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Stylised facts of returns – I

• Returns are heavy-tailed (non-normal)

• Returns are uncorrelated

• The variation in returns (volatility) evolves through time
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Model for returns

We assume the returns on a stock can be described by

Rt = µt + σtǫt (1)

where Rt = lnPt − lnPt−1 is the daily return, and we assume

• µt is small enough to be ignored

• σt is a smooth volatility process

• ǫt are independent random variables with zero mean and

E(ǫ2t ) = 1.
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What happens when ǫt is heavy-tailed?

The traditional measure of volatility is the moving standard

deviation (historical volatility)

st =

√

√

√

√

√

1

2p

p
∑

j=−p

(Rt−j − R̄t)
2

where R̄t = 1
2p+1

∑p
j=−p Rt−j.

Assuming σt is constant over the smoothing window and that

ǫt are Gaussian, s2t is optimal for σ2
t .

If it is possible that the ǫt are heavy-tailed, we should use a

robust estimator. Typical daily return data suggests this is

necessary.



5

Robust scale estimation

Good robust scale estimators are not all that well known.

We replicated a simulation study (Lax, 1985) and found that

robust estimators based on the whole sample make good

gains on simple robust estimators, e.g. IQR, MAD.

Rather than use the standard deviation, we could use a

robust estimator over a moving window through the data to

estimate scale, giving the volatility estimate Vt.

Due to inherent biases, e.g. E(IQR) = 1.3490σ for normal

data, we must correct the estimates.

In theory, the correction factor depends on distribution of ǫt
and the scale estimator used.
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Robust volatility estimation

We introduce a scaling factor by appealing to the identity

(1) and the assumption that E(ǫ2t ) = 1. In general

ǫ̂t =
Rt

Vt

will not have unit variance, since for a general distribution of

ǫt, E(Vt) = kσt for some k > 0, and a scale estimator Vt.

We rescale Vt using τ̂ = var(ǫ̂t), and the robust volatility

estimator becomes

σ̂t = τ̂Vt (2)

We assume that while the variance may be inefficient over

2p + 1 observations, it will be reliable over the length of the

entire series.
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ML estimation for the t-distribution

Based on empirical results on daily returns, we form a view

on the distribution of ǫt and optimise for this situation.

We select the t-distribution with ν = 5 degrees of freedom.

• has finite variance and kurtosis

• in the observed range 3 ≤ ν ≤ 9

• (local) ML estimates available via the EM algorithm

• estimator of similar form to successful robust estimators

of scale
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We assume ǫt has a scaled t5-distribution and that σt is

constant over the window [t − p, t + p] and estimate the scale

parameter for the sample Rt−p, . . . , Rt+p using maximum

likelihood.

This is obtained by iterating the EM algorithm (Dempster,

Laird and Rubin, 1977) with

σ̂2
t,i+1 =

1

2p + 1

p
∑

j=−p

q
(i)
t−jR

2
t−j (3)

where

q
(i)
t−j =

ν + 1

ν − 2



1 +
R2

t−j

(ν − 2)σ̂2
t,i





−1

for j = −p, . . . , p.
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The volatility estimate is taken to be

σ̂t = τ̂ σ̂t,∞.

where τ̂ is the sample variance of the standardised returns.
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Properties of σ̂t

Very good when ν is small (i.e. close to 5). No worse than st

when ν is large.

• performs well for simulated tν data (ν = 3,5,9,∞)

• seems to perform well for real data

See Randal, Thomson and Lally (QF, 2004).
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Stylised facts of returns – II

• Returns are heavy-tailed (non-normal)

• Returns are uncorrelated

• The variation in returns (volatility) evolves through time

• Returns have a disproportionate frequency of zeroes
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Evidence from New Zealand

• Low prices stocks relative to tick size

• Potentially low trading volume (but not always)
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Is rounding important?

Rounded prices are clearly a dominant feature of New

Zealand stock prices. Is this important?

We simulate geometric Brownian motion series, round them,

and calculate the sample variance of the returns derived from

the rounded prices. Notably, as series length increases, the

quality of the sample variance goes down.



14

Simulation

We generate (double precision) prices as follows:

Rt ∼ iid N(0.1∆,0.32∆); t = 1, . . . , T

P0 = 1;Pt = P0 exp





t
∑

i=1

Ri





where ∆ = 1 day = 1
250 years.

Round prices to the nearest cent (0.01) and form returns R∗
t .

Calculate sample standard deviation for the returns Rt, and

the observed returns R∗
t . Repeat 2500 times for fixed T .
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Implications

Recall the correction factor τ̂ = var(Rt/Vt) and the

assumption “that while the variance may be inefficient over

[the smoothing window], it will be reliable over the length of

the entire series.”

In the face of rounded prices, this assumption appears

unreasonable, and may worsen as the series length increases.
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Developing a correction

Let Pt be the unobserved price.

Let P ∗
t = d

[

Pt
d

]

be the observed price, where d is the tick size.

Let ξt = Pt − P ∗
t be the observation error in the price, with

−d
2 ≤ ξt < d

2

Let Rt = lnPt − lnPt−∆ be the unobserved return.

Let R∗
t = lnP ∗

t − lnP ∗
t−∆ be the observed return.

Let νt = Rt − R∗
t be the observation error in the return.
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Properties of νt - I

R∗
t = lnP ∗

t − lnP ∗
t−∆ = ln



1 +
P ∗

t − P ∗
t−∆

P ∗
t−∆





= ln



1 +
Pt − ξt − (Pt−∆ − ξt−∆)

P ∗
t−∆





≈
Pt − Pt−∆

P ∗
t−∆

−
ξt − ξt−∆

P ∗
t−∆

≈ Rt − νt

where Rt and νt are assumed to be independent.
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Properties of νt - II

While −d
2 ≤ ξt < d

2 is bounded, the observation error in the

returns is not bounded. Its numerator is, but its demoninator

may become very close to zero as the price decreases.
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A volatility correction formula

σ2
∗ = var(R∗

t ) = var(Rt − νt) = var(Rt) + var(νt)

= σ2 + var





ξt − ξt−∆

P ∗
t−∆





= σ2 + 2σ2
ξ (1 − ρξ)E





1

P ∗2
t−∆





σ2 = σ2
∗ − 2σ2

ξ (1 − ρξ)E





1

P ∗2
t−∆
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Evaluating the correction

It seems reasonable to assume σ2
ξ = d2

12 based on a uniform

distribution.

The expectation in the correction term is undefined,

however, we investigate using a sample equivalent.

The first-order autocorrelation of ξt does not have an

obvious theoretical derivation. We consider setting ρξ = 0. In

addition, we seek a function which is approximately zero

when prices are high, and close to one when prices are low.

We consider using the proportion of zero returns in the

sample to estimate this function.



23

Estimation of ρξ

We consider short series with initial values P0 and T = 125.

We simulate and record the proportion of zero returns, and

the first order sample autocorrelation estimate of the ξt

series.

We average the proportions, and sample autocorrelations

across 2500 series.



24

0.0 0.5 1.0 1.5

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial price

A
ut

oc
or

re
la

tio
n 

es
tim

at
e

this is such a lot of text i wonder what happens



25

Implementing a correction formula

We recommend an estimator of variance based on rounded

prices given by

σ̂2 =
1

T

T
∑

t=1

R∗2
t −

d2

6



1 −

[

#{R∗
t = 0}

T

]8




1

T

T
∑

t=1

1

S∗2
t−∆

where prices are rounded to the nearest multiple of d.



26

100 200 300 400 500 600 700

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Time

P
ric

e

this is such a lot of text i wonder what happens

100 200 300 400 500 600 700

0.
01

6
0.

01
8

0.
02

0
0.

02
2

Time

V
ol

at
ili

ty

this is such a lot of text i wonder what happens

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

100 200 300 400 500 600 700

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

Time

P
ric

e

this is such a lot of text i wonder what happens

100 200 300 400 500 600 700

0.
00

0.
01

0.
02

0.
03

0.
04

Time

V
ol

at
ili

ty

this is such a lot of text i wonder what happens

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F



27

10 20 50 100 200 500 1000 2000

−
0.

00
1

0.
00

1
0.

00
3

0.
00

5

Series length

B
ia

s

10 20 50 100 200 500 1000 2000

0.
01

0.
02

0.
03

0.
04

Series length

R
M

S
E

10 20 50 100 200 500 1000 2000

0.
15

0.
20

0.
25

0.
30

Series length

sq
rt

(n
) 

* 
R

M
S

E



28

Doing it properly!

We could form the exact likelihood of the observed prices,

with

ft(x) =

∫ logPt−1+
d
2

logPt−1−
d
2

1

σ
φ

(

x − y − µ

σ

)

ft−1(y)dy

and

l(µ, σ2;P) =

∫ logPT+d
2

logPT−
d
2

fT (x)dx

and maximise this numerically.
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An alternative based on the EM algorithm

Form the exact likelihood based on the complete information

set including the (unobserved) prices Pt. This is the standard

lognormal likelihood function.

Maximise the expected value of this likelihood, given the

data P ∗
t , t = 1, . . . , T .

We will need to evaluate

E0(Rt|P
∗
t , t = 1, . . . , T)

and

E0

(

(Rt − µ̂)2|P ∗
t , t = 1, . . . , T

)

These expectations will not be easy to evaluate.
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Conclusions

• The empirical correction formula is incredibly ad hoc, and

needs theoretical support and/or extensive simulation-

based support.

• Nonetheless, this is a very real issue for practitioners in

markets like New Zealand’s where stock prices are not

large relative to tick size.

• There are implications potentially not only for volatility,

but other measure estimated from observed (rounded)

prices, e.g. CAPM betas.


