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•CRC is the second 
highest cause of cancer-
related death in Australia

• Incidence of CRC has 
risen slightly over the past 
40 years.

•Deaths from CRC have 
decreased slightly over 
the past 20 years.

Cancer Death Rates

Australia Japan

- 10.0 20.0 30.0 40.0 50.0-5.010.015.020.025.030.035.040.0

Cervix uteri cancer

Corpus uteri cancer

Mouth and oropharynx cancers

Ovary cancer

Liver cancer

Bladder cancer

Oesophagus cancer

Stomach cancer

Melanoma and other skin cancers

Leukaemia

Pancreas cancer

Lymphomas, multiple myeloma

Breast cancer

Prostate cancer

Colon and rectum cancers

Trachea, bronchus, lung cancers

Source: World Health Organisation
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lumen

epithelium

Normal Hyperplasia Adenoma Adenocarcinoma

(Kinzler & Vogelstein, Cell, 87: 159 )

Risk
assessment Early detection Diagnosis Monitoring

Our goal: CRC-specific early diagnosis.
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Genetics of CRC

• About  25% of CRCs are in 
younger (<55) individuals or 
with a family history of CRC, 
suggesting a heritable 
susceptibility. 

• Familial – high penetrance 
single genes, multigenic traits?

• Genotype-environment 
interactions affect CRC risk?

• SNPs for more sensitive 
genetic analysis.

Sporadic CRC
75-80%

Late onset

Familial CRC
20-25%

Early onset

HNPCC/
FAP
5%

Early

- J.P. Terdiman et al. (1999) AJG 94, 2344-2356.

Sporadic CRC
75-80%

Late onset

Familial CRC
20-25%

Early onset

HNPCC/
FAP
5%

Early

- J.P. Terdiman et al. (1999) AJG 94, 2344-2356.
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Some Biology …

• Our cells contain DNA made up of 
2 copies of each of 22 ‘autosomal’
chromosomes
(plus sex chromosomes, either XX or XY)

• Chromosomes: on average
• About 108 “base pairs” (bp) or “nucleotides”
• About 103 genes of length about 103 bp
• So about 1% of chromosome made 

up of genes

… AGCCTTACAGTGGGA …… TCGGAATGTCACCCT …

Maternal

Paternal
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Mother

Father

Parental
chromosomes

ZygoteGamete

Recombination

• In meiosis – production of egg and sperm – the parents’
chromosomes “recombine” at about 1 or 2 points on 
each chromosome – an average of about 30 per 
meiosis; one per 100Mb

meiosis

100Mb
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Linkage – keeping it in the family

• Closely related individuals share large sections of their 
DNA

• For example, if two siblings both inherited a particular
allele from their mother, they probably 
share 50Mb or so of DNA 
surrounding it as well

• So it is easier to find linkage 
in relatives than in “unrelated” individuals
where only very short (3kb) sections
are shared

• However, the actual DNA sequences
will be different in different 
families

• We’d like to know where the sections of 
‘shared’ DNA are located 

Sibling 1

Sibling 2

100Mb
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Single Nucleotide Polymorphism (SNP)

• A position in the human genome where a single 
nucleotide varies between chromosomes while those 
around it don’t

• Millions of well characterised SNPs are now available –
11,883,685 SNPs in dbSNP last week, but only
225,446 coding non-synonymous – potentially causative

• Potential to use SNPs as markers to find association – as 
markers of a nearby gene, not causes

Me: …AGCCTTACAGTGGGA…
…AGCCTTACAGTGGGA…

You: …AGCCTTAGAGTGGGA…
…AGCCTTACAGTGGGA…

ACTG – “nucleotides”
or “bases”

SNPs Disease gene
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Affymetrix SNP Genotyping Platform

• Platform technology to perform full genome SNP analysis

• Rapidly increasing density of SNP analysis.

•Affymetrix:
• 2003:      10,000 SNP array
• 2004:    100,000 SNP array ( 2 x 50k )
• 2005:    500,000 SNP array
• 2007:    900,000 SNP array

•Staining, scanning and genotype calling fully automated
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Using high density markers 1. Checking relationships

Analysis of the data depends on the pairs 
actually being siblings, so it’s good to check.
Note that the “children” are generally in their 60’s 
so it’s often not practical to genotype parents or 
check memories relating to adoption etc
However, the high density of SNP
data allows us to determine
relationships with confidence
A simple method uses the 
number of SNPs where the two
siblings have the same genotype

1/2 3/4

1/3 1/4

B/BA/B

A/B A/B
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Probabilities for various relationships

Relationship Prob(IBS) Average for Xba 
chip 

Parent/Child 2 2(1 )p p+ −  0.7068 

Full siblings 4 2 2 4 2 21 1 1
4 2 4( 4 (1 ) (1 ) ) ( (1 ) )p p p p p p+ − + − + + − +  0.7490 

Half siblings 4 2 2 4 2 21 1
2 2( 4 (1 ) (1 ) ) ( (1 ) )p p p p p p+ − + − + + −  0.6446 

Uncle/nephew 
etc 

4 2 2 4 2 21 1
2 2( 4 (1 ) (1 ) ) ( (1 ) )p p p p p p+ − + − + + −  0.6446 

First cousins 4 2 2 4 2 23 1
4 4( 4 (1 ) (1 ) ) ( (1 ) )p p p p p p+ − + − + + −  0.6136 

Unrelated 4 2 2 44 (1 ) (1 )p p p p+ − + −  0.5825 

 

p = frequency of A allele

Prob(Same genotype)
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Results for 136 “sibling” pairs

• We can check the 
relationships in a 
family from 
observable IBS 
data

• (Ethical issues)

Histogram of proportion of SNPs IBS

Proportion IBS

D
en

si
ty

0.60 0.65 0.70 0.75 0.80

0
5

10
15

20 Full Sibs

Half SibsCousins
Unrelated

| | || ||| ||| || | ||| || || || ||| | || | | ||| || || || ||||| ||| |||| | ||| | ||| |||||| | |||| | || || | ||| || || ||| | || | || || || | || | |||| | | || | ||||| ||| || | || ||| | || | || || | |||| | || || || ||||| |||| ||| ||| || || ||| | || || ||| | ||| || || || | ||| || || | || ||| ||| || | || | || | || || || |||| ||| ||| |||||| | || | | ||| || | || || || || |||| | | |||| | | || || ||| ||| ||| |||| || | || ||| ||| || | ||| || || || ||| | || | | ||| || || || ||||| ||| |||| | ||| | ||| |||||| | |||| | || || | ||| || || ||| | || | || || || | || | |||| | | || | ||||| ||| || | || ||| | || | || || | |||| | || || || ||||| |||| ||| ||| || || ||| | || || ||| | ||| || || || | ||| || || | || ||| ||| || | || | || | || || || |||| ||| ||| |||||| | || | | ||| || | || || || || |||| | | |||| | | || || ||| ||| ||| |||| |

CMIS Technical Report 07/37 
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Using high density markers 2: Genotyping errors

• In a family where we have genotypes from 
both parents and two sibs we found 64 SNPS 
out of 57241 had ‘Mendelian Errors’ –
genotypes incompatible with Mendelian
inheritance

BB

AAAB

AB
Genotypes incompatible
One (or both) must be in error
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Genotyping error rate

• It is not too hard to compute the expected number of SNPs 
with Mendelian errors for a given rate π of genotyping errors

• For families with 2 parents and m children genotyped:

• For families with 1 parent and m children genotyped

• Leads to an estimate from our families of π =0.13%
• CEPH trios: π =0.17%
• Can cause loss of information in data analysis, so useful to 

make corrections:
• Small change to linkage algorithm to allow for “observed genotype”

differing from “true genotype”
• Included in subsequent analysis
• Saunders et al, Genomics (2007) 

( ){ } ( )12 2 2 2 2 231 1
2 4 2

( , ) ( 2)

2 4 ( ) ( ) 3 4 3

ME A

m m m
A B A B A B A B A A B B

P p m m

p p p p p p m p p p p p p

π π

π π−

= +

⎡ ⎤− + + + − − + +⎣ ⎦

(1) 1 1 1
2 2 2( , ) (2 (1 ) (1 ) )m m

ME A A B B AP p m p p p p mπ π= − − − − +
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Detecting linkage: Identical by Descent

• Sharing of DNA between relatives is 
measured by the number of copies (0, 1 or 2) 
they inherited from a common ancestor 
“identical by descent” – “IBD”

• IBD probabilities for a disease gene between 
siblings

• LR test statistic for linkage at SNP k is a linear 
combination Yk = w’I of counts of number of 
sib pairs in each IBD class

• (IBD status not observable but we can deduce 
it from genotypes with high accuracy)

• Saunders et al. (2007) Genetic Epidemiology

Alleles IBD No linkage
Both One Neither

0 25% 6% 35% 24%
1 50% 49% 50% 50%
2 25% 45% 15% 26%

Number affected in pairShared alleles

1/2 3/4

1/3 1/4

B/BA/B

A/B A/B

1 copy IBD
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Data for our study

• Affymetrix Xba chip: 57241 autosomal SNPs
• Trial data

• 40 individuals
• 28 pairs of siblings
• = 11 pairs with both siblings affected 

+ 17 pairs with only one affected
• (small numbers so unlikely to find effect)

• Major study
• 1700 individuals in 110 families
• 350 genotyped
• 203 sib pairs:  46 2-affected + 157 1-affected
• Used sib pair information only 
• Yuki Sugaya investigating use of complete pedigrees
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Some results

• Results for 28 sib pairs known to have MLH1 or MSH2 
mutation. Genes near SNPs 4550 and 8523.

• Deviation from 25%/50%/25% suggests linkage with 
the disease. Measure of deviation based on likelihood 
ratio.

-log10(p-value)

2 IBD

1 IBD

2 affected:        0 IBD

2 IBD

1 IBD

1 Affected:        0 IBD

SNP

2.12.12.10.410.410.41

777333

333666

111222

666555

888999

333333

852485238522…455145504549
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Results for test data (28 sib pairs)

MSH2 MLH1
-log10(p)

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3

Map location (cM)

57241 individual tests – is this result “surprising”?
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Joint properties of the sequence of test statistics

• We can calculate pointwise test statistics, but we now 
have 57241 of them with strong correlation.

• It turns out that the sequence of statistics Yk can be 
approximated by an autoregressive (Markov) process 
which does not depend strongly on the alternative 
disease model.

• So that

• Where Σ is the above covariance matrix

2
1

4| | 8| |2 2
1 1

4(1 }| |

cov( , ) (1 ) i j i j

i j

i j

w

Y Y w e w e

e

λ λ λ λ

λ λ

− − − −

− + −

= − +

≈

~ (0, )Y N Σ
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Joint properties of the sequence of test statistics

• The presence of a disease susceptibility genes at G 
alters the distribution of YG, and hence the joint 
distribution

• Simulation of the joint distribution is easy.
• Computation of the likelihood requires inversion of the 

covariance matrix

( ) ( )2
* * * * *~ ( ( ), ( 1) ')Y N s x s x s xμ σΣ + −

{ }
2 11

* * * * * * * *2/ 2/ 2
1*

1( , , ) exp( ( ( )) ' ( ( )))
(2 ) det( )

n

i inKn
i

L x y s x y s xμ σ μ μ
π

−

=

= − − Σ −
Σ

∑

( ) ( )2
* * * *( 1) 's x s xσΣ = Σ+ −

2
1 *4(1 )| 1|

*( ) w x xs x e− + −=
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Linkage Model and data
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Properties of genome-wide summary statistics

• To determine if the 57241 pointwise LR values are 
together enough to indicate the presence of an effect 
requires us to define a “genome-wide summary” (GWS) 
statistic and see whether this statistic is bigger than 
expected by chance

• Simulating the null distribution lets us determine the 
critical points for any required GWS statistic, then 
simulating the alternative for a given genetic link gives 
the power to detect that link.
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0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3

Map location (cM)

Genome-wide summary (GWS) statistics

Longest run above 1% significance  level

5.49

Level with 0.1% of values above it
“quantile statistic”

2.52

Maximum value

2.94
-log10(p)
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Power of GWS statistics

n1 n2 

Maximum run 

above Quantile Statistic 

  1% 0.1% 10% 1% 0.1% Max 

500 0 75.2% 81.5% 30.1% 78.6% 85.0% 81.9% 

0 100 85.3% 90.6% 31.6% 87.5% 92.4% 91.0% 

1% or 0.1% quantile statistics
generally give the greatest power

• Power estimates based on 10000 simulation runs
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Single DS gene – 0.1% quantile statistic

Confidence level 95% 
n n1 n2 Power
300 200 100 90%
300 100 200 100%
300 0 300 100%
500 300 200 100%
500 200 300 100%
500 0 500 100%
1000 500 500 100%
2000 1000 1000 100%
4000 2000 2000 100%
10000 5000 5000 100%
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Two DS genes – 0.1% quantile statistic

Confidence level 95% 
n n1 n2 Power
300 200 100 40%
300 100 200 71%
300 0 300 89%
500 300 200 76%
500 200 300 92%
500 0 500 99%
1000 500 500 100%
2000 1000 1000 100%
4000 2000 2000 100%
10000 5000 5000 100%
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Five DS genes – 0.1% quantile statistic

Confidence level 95% 
n n1 n2 Power
300 200 100 13%
300 100 200 19%
300 0 300 26%
500 300 200 19%
500 200 300 30%
500 0 500 47%
1000 500 500 56%
2000 1000 1000 92%
4000 2000 2000 100%
10000 5000 5000 100%
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GWS significance results

1. Test data
• With a 11 2-affected and 17 1-affected pairs:
• Total run length 19.1 (79 for 5% significance)
• 0.1% quantile statistic 2.75 (3.538 for 5% significance)

• Not surprisingly – nonsignificant genome-wide

2. Latest results for major study (~200 pairs)

• Clear evidence of significant linkage
• But where in the genome?

4.673.964.02Data value
4.013.583.585% Critical level

Model 3 
Maximum

Mean IBD 
0.1% QS

Model 3 0.1% 
QS
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Bayesian estimation of gene location

• The model is specified in terms of three parameters
• μ* – the strength of the association with disease – mean of Y at 

disease locus
• σ* – the variation between individuals in the strength of 

association – sd of Y at disease locus
• x* – the location of the gene

• μ* and σ* are determined by the penetrance and allele 
frequencies of the disease susceptibility (DS) gene

• μ* is 0 if there is no DS gene
• The analysis gives probability distributions for the three 

parameters which can be plotted to graphically illustrate 
their possible values
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Posterior distribution of parameters

• Likelihood for n sib pairs

• Given a prior distribution p for the parameters, the 
posterior density is proportional to

• If the likelihood can be computed on a sufficiently 
dense grid, covering most of the likely range of the 
parameters, the posterior density can be obtained 
simply by dividing the computed values by their sum

• This allows the computation of posterior probability 
intervals for individual parameters and also joint 
distributions of pairs of parameters

• For simplicity, used uniform prior – no information

{ }
2 11

* * * * * * * *2/ 2/ 2
1*

1( , , ) exp( ( ( )) ' ( ( )))
(2 ) det( )

n

i inKn
i

L x y s y sμ σ μ λ μ λ
π

−

=

= − − Σ −
Σ

∑

2 2
* * * * * *( , , ) ( , , )L x p xμ σ μ σ
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Joint distribution of location and “strength”
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Chromosome A: marginal distribution of “strength”

95% probability interval

- Includes zero

No evidence of DS gene 
on Chromosome A

D
en

si
ty
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Chromosome B : marginal distribution of “strength”

Strong evidence of DS 
gene on Chromosome B

D
en

si
ty

“strength” of genetic link

95% probability interval

- Excludes zero
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Chromosome B

• Strongest evidence for 
gene

• Most likely location 
within about 5 
centimorgansD

en
si

ty

Map location on Chromosome



Cherry Bud Workshop 2008 35

Disease model

• The joint distribution of μ and σ gives information about 
the likely disease model

• It can be presented as a contour plot where the peak of 
the “mountain” represents the most likely values

• The coloured “banana” shapes represent a range of 
possible models – the red area represents recessive 
models, green is additive and black is dominant.

• It can be seen that recessive models are more 
consistent with the data 

-0.5 0.0 0.5 1.0

0.
5

1.
0

1.
5

2.
0
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Results of gene location modelling

• The analysis has identified a number of promising 
regions for further study by fine mapping

• The strongest signals are on Chromosomes … and 
these should be given priority. 

• There is a suggestion that recessive inheritance is more 
likely than dominant or additive models.
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Where to from here … ?

• Association studies:
• The higher SNP densities make it likely that disease 

genes will be associated with SNP patterns – with 
1000000 SNPs the average separation is 3kb

• To do this effectively requires knowing which SNP 
patterns are on which of the two copies of the 
chromosome (“phase”)

• Associated SNP sequence ‘masked’ by other copy

• Ongoing research in this area – Huwaida Rabie

A A A

B A B

B A A

A A B
AB AA AB AB AA ABSame genotype

Different 
haplotypes
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Where to from here … ?

• Issues for higher densities still
• The first complete genome – all 3Gb – sequenced for less than 

$US 1m has just been released (James Watson).
• Forget “coding”, “nonsynonymous” etc – just get everything!
• 11,883,685 SNPs and lots of more complex forms of variation
• Phase may still be a problem
• False positives???
• Generic methods – Bonferroni correction, False Discovery Rate, 

etc will risk losing signal among the noise
• Need to incorporate other biological knowledge

• Effects are mediated by proteins working in complex metabolic 
processes which are partly understood

• Changes in coding bases affect behaviour of proteins in partly 
known ways

• How can such partial prior knowledge be modelled in a way 
that will allow it to be built in to analysis?

• Bayesian methods or equivalent penalised frequentist methods
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Where to from here … ?

• Issues for data integration
• This has been about “genomics”, but there seems to be a new 

“-omics” invented every day: proteomics, metabolomics, 
transcriptomics, interactomics, metagenomics, YF-omics
each with massive databases of varying accuracy

• Integrating these has many complex issues:
• Modelling or data mining?
• Gene expression and genotype – cis- and trans-acting genes 
• Multiple data levels - …, cell, …, tissue, …, organism, …

with different experiments and technologies collecting data at each 
level

• Highly nonlinear processes: “kinase kinase kinase”
• Study design – levels of variation and replication 
• Integration between different research teams
• Coping with “observational” data where experiments are not 

possible (eg human studies)
• Many of these are statistical rather than biological or 

computational issues
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Final comments

• Modern biological research is critically dependent on 
management and analysis of large amounts of complex 
data

• The processes underlying the data and the interactions 
between them are also complex, but there is growing 
understanding of them

• Integration of information and studies is key
• Many of the issues are statistical
• There is lots of fun to be had for statisticians both in the 

analysis and in the mathematical developments
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Australian Statistical Conference
Melbourne 30 June – 3 July 2008

http://www.asc2008.com.au/
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