfirearm homicide (NFH)

• firearm suicide (FS)

• nonfirearm suicide (NFS)

• legal intervention homicide (LIH)



Aims: Look for trends and patterns in these series, especially those relating to the use of firearms.

Was there a change in pattern at about 2 February 1990²?

¹ Source: Dr. L. B. Lerer; cf. MacDonald and Lerer (1994).

 $^{^2}$ Date of the speech by President F.W de Klerk that (effectively) ended apartheid.

Time series examined

1. Counts firearm homicides

2. Proportions: $\frac{\text{firearm homicides}}{\text{all homicides and suicides}}$

3. Multivariate model: proportions in each of the 5 categories

- firearm homicide (FH)

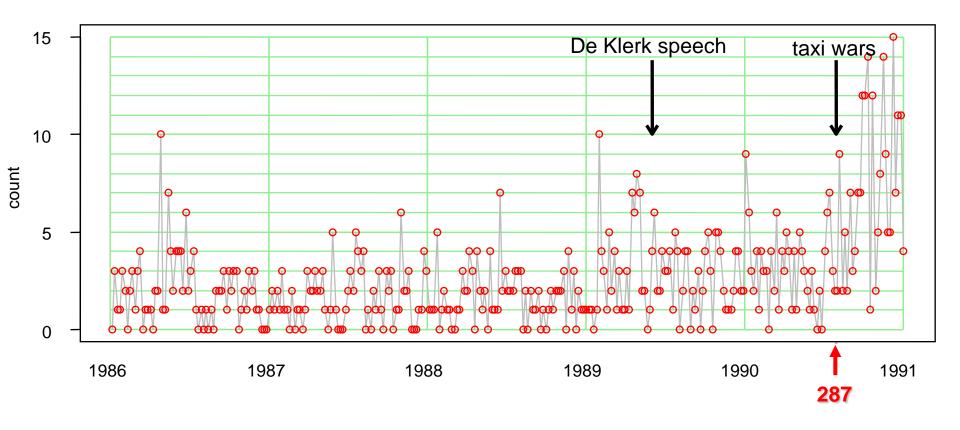
- nonfirearm homicide (NFH)

- firearm suicide (FS)

- nonfirearm suicide (NFS)

- legal intervention homicide (LIH)

Weekly counts of firearm homicides



There was a marked increase firearm homicides in 1991.

The main cause was probably rapid urbanization at the time

- ⇒ dramatic increase in population in and around Cape Town
- \Rightarrow increase in population exposed.

Two-state Poisson-HMMs

Model

Poisson distribution parameters

• no trend

$$\lambda_1$$
 and λ_2

• one time-trend parameter

$$\log \lambda_1 = a_1 + b t,$$
$$\log \lambda_2 = a_2 + b t.$$

• two time-trend parameters

$$\log \frac{\lambda_1}{\lambda_1} = \frac{a_1}{a_1} + b_1 t + b_2 t^2, \\ \log \lambda_2 = \frac{a_2}{a_2} + b_1 t + b_2 t^2$$

• change–point at time 287

$$\lambda_i = \begin{cases} \lambda_i^{(1)} & \text{for } t < 287\\ \lambda_i^{(2)} & \text{for } t \ge 287 \end{cases}$$

Comparison of four HMM models

model with	k	L_T	AIC	BIC
λ_1 and λ_2 constant	4	626.64	1261.27	1276.26
loglinear trend	5	606.82	1223.65	1242.38
log-quadratic trend	6	602.27	1216.55	1239.02
change-point at time 287	6	605.56	1223.12	1245.60

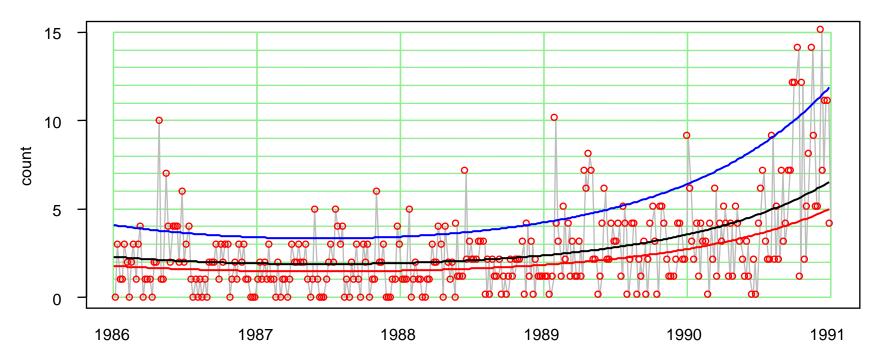
Two-state Poisson-HMM with quadratic trends

$$\hat{\delta}' = \begin{pmatrix} 0.777 \\ 0.223 \end{pmatrix} \quad \hat{\Gamma} = \begin{pmatrix} 0.881 & 0.119 \\ 0.416 & 0.584 \end{pmatrix} \quad \text{State 1 relatively persistent}$$

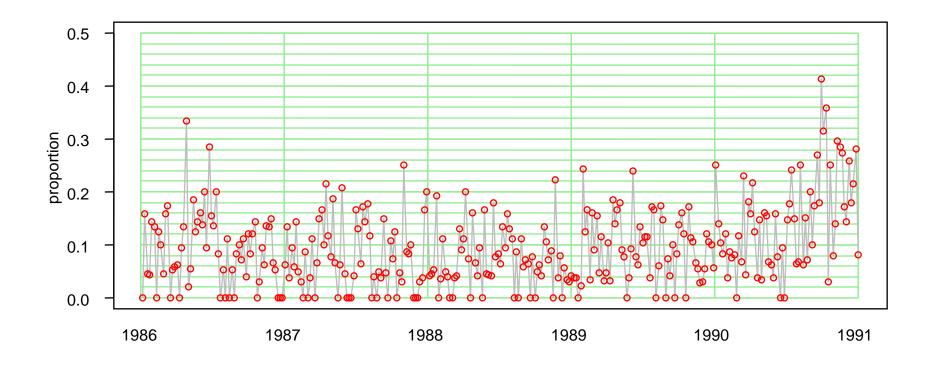
$$\widehat{\log \lambda_1} = 0.477 - 0.004858 t + 0.00002665 t^2$$

$$\widehat{\log \lambda_2} = 1.370 - 0.004858 t + 0.00002665 t^2$$

Weekly counts of firearm homicides and fitted state-dependent trends



Firearm homicides as a proportion of all homicides and suicides



There was a marked increase in the **proportion** of firearm homicides in 1991. This cannot be attributed purely to an increase in the population; other causes need to be considered.

Two-state binomial-HMMs

• Let n_t be the total number of homicides and suicides in week t,

Model

Parameters of binomial distribution

• no trend

$$\pi_1$$
 and π_2

• one time-trend parameter

$$logit \ \pi_1 = a_1 + b t,$$
$$logit \ \pi_2 = a_2 + b t.$$

• two time-trend parameters

$$logit \ \pi_1 = a_1 + b_1 t + b_2 t^2,$$
$$logit \ \pi_2 = a_2 + b_1 t + b_2 t^2$$

• change-point at time 287

$$\pi_i = \begin{cases} \pi_i^{(1)} & \text{for } t < 287\\ \pi_i^{(2)} & \text{for } t \ge 287 \end{cases}$$

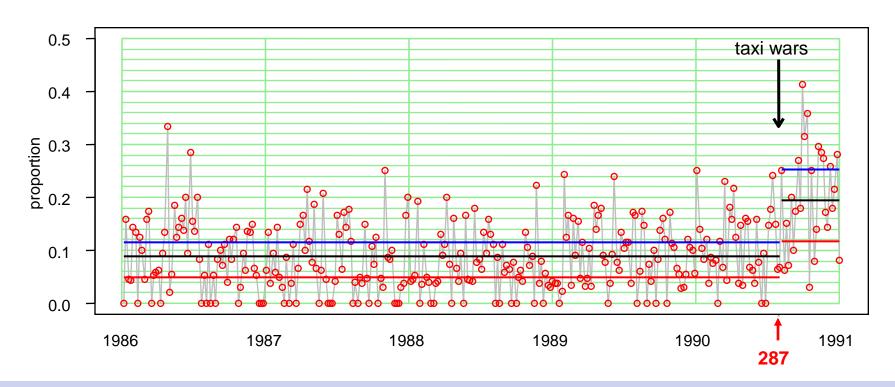
Model selection criteria

model with	\overline{k}	$-\mathrm{L}_T$	AIC	BIC
π_1 and π_2 constant	4	590.26	1188.52	1203.50
one time-trend parameter	5	584.34	1178.67	1197.40
two time-trend parameters	6	581.87	1175.75	1198.23
change-point at time 287	6	573.27	1158.55	1181.03

Two-state binomial-HMMs with change-point

$$\hat{\delta}' = \begin{pmatrix} 0.426 \\ 0.574 \end{pmatrix} \quad \hat{\Gamma} = \begin{pmatrix} 0.658 & 0.342 \\ 0.254 & 0.746 \end{pmatrix} \quad \text{Neither state}$$
is very persistent.

$$\pi_1^{(1)} = 0.050$$
 $\pi_2^{(1)} = 0.116$ for $t < 287$ $\pi_1^{(2)} = 0.117$ $\pi_2^{(2)} = 0.253$ for $t \ge 287$



Multinomial-HMM for all five categories of homicide

- firearm homicide Categories: (FH)

> - nonfirearm homicide (NFH)

- firearm suicide (FS)

- nonfirearm suicide (NFS)

- legal intervention homicide (LIH)

Observations:

 $x_t = (x_{t1}, x_{t2}, x_{t3}, x_{t4}, x_{t5}), \quad t = 1, 2, \dots, T,$ where $n_t = \sum_{j=1}^{5} x_{tj}$ is regarded as given.

 $\delta P(x_1) \Gamma P(x_2) \Gamma P(x_3) \cdots \Gamma P(x_T) 1'$ Likelihood:

where $P(x_t)$ is a diagonal matrix with *i*-th entry $Pr(X_t = x_t | C_t = i)$.

$$\Pr(X_t = x_t | C_t = i) = \begin{pmatrix} n_t \\ x_{t1} x_{t2} x_{t3} x_{t4} x_{t5} \end{pmatrix} \pi_{i1}^{x_{t1}} \pi_{i2}^{x_{t2}} \pi_{i3}^{x_{t3}} \pi_{i4}^{x_{t5}}$$

To model a change-point

Simply use one set of parameters for the state-dependent model before the change-point, and another set after the change-point.

Parameter estimates for a multinomial-HMM with change point on day 287

$$\hat{\Gamma} = \begin{pmatrix} 0.541 & 0.459 \\ 0.097 & 0.903 \end{pmatrix} \qquad \hat{\delta}' = \begin{pmatrix} 0.174 \\ 0.826 \end{pmatrix}$$

State-dependent distributions

Weeks 1–287

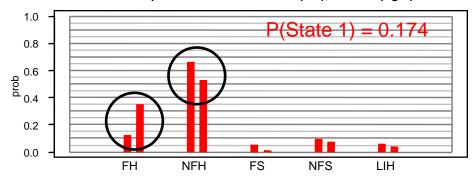
	FH	NFH	FS	NFS	LIH
in state 1	0.124	0.665	0.053	0.098	0.059
in state 2	0.081	0.805	0.024	0.074	0.016
marginal	0.089	0.780	0.029	0.079	0.023

Weeks 288–313

	FH	NFH	FS	NFS	LIH
in state 1	0.352	0.528	0.010	0.075	0.036
in state 2	0.186	0.733	0.019	0.054	0.008
marginal	0.215	0.697	0.018	0.058	0.013

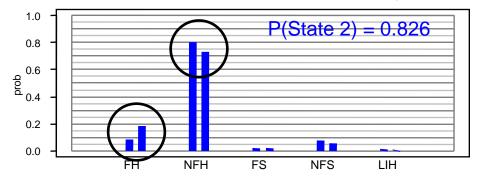
Homicides and suicides in Cape Town

State 1: Multinomial probabilities weeks 1-287 (left), 288-313 (right)



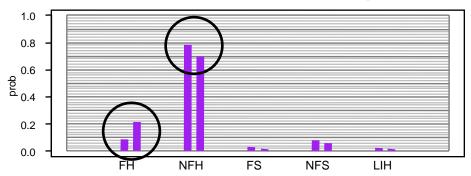
There was a shift from NFH to FH. However, the process is relatively infrequently in state 1.

State 2: Multinomial probabilities weeks 1-287 (left), 288-313 (right)



There was a shift from NFH to FH.

Unconditional probabilities weeks 1-287 (left), 288-313 (right)



The shift is (of course) evident in the unconditional distribution.

Summary

Hidden Markov models are

- satisfyingly flexible,
- reasonably easy to apply,
- moderately parsimonious, A 3-state model often provides a reasonable fit.
- occasionally interpretable.

References

- Azzalini, A. and Bowman, A.W. (1990). A look at some data on the Old Faithful geyser. *Appl. Statist.* **39**, 357–365.
- Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer, New York.
- MacDonald, I.L. and Lerer, L.B. (1994). A time series analysis of trends in firearm-related homicide and suicide. *Int. J. Epidemiol.* **23**, 66–72.
- MacDonald, I.L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discretevalued Time Series. Chapman & Hall, London.
- Omori, Y., Chib, S., Shephard, N. and Nakajima, J. (2007). Stochastic volatility with leverage: fast and efficient likelihood inference. *J. Econometrics* **140**, 425–449.
- Shephard, N.G. (1996). Statistical Aspects of ARCH and stochastic volatility. In *Time Series Models: In econometrics, finance and other fields*, D.R. Cox, D.V. Hinkley and O.E. Barndorff-Nielsen (eds), 1–67. Chapman & Hall, London.