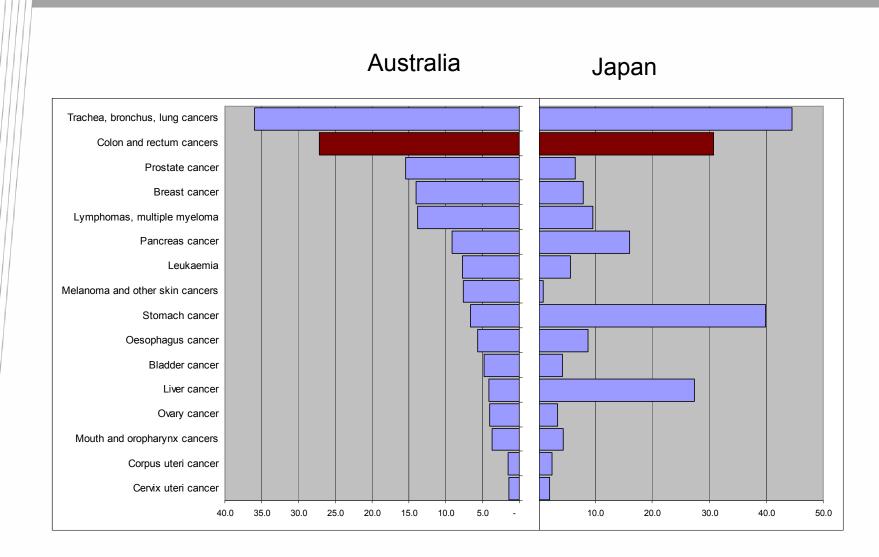
Cherry Bud Workshop 25-28 March 2008 Analysing high-density SNP marker data for linkage with colorectal cancer

Ian W. Saunders Preventative Health National Research Flagship Program CSIRO Mathematical and Information Sciences Adelaide, South Australia

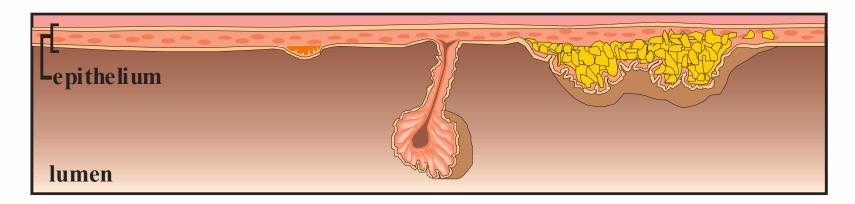
Cancer Death Rates



Source: World Health Organisation

Our goal: CRC-specific early diagnosis.Sisk
assessmentRisk
assessmentEarly detectionDiagnosisMonitoring

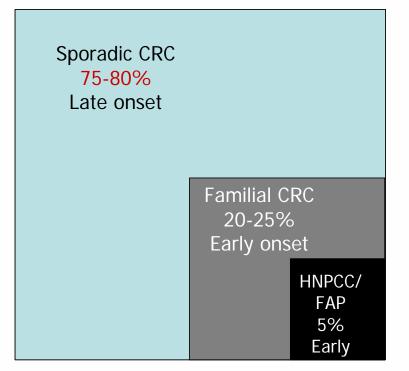
Normal → Hyperplasia → Adenoma → Adenocarcinoma →



(Kinzler & Vogelstein, Cell, 87: 159)

Genetics of CRC

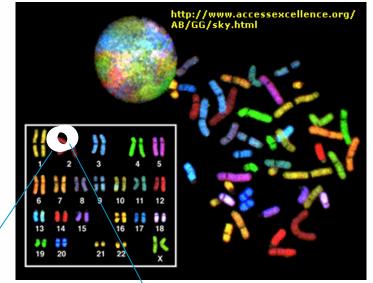
- About 25% of CRCs are in younger (<55) individuals or with a family history of CRC, suggesting a heritable susceptibility.
- Familial high penetrance single genes, multigenic traits?
- Genotype-environment
 interactions affect CRC risk?
- SNPs for more sensitive genetic analysis.

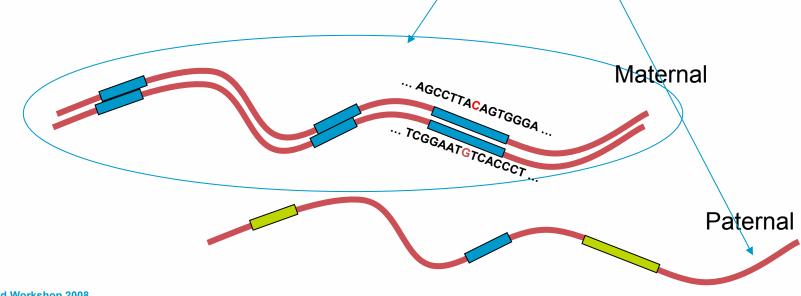


- J.P. Terdiman et al. (1999) AJG 94, 2344-2356.

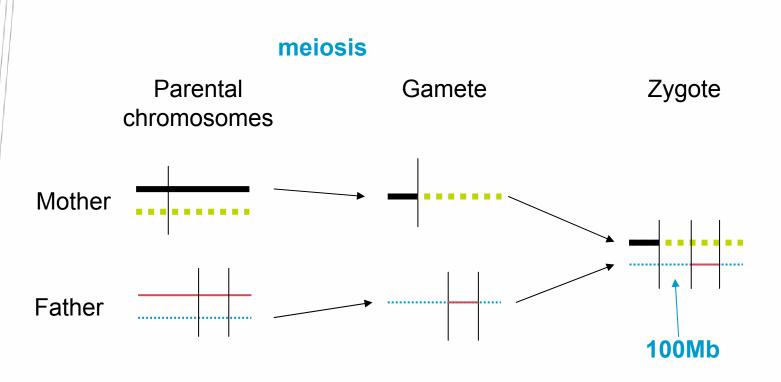
Some Biology ...

- Our cells contain DNA made up of 2 copies of each of 22 'autosomal' chromosomes (plus sex chromosomes, either XX or XY)
- Chromosomes: on average
 - About 10⁸ "base pairs" (bp) or "nucleotides"
 - About 10³ genes of length about 10³ bp
 - So about 1% of chromosome made up of genes





Recombination

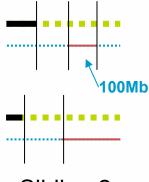


 In meiosis – production of egg and sperm – the parents' chromosomes "recombine" at about 1 or 2 points on each chromosome – an average of about 30 per meiosis; one per 100Mb

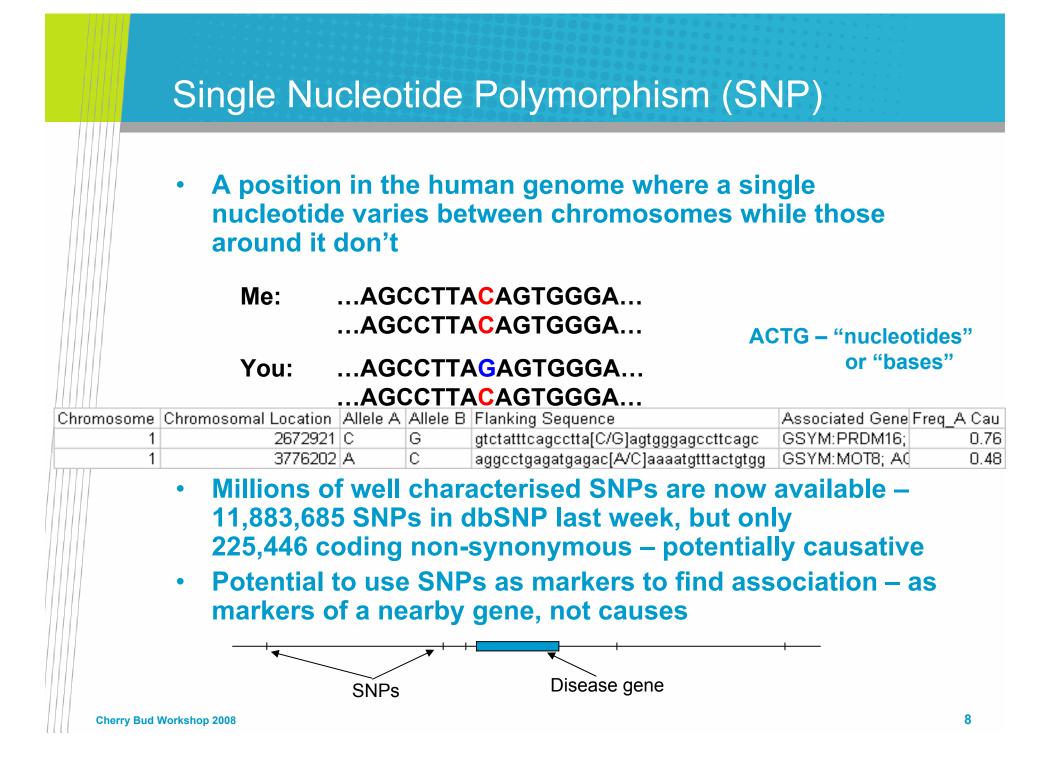
Linkage – keeping it in the family

- Closely related individuals share large sections of their DNA
- For example, if two siblings both inherited a particular allele from their mother, they probably share 50Mb or so of DNA surrounding it as well
- So it is easier to find linkage in relatives than in "unrelated" individuals where only very short (3kb) sections are shared
- However, the actual DNA sequences will be different in different families
- We'd like to know where the sections of 'shared' DNA are located

Sibling 1



Sibling 2



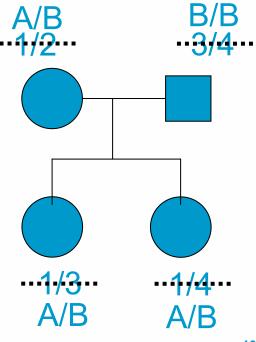
Affymetrix SNP Genotyping Platform

- Platform technology to perform full genome SNP analysis
- Rapidly increasing density of SNP analysis.
- •Affymetrix:
 - 2003: 10,000 SNP array
 - 2004: 100,000 SNP array (2 x 50k)
 - 2005: 500,000 SNP array
 - 2007: 900,000 SNP array

•Staining, scanning and genotype calling fully automated

Using high density markers 1. Checking relationships

- Analysis of the data depends on the pairs actually being siblings, so it's good to check.
- Note that the "children" are generally in their 60's so it's often not practical to genotype parents or check memories relating to adoption etc
- However, the high density of SNP data allows us to determine relationships with confidence
- A simple method uses the number of SNPs where the two siblings have the same genotype

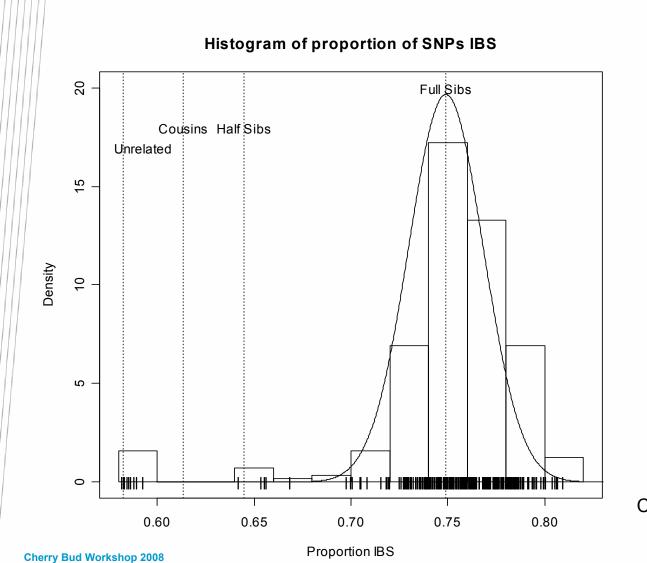


Probabilities for various relationships

Relationship	Prob(Same genotype)	Average for Xba chip
Parent/Child	$p^2 + (1-p)^2$	0.7068
Full siblings	$\frac{1}{4}(p^4 + 4p^2(1-p)^2 + (1-p)^4) + \frac{1}{2}(p^2 + (1-p)^2) + \frac{1}{4}$	0.7490
Half siblings	$\frac{1}{2}(p^4 + 4p^2(1-p)^2 + (1-p)^4) + \frac{1}{2}(p^2 + (1-p)^2)$	0.6446
Uncle/nephew etc	$\frac{1}{2}(p^4 + 4p^2(1-p)^2 + (1-p)^4) + \frac{1}{2}(p^2 + (1-p)^2)$	0.6446
First cousins	$\frac{3}{4}(p^4 + 4p^2(1-p)^2 + (1-p)^4) + \frac{1}{4}(p^2 + (1-p)^2)$	0.6136
Unrelated	$p^4 + 4p^2(1-p)^2 + (1-p)^4$	0.5825

p = frequency of A allele

Results for 136 "sibling" pairs

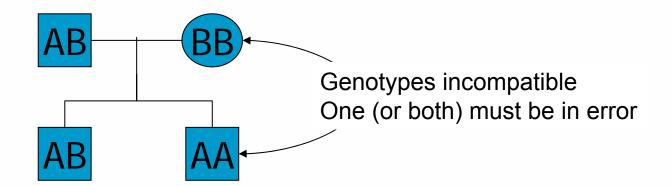


- We can check the relationships in a family from observable IBS data
- (Ethical issues)

CMIS Technical Report 07/37

Using high density markers 2: Genotyping errors

 In a family where we have genotypes from both parents and two sibs we found 64 SNPS out of 57241 had 'Mendelian Errors' – genotypes incompatible with Mendelian inheritance



Genotyping error rate

- It is not too hard to compute the expected number of SNPs with Mendelian errors for a given rate π of genotyping errors
- For families with 2 parents and m children genotyped: $\pi P_{ME}(p_A, m) = (m+2)\pi$

 $-2\pi \left\{ p_A^2 + p_B^2 + \left(\frac{1}{2}\right)^{m-1} p_A p_B + 4 \left[\left(\frac{3}{4}\right)^m - \left(\frac{1}{2}\right)^m \right] p_A^2 p_B^2 \right\} - m\pi p_A p_B \left(3p_A^2 + 4p_A p_B + 3p_B^2 \right) \right\}$

For families with 1 parent and m children genotyped

$$\pi P_{ME}^{(1)}(p_A, m) = \pi p_A p_B (2 - (1 - \frac{1}{2} p_B)^m - (1 - \frac{1}{2} p_A)^m + \frac{1}{2} m)$$

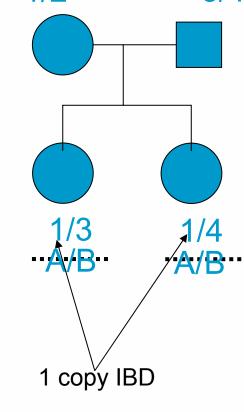
- Leads to an estimate from our families of π =0.13%
- CEPH trios: *π* =0.17%
- Can cause loss of information in data analysis, so useful to make corrections:
 - Small change to linkage algorithm to allow for "observed genotype" differing from "true genotype"
 - Included in subsequent analysis
 - Saunders et al, Genomics (2007)

Detecting linkage: Identical by Descent

- Sharing of DNA between relatives is measured by the number of copies (0, 1 or 2) they inherited from a common ancestor "identical by descent" – "IBD"
- IBD probabilities for a disease gene between siblings

Shared alleles	No linkage	Number affected in pair		
		Both	One	Neither
0	25%	6%	35%	24%
1	50%	49%	50%	50%
2	25%	45%	15%	26%

- LR test statistic for linkage at SNP k is a linear combination Y_k = w'l of counts of number of sib pairs in each IBD class
- (IBD status not observable but we can deduce it from genotypes with high accuracy)
- Saunders et al. (2007) Genetic Epidemiology



--A/B

1/2

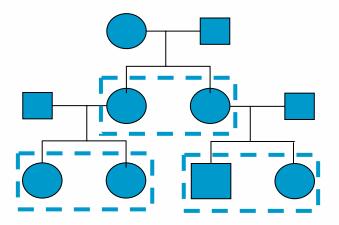
3/4

Data for our study

- Affymetrix Xba chip: 57241 autosomal SNPs
- Trial data
 - 40 individuals
 - 28 pairs of siblings
 - = 11 pairs with both siblings affected
 + 17 pairs with only one affected
 - (small numbers so unlikely to find effect)

Major study

- 1700 individuals in 110 families
- 350 genotyped
- 203 sib pairs: 46 2-affected + 157 1-affected
- Used sib pair information only
- Yuki Sugaya investigating use of complete pedigrees



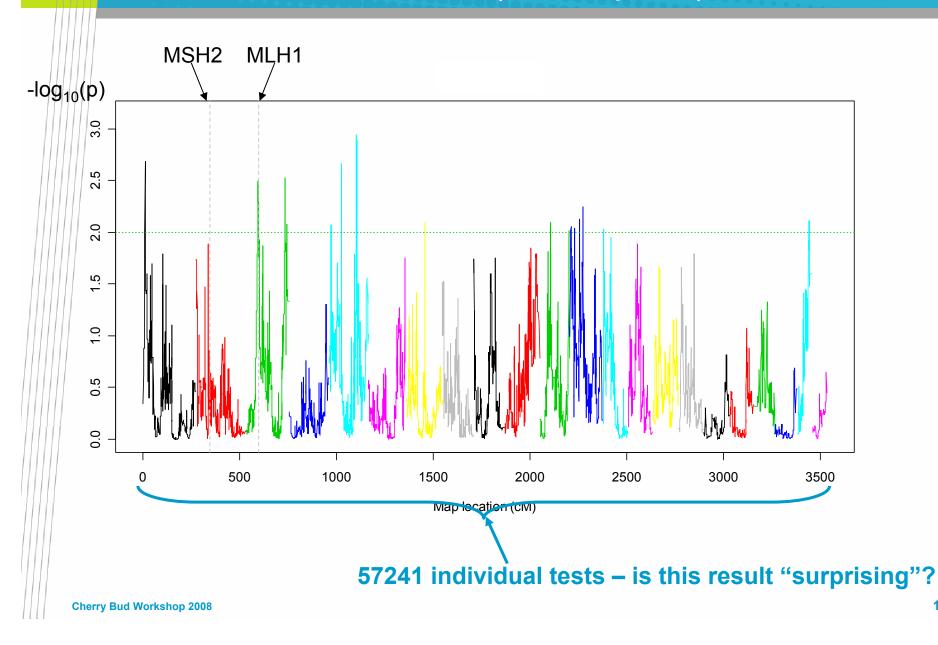
Some results

• Results for 28 sib pairs known to have MLH1 or MSH2 mutation. Genes near SNPs 4550 and 8523.

SNP		4549	4550	4551	 8522	8523	8524	
1 Affected:	0 IBD	3	3	3	3	3	3	
	1 IBD	9	9	9	8	8	8	
	2 IBD	5	5	5	6	6	6	
2 affected:	0 IBD	2	2	2	1	1	1	
	1 IBD	6	6	6	3	3	3	
	2 IBD	3	3	3	7	7	7	
-log ₁	₀ (p-value)	0.41	0.41	0.41	2.1	2.1	2.1	

 Deviation from 25%/50%/25% suggests linkage with the disease. Measure of deviation based on likelihood ratio.

Results for test data (28 sib pairs)



Joint properties of the sequence of test statistics

- We can calculate pointwise test statistics, but we now have 57241 of them with strong correlation.
- It turns out that the sequence of statistics Y_k can be approximated by an autoregressive (Markov) process which does not depend strongly on the alternative disease model.

$$\operatorname{cov}(Y_{i}, Y_{j}) = (1 - w_{1}^{2})e^{-4|\lambda_{i} - \lambda_{j}|} + w_{1}^{2}e^{-8|\lambda_{i} - \lambda_{j}|}$$
$$\approx e^{-4(1 + w_{1}^{2})|\lambda_{i} - \lambda_{j}|}$$

So that

$$Y \sim N(0, \Sigma)$$

Where Σ is the above covariance matrix

Cherry Bud Workshop 2008

Joint properties of the sequence of test statistics

 The presence of a disease susceptibility genes at G alters the distribution of Y_G, and hence the joint distribution

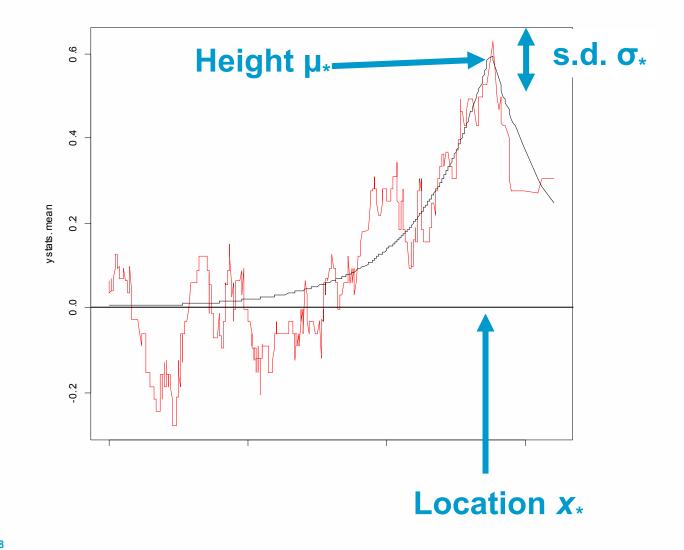
$$Y \sim N(\mu_* s(x_*), \Sigma + (\sigma_*^2 - 1) s(x_*) s(x_*)')$$
$$s(x_*) = e^{-4(1 + w_1^2)|x - x_*|}$$

- Simulation of the joint distribution is easy.
- Computation of the likelihood requires inversion of the covariance matrix

$$L(x_*, \mu_*, \sigma_*^2) = \frac{1}{(2\pi)^{Kn/2} \left\{ \det(\Sigma_*) \right\}^{n/2}} \exp(-\frac{1}{2} \sum_{i=1}^n (y_i - \mu_* s(x_*))' \Sigma_*^{-1} (y_i - \mu_* s(x_*)))$$

$$\Sigma_* = \Sigma + (\sigma_*^2 - 1)s(x_*)s(x_*)'$$

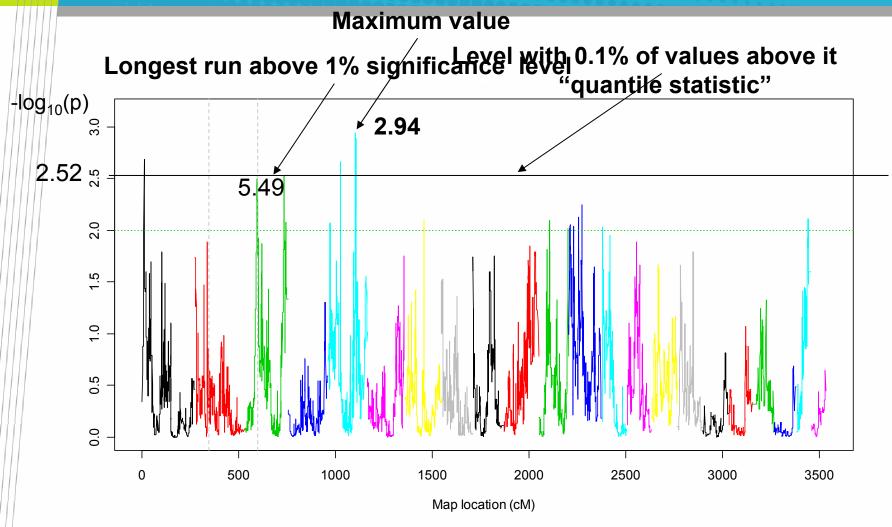
Linkage Model and data



Properties of genome-wide summary statistics

- To determine if the 57241 pointwise LR values are together enough to indicate the presence of an effect requires us to define a "genome-wide summary" (GWS) statistic and see whether this statistic is bigger than expected by chance
- Simulating the null distribution lets us determine the critical points for any required GWS statistic, then simulating the alternative for a given genetic link gives the power to detect that link.

Genome-wide summary (GWS) statistics



Power of GWS statistics

Power estimates based on 10000 simulation runs

n ₁	n ₂		ium run ove		Quantile	Statistic	
		1%	0.1%	10%	1%	0.1%	Max
500	0	75.2%	81.5%	30.1%	78.6%	85.0%	81.9%
0	100	85.3%	90.6%	31.6%	87.5%	92.4%	91.0%

1% or 0.1% quantile statistics generally give the greatest power

Single DS gene – 0.1% quantile statistic

Confidence level 95%

n	n1	n2	Power
300	200	100	90%
300	100	200	100%
300	0	300	100%
500	300	200	100%
500	200	300	100%
500	0	500	100%
1000	500	500	100%
2000	1000	1000	100%
4000	2000	2000	100%
10000	5000	5000	100%

Two DS genes – 0.1% quantile statistic

Confidence level 95%

n	n1	n2	Power
300	200	100	40%
300	100	200	71%
300	0	300	89%
500	300	200	76%
500	200	300	92%
500	0	500	99%
1000	500	500	100%
2000	1000	1000	100%
4000	2000	2000	100%
10000	5000	5000	100%

Five DS genes – 0.1% quantile statistic

Confidence level 95%

n	n1	n2	Power
300	200	100	13%
300	100	200	19%
300	0	300	26%
500	300	200	19%
500	200	300	30%
500	0	500	47%
1000	500	500	56%
2000	1000	1000	92%
4000	2000	2000	100%
10000	5000	5000	100%

GWS significance results

1. Test data

- With a 11 2-affected and 17 1-affected pairs:
- Total run length 19.1 (79 for 5% significance)
- 0.1% quantile statistic 2.75 (3.538 for 5% significance)
- Not surprisingly nonsignificant genome-wide

2. Latest results for major study (~200 pairs)

	Model 3 0.1% QS	Mean IBD 0.1% QS	Model 3 Maximum
5% Critical level	3.58	3.58	4.01
Data value	4.02	3.96	4.67

- Clear evidence of significant linkage
- But where in the genome?

Bayesian estimation of gene location

• The model is specified in terms of three parameters

- μ_{*} the strength of the association with disease mean of Y at disease locus
- σ_{*} the variation between individuals in the strength of association – sd of Y at disease locus
- x_* the location of the gene
- μ_{*} and σ_{*} are determined by the penetrance and allele frequencies of the disease susceptibility (DS) gene
- μ_* is 0 if there is no DS gene
- The analysis gives probability distributions for the three parameters which can be plotted to graphically illustrate their possible values

Posterior distribution of parameters

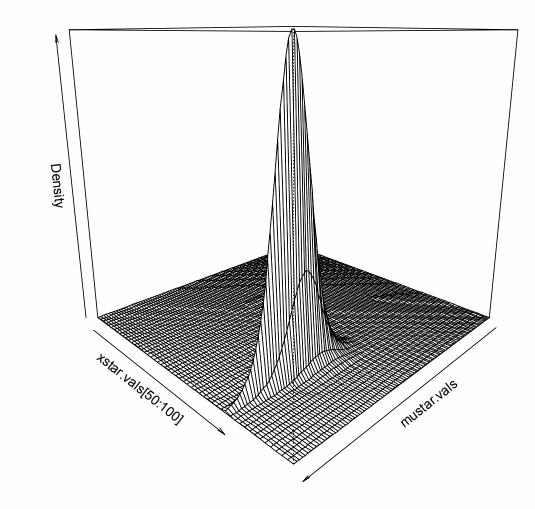
Likelihood for n sib pairs

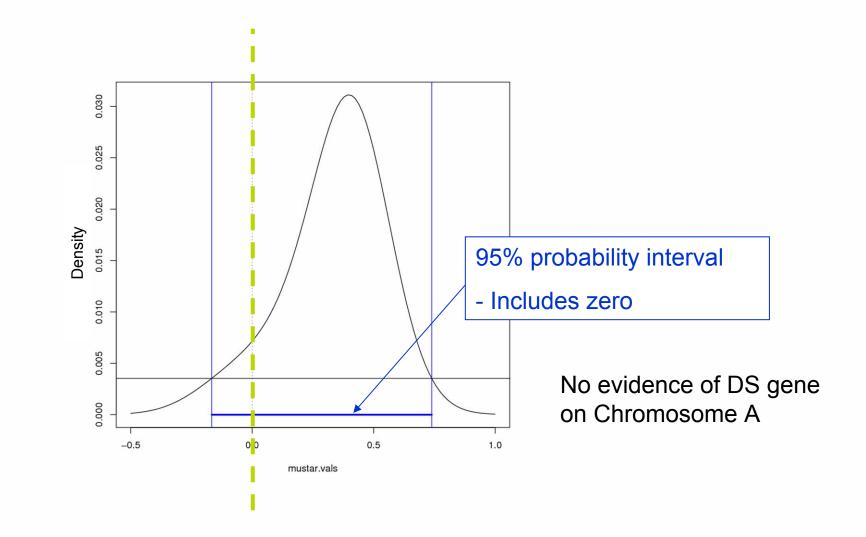
$$L(x_*, \mu_*, \sigma_*^2) = \frac{1}{(2\pi)^{Kn/2} \left\{ \det(\Sigma_*) \right\}^{n/2}} \exp(-\frac{1}{2} \sum_{i=1}^n (y_i - \mu_* s(\lambda_*))' \Sigma_*^{-1} (y_i - \mu_* s(\lambda_*)))$$

• Given a prior distribution *p* for the parameters, the posterior density is proportional to $L(x_*, \mu_*, \sigma_*^2) p(x_*, \mu_*, \sigma_*^2)$

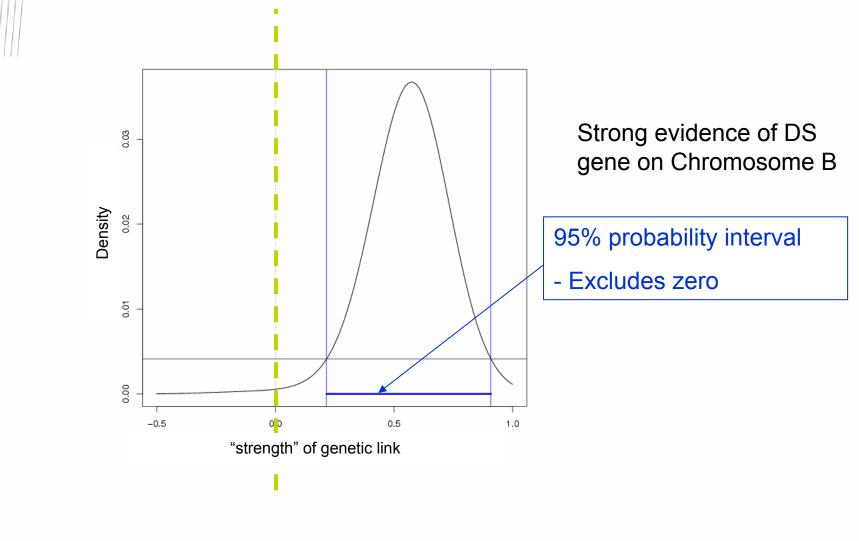
- If the likelihood can be computed on a sufficiently dense grid, covering most of the likely range of the parameters, the posterior density can be obtained simply by dividing the computed values by their sum
- This allows the computation of posterior probability intervals for individual parameters and also joint distributions of pairs of parameters
- For simplicity, used uniform prior no information

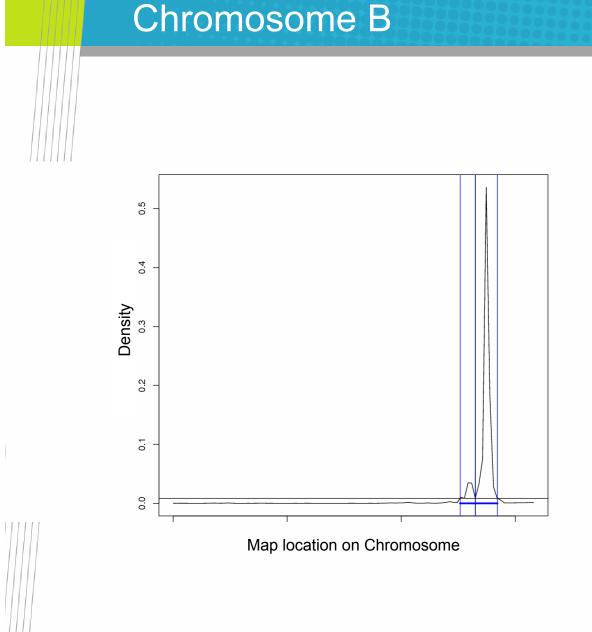
Joint distribution of location and "strength"





Chromosome B : marginal distribution of "strength"



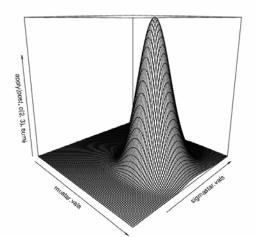


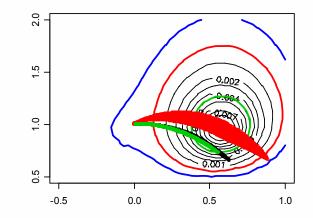
Strongest evidence for gene

 Most likely location within about 5 centimorgans

Disease model

- The joint distribution of μ and σ gives information about the likely disease model
- It can be presented as a contour plot where the peak of the "mountain" represents the most likely values
- The coloured "banana" shapes represent a range of possible models – the red area represents recessive models, green is additive and black is dominant.
- It can be seen that recessive models are more consistent with the data



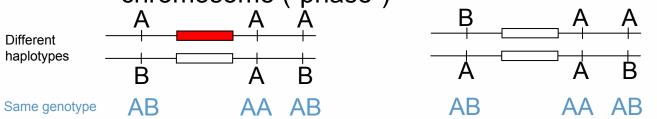


Results of gene location modelling

- The analysis has identified a number of promising regions for further study by fine mapping
- The strongest signals are on Chromosomes ... and these should be given priority.
- There is a suggestion that recessive inheritance is more likely than dominant or additive models.

Association studies:

- The higher SNP densities make it likely that disease genes will be associated with SNP patterns – with 1000000 SNPs the average separation is 3kb
- To do this effectively requires knowing which SNP patterns are on which of the two copies of the chromosome ("phase")



- Associated SNP sequence 'masked' by other copy
- Ongoing research in this area Huwaida Rabie

Issues for higher densities still

- The first complete genome all 3Gb sequenced for less than \$US 1m has just been released (James Watson).
- Forget "coding", "nonsynonymous" etc just get everything!
- 11,883,685 SNPs and lots of more complex forms of variation
- Phase may still be a problem
- False positives???
- Generic methods Bonferroni correction, False Discovery Rate, etc will risk losing signal among the noise
- Need to incorporate other biological knowledge
 - Effects are mediated by proteins working in complex metabolic processes which are partly understood
 - Changes in coding bases affect behaviour of proteins in partly known ways
- How can such partial prior knowledge be modelled in a way that will allow it to be built in to analysis?
 - Bayesian methods or equivalent penalised frequentist methods

Issues for data integration

- This has been about "genomics", but there seems to be a new "-omics" invented every day: proteomics, metabolomics, transcriptomics, interactomics, metagenomics, YF-omics each with massive databases of varying accuracy
- Integrating these has many complex issues:
 - Modelling or data mining?
 - Gene expression and genotype cis- and trans-acting genes
 - Multiple data levels ..., cell, ..., tissue, ..., organism, ... with different experiments and technologies collecting data at each level
 - Highly nonlinear processes: "kinase kinase kinase"
 - Study design levels of variation and replication
 - Integration between different research teams
 - Coping with "observational" data where experiments are not possible (eg human studies)
- Many of these are statistical rather than biological or computational issues

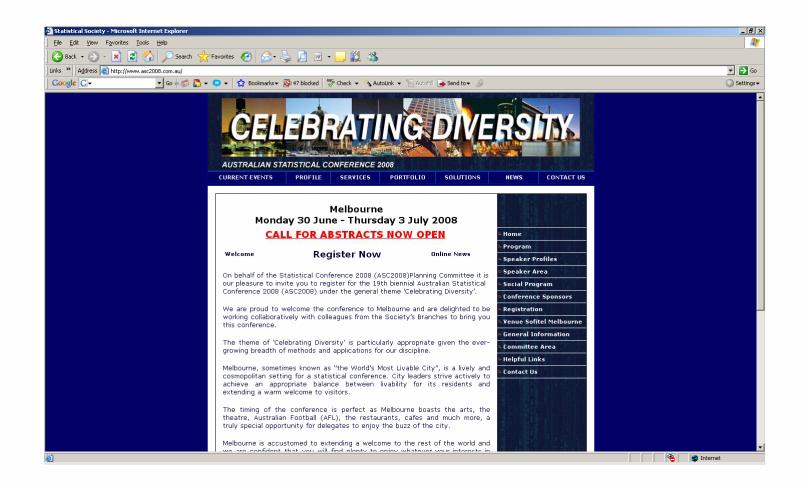
Issues for data integration

- This has been about "genomics", but there seems to be a new "-omics" invented every day: proteomics, metabolomics, transcriptomics, interactomics, metagenomics, YF-omics each with massive databases of varying accuracy
- Integrating these has many complex issues:
 - Modelling or data mining?
 - Gene expression and genotype cis- and trans-acting genes
 - Multiple data levels ..., cell, ..., tissue, ..., organism, ... with different experiments and technologies collecting data at each level
 - · Highly nonlinear processes: "kinase kinase kinase"
 - Study design levels of variation and replication
 - Integration between different research teams
 - Coping with "observational" data where experiments are not possible (eg human studies)
- Many of these are statistical rather than biological or computational issues

Final comments

- Modern biological research is critically dependent on management and analysis of large amounts of complex data
- The processes underlying the data and the interactions between them are also complex, but there is growing understanding of them
- Integration of information and studies is key
- Many of the issues are statistical
- There is lots of fun to be had for statisticians both in the analysis and in the mathematical developments

Australian Statistical Conference Melbourne 30 June – 3 July 2008



http://www.asc2008.com.au/

Acknowledgements

Colleagues:

•

- University of Melbourne John Hopper Mark Jenkins Melissa Southey
- Flinders Medical Centre Graham Young
- Royal Melbourne Hospital Finlay Macrae
- CSIRO Preventative Health Research Flagship Garry Hannan Jesper Brohede Jason Ross
- CSIRO Mathematical and Information Sciences Huwaida Rabie Mike Buckley
- Keio University Yuki Sugaya