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QUOTE

e Heraclitus (Greek philosopher)

“It is never possible to step twice into the same river.”
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(1) Background

e Use of Extremal Models in Climate Applications

-- Non-Stationarity

Climate change?

-- Bounded Upper Tail?

-- Scaling / Aggregation

-- Stochastic weather generators

Improved treatment of extremes



(2) Observed Tail Behavior

e Extreme Value Theory

-- Generalized Extreme Value (GEV) distribution

-- Generalized Pareto (GP) distribution

-- Shape parameter ¢ of GEV or GP distribution
¢ > 0 heavy-tailed distribution (Fréchet or Pareto)
¢ <0 bounded distribution (Weibull or beta)

¢ =0 light-tailed distribution (Gumbel or exponential)



e Upper Bound

-- Bounded upper tail (i. e., { < 0)

Daily minimum & maximum temperature
Hourly or daily wind speed

Pollutant concentration

Sea level

Wave height

-- Interpretation of upper bound

Physically meaningful?
Statistical artifact?



-- Heavy upper tail (i. e., {>0)

Precipitation:

Typical estimates for daily totals 0.1 <¢{<0.15

Streamflow:

Estimates of ¢ tend to be higher than for precipitation

(Effect of integrating precipitation across water basin?)

Economic damage from extreme events:

Estimates of ¢ tend to be higher yet

Economic damage from hurricanes (estimate of { = 0.5)



e Scaling / Aggregation

-- Apparent conflict with extreme value theory
Observed precipitation extremes:

Shape parameter tends to decrease with aggregation over time

(e. g., hourly vs. daily total amounts)

Example: Regional analysis of precipitation extremes in Texas

Extreme value theory:

Shape parameter should be invariant with respect to aggregation
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(3) Penultimate Approximations

o “Ultimate” Extreme Value Theory
-- GEV distribution as limiting distribution of maxima
X, X5, . . ., X7 with common distribution function F

MT= Max{ X1, X2, .oy XT}

e Penultimate Extreme Value Theory

-- Suppose F in domain of attraction of Gumbel type (i. e., { = 0)

-- Still preferable in nearly all cases to use GEV as approximate

distribution for maxima (i. e., act as if { # 0)

11



-- Expression for shape parameter &

“Hazard rate” (or “failure rate”):

H(x) = Fi(x) I [1 = F(x)]

Then one choice of shape parameter is:

$r= (1/H)" (%) |x=un

where the “characteristic largest value”
u(N=F'(1-17

Here {; — 0 as block size T — «
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o Example: Exponential Distribution

-- Exact exponential upper tail (unit scale parameter)

1-F(x)=exp(=-x), x>0

-- Penultimate approximation

Hazard rate: H(x)=1, x>0

Shape parameter: &=0, T=1,2,...

So no benefit to penultimate approximation



e Example: Normal Distribution

-- Fisher & Tippett (1928) proposed Weibull type of GEV as

penultimate approximation
-- F Normal distribution (with zero mean & unit variance)

Hazard rate: H(x) = x (for large x)

Characteristic largest value:  u(T) = (2 log T)"* (for large T)
-- Penultimate approximation is Weibull type with

$r==1/(2log T)

For instance: $30 = —0.15, $365 = —0.085
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e Example: “Stretched Exponential” Distribution

-- Traditional form of Weibull distribution (Bounded below)
Note: Weibull extremal type is reflected version
1-F(x)=exp(-x°), x>0, ¢c>0

where c is shape parameter (unit scale parameter)

-- Shape parameter for penultimate approximation is:

$r=(1-c)/(clog T)

(i) “Superexponential”’ (c > 1) &-10 as T—

(if) “Subexponential” (c < 1) §r10 as T—
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(4) Interpretation of Tail Behavior

e Apparent Upper Bound

-- Maximum possible hurricane intensity

(e. g., pressure or wind speed)

Estimate upper bound (Trend due to global warming?)
-- “Thermostat hypothesis”

Hypothesized upper bound on sea surface temperature in tropical

oceans (Even with warming trend in mean)

Implications for impact of global warming on coral reefs
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e Apparent Heavy Tail

-- Precipitation

(i) Penultimate approximation

Fréchet type of GEV can be obtained with F stretched exponential

distribution (Shape parameter c < 1)

(ii) Physical argument

Wilson & Toumi (2005) gave heuristic argument for “universal”
shape parameter of ¢ = 2/3 for stretched exponential distribution

for extreme high precipitation
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-- Simulation experiment

Generate observations with stretched exponential distribution

(with shape parameter c = 2/3)

Use block size of T =100 to simulate maxima Mg
(Corresponds to daily precipitation occurrence rate about 27%,

ignoring variation in number of wet days)

Penultimate approximation:

Should produce GEV shape parameter of ;o0 = 0.11

Fitted GEV distribution (40,000 replications):
Obtained estimate of §;oo = 0.10



20

-- Aggregation Issue
Apparent decrease in shape parameter of GEV or GP distribution
Stretched exponential should be capable of resolving
(at least qualitatively)
Simulation experiment:

Sum of two independent stretched exponentials
(each with c = 2/3)

Use block size of T =100 to simulate maxima Mg
Fitted GEV dist. (40,000 replications): Estimate {00 = 0.065

But note that precipitation really a “random sum”



21

(5) Unified Modeling of Distributions

Goal: Model entire distribution, not just upper tail

o Stochastic Weather Generators
-- Markov chain model for precipitation occurrence
-- Precipitation intensity

Conditionally independent & identically distributed

(e. g., gamma distribution)

-- Multivariate autoregressive process for other daily weather
variables (e. g., minimum & maximum temperature) conditional on

precipitation occurrence



e Alternative approach (Popular in hydrology)
-- Resampling using bootstrap scheme

-- Unrealistic for extremes

(Like stepping into same river twice!)

e Fort Collins, CO, USA July daily precipitation intensities
100 yrs. of data, 1900 — 1999

(i) Typical weather generator approach

-- Fit gamma distribution to all data

(ii) Extreme value approach

-- Fit GP distribution to upper tail
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Observed

Fort Collins July Daily Precipitation: Q-Q Plot
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Observed (Excess over 1 in)

Fort Collins July Daily Precipitation: Q-Q Plot

Expected (GP distribution)
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e GLM Approach for Stochastic Weather Generators

-- Generalized Linear Model (GLM)
Can fit entire weather generator using only gIm function in R

Easy to incorporate covariates such as annual cycles or El Nino

phenomenon
Reference: Furrer & Katz (Climate Research, 2007)

-- Extensions straightforward

Replace gamma distribution for precipitation intensity with

heavier-tailed distribution such as stretched exponential



e Unified treatment
How to combine distributions?
-- Needs to be simple enough to include covariates in model

(e. g., annual cycles, ENSO index for Pergamino application)

-- Issue of parsimony (too many parameters?)

-- Issue of consistency (e. g., different models for annual cycles)

e Threshold selection
-- Extremely difficult for stretched exponential

Should not be too low
Should not be too high (unlike case of GP distribution)
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e Alternative approach

-- Extension of mixture of two exponential distributions

(commonly used in hydrology to model precipitation intensity)
-- Outside GLM framework (But avoids threshold selection)
-- Mixture of two stretched exponentials

(Fit to all precipitation intensity, not just high values)

-- Example
Mixture of exponential (i. e., c = 1) & stretched exponential (c =
2/3)



Observed

Fort Collins July Daily Precipitation: Q-Q Plot
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e “Hybrid” Approach
(i) First Gamma distribution to all data
(ii) Then replace with GP distribution above high threshold

-- How to tie together two pdfs at threshold u?

-- Ad hoc procedure
Adjust scale parameter o of GP distribution:
o =1/ H(u)

where H is hazard rate for gamma distribution

-- Fort Collins July precipitation intensity, u = 0.5 in
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log(Survival function)

Fort Collins July Precipitation Intensity
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(7) Resources

o Statistics of Weather and Climate Extremes

-- Application of statistics of extremes to weather & climate

www.isse.ucar.edu/extremevalues/extreme.html

e Extremes Toolkit (extRemes)

-- Open source software in R with GUIs

www.isse.ucar.edu/extremevalues/evtk.html

e GLM Based Weather Generator

www . image.ucar.edu/~eva/GLMwgen/



