A family of asymmetric distributions on the circle with links to, and applications arising from, Möbius transformation

Shogo Kato^{1,*} and M. C. Jones²

¹ Keio University, Japan ² The Open University, UK

March 28, 2008

Outline

1 Introduction

- 2 A Family of Asymmetric Distributions on the Circle
- 3 Subfamilies
- 4 Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�?

Asymmetric Circular Data Asymmetric Distributions on the Circle

Asymmetric Circular Data

Circular data

Circular data are a set of observations expressed as angles $[-\pi, \pi)$.

Ex) wind directions, vanishing directions of migratory birds.

Asymmetric circular data

Circular data are often asymmetrically distributed.

Fig.1. azimuths of cross-beds in the rocks of the upper Kamthi river valley, India (SenGupta and Rao, 1966).

< ロ > < 同 > < 回 > < 回 >

Asymmetric Circular Data Asymmetric Distributions on the Circle

Asymmetric Distributions on the Circle

Existing model

Generalized von Mises distribution

- introduced as a statistical model by Maksimov (1967).
- discussed further, e.g., by Gatto & Jammalamadaka (2007).

Our goal

It would be ideal if an asymmetric distribution has the following properties:

- inclusion of some important symmetric models,
- wide range of the indices of skewness,
- mathematical tractability.

Definition Properties

Definition of the Proposed Model

We propose a family of distributions on the circle by transforming the von Mises distribution via Möbius transformation.

Definition

Let $\tilde{\Theta} \sim \text{von Mises distribution vM}(0, \kappa)$.

Then we define a family of distributions on the circle by

$$\Theta = \mu + rg \left\{ rac{oldsymbol{e}^{i ilde{\Theta}} + roldsymbol{e}^{i
u}}{roldsymbol{e}^{i(ilde{\Theta} -
u)} + \mathbf{1}}
ight\},$$

where

$$-\pi \leq \mu, \nu < \pi, \quad \mathbf{0} \leq \mathbf{r} < \mathbf{1}.$$

What are the von Mises distribution and Möbius transformation?

Э

von Mises distribution

The von Mises distribution, $vM(\mu, \kappa)$, is given by the density

$$f(heta) = rac{1}{2\pi \mathcal{I}_0(\kappa)} \exp\left\{\kappa \cos(heta - \mu)
ight\}, \quad -\pi \le heta < \pi,$$

where

$$-\pi \le \mu < \pi, \quad \kappa \ge \mathbf{0},$$

 $\mathcal{I}_{j}(\cdot)$: modified Bessel function of the first kind and order *j*.

Definition

Basic properties

unimodality

- **symmetry about** $\theta = \mu$
- mode (antimode) at $\theta = \mu (\mu + \pi)$

Fig. 2. Density of von Mises with $\mu = 0$ and: $\kappa = 0.3$, $\kappa = 1.2$, $\kappa = 2.1$.

S. Kato and M. C. Jones

A family of asymmetric distributions on the circle

Definition Properties

Möbius transformation

The Möbius transformation $\mathcal{M}: [-\pi, \pi) \rightarrow [-\pi, \pi)$ is defined by

$$\mathcal{M}(\theta; \mathbf{r}, \nu) = \arg\left\{\frac{e^{i\theta} + \mathbf{r}e^{i\nu}}{\mathbf{r}e^{i(\theta-\nu)} + 1}\right\}, \quad \theta \in [-\pi, \pi); \ \mathbf{r} \in [0, 1), \ \nu \in [-\pi, \pi).$$

Interpretation of r and ν

The points on the circle are attracted towards ν with concentration *r*.

Fig. 3. Plot of $\mathcal{M}(\theta; r, \nu)$ for $\nu = \pi/4$ and: r = 0.3, r = 0.6, r = 0.9.

(日)

Fig. 4.

$$\tilde{\mathcal{M}}(\theta) = \frac{e^{i\theta} + re^{i\nu}}{re^{i(\theta-\nu)} + 1},$$

$$\theta = 2\pi k/12,$$

$$k = 1, \dots, 12,$$

$$\nu = \pi/4,$$

- 1. r = 0 (above left),
- 2. r = 0.3 (above right),
- 3. r = 0.6 (below left),

4. r = 0.9 (below right).

Definition Properties

Möbius transformation and circular uniform

McCullagh (1996)

$$\Theta \sim ext{circular uniform} \implies ext{arg} \left\{ rac{e^{i\Theta} + re^{i
u}}{re^{i(\Theta-
u)} + 1}
ight\} \sim ext{WC}(
u, r)$$

Wrapped Cauchy distribution

The wrapped Cauchy distribution, $WC(\nu, r)$, is given by the density

$$f(\theta) = rac{1}{2\pi} rac{1-r^2}{1+r^2-2r\cos(\theta-
u)}, \quad heta \in [-\pi,\pi); \ r \in [0,1), \
u \in [\pi,-\pi).$$

This model is also a unimodal and symmetric distribution on the circle.

イロン 不得 とくほ とくほう 一日

Definition Properties

Definition of the Proposed Model (Revisited)

We propose a family of distributions on the circle by transforming the von Mises distribution via Möbius transformation.

Definition

- Let $\tilde{\Theta} \sim \text{von Mises distribution vM}(0, \kappa)$.
- Then we define a family of distributions on the circle by

$$\Theta = \mu + rg \left\{ rac{e^{i ilde{\Theta}} + r e^{i
u}}{r e^{i(ilde{\Theta} -
u)} + 1}
ight\},$$

where

$$-\pi \leq \mu, \nu < \pi, \quad \mathbf{0} \leq \mathbf{r} < \mathbf{1}.$$

We investigate some properties of the proposed model.

Definition Properties

Probability Density Function

Probability density function

The density for Θ is given by

$$f(\theta; \mu, \kappa, r, \nu) = \frac{1 - r^2}{2\pi \mathcal{I}_0(\kappa)} \exp\left[\frac{\kappa \{\xi \cos(\theta - \eta) - 2r \cos\nu\}}{1 + r^2 - 2r \cos(\theta - \gamma)}\right] \times \frac{1}{1 + r^2 - 2r \cos(\theta - \gamma)}, \quad -\pi \le \theta < \pi, \quad (1)$$

where

$$\kappa \ge 0, \quad -\pi \le \mu, \nu < \pi, \quad 0 \le r < 1, \quad \xi = \sqrt{r^4 + 2r^2 \cos(2\nu) + 1},$$

 $\gamma = \mu + \nu, \quad \eta = \mu + \arg\{r^2 \cos(2\nu) + 1 + ir^2 \sin(2\nu)\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Probabilities

Probabilities

Let *f*: density for model (1),

 g_{VM} : density for the von Mises vM(0, κ).

Then probabilities of intervals under density f can be expressed as

Properties

$$\int_{t_1}^{t_2} f(\theta) \, d\theta = \int_{s_1}^{s_2} g_{VM}(\theta) \, d\theta,$$

where

$$s_j = \arg\left\{rac{re^{i
u} - e^{i(t_j - \mu)}}{re^{i(t_j - \mu - \nu)} - 1}
ight\}, \quad j = 1, 2.$$

Therefore we can evaluate the above probabilities by applying the numerical method for von Mises distribution developed by Hill (1977).

Definition Properties

Special Cases

Proposed model

$$f(\theta) \propto \exp\left[\frac{\kappa\{\xi\cos(\theta - \eta) - 2r\cos\nu\}}{1 + r^2 - 2r\cos(\theta - \gamma)}\right] \frac{1}{1 + r^2 - 2r\cos(\theta - \gamma)}, \quad \theta \in [-\pi, \pi);$$

$$\kappa \ge 0, \quad \mu, \nu \in [-\pi, \pi), \quad r \in [0, 1), \quad \xi = \sqrt{r^4 + 2r^2\cos(2\nu) + 1},$$

$$\gamma = \mu + \nu, \quad \eta = \mu + \arg\{r^2\cos(2\nu) + 1 + ir^2\sin(2\nu)\}.$$

Special cases

The proposed model includes the following as special cases:

- von Mises distribution (r = 0),
- wrapped Cauchy distribution ($\kappa = 0$),
- uniform distribution $(r = \kappa = 0)$,
- point distribution at $\theta = \mu + \nu$ ($\kappa \to \infty$ or $r \to 1$).

Definition Properties

Graphs of Density

Proposed model

$$f(\theta) \propto \exp\left[\frac{\kappa\{\xi\cos(\theta-\eta)-2r\cos\nu\}}{1+r^2-2r\cos(\theta-\mu-\nu)}\right]\frac{1}{1+r^2-2r\cos(\theta-\mu-\nu)}.$$

Fig. 5. (left) $\mu = \pi$, r = 0.5, $\nu = \pi/2$ and: $\kappa = 0$, $\kappa = 1$, $\kappa = 2$ and $\kappa = 3$, (center) $\mu = 0$, $\kappa = 1$, $\nu = \pi$ and: r = 0.1, r = 0.2, r = 0.3 and r = 0.4, (right) $\mu = 0$, $\kappa = 1$, r = 0.5 and: $\nu = 0$, $\nu = \pi/3$, $\nu = 2\pi/3$ and $\nu = \pi$.

Definition Properties

Conditions for Symmetry/Unimodality

Conditions for symmetry

Density (1) is symmetric if and only if r = 0, $\nu = 0$, π or $\kappa = 0$.

Conditions for unimodality

- Density (1) can be unimodal or bimodal.
- Modes of the density (1) can be calculated by solving a quartic equation.
- The condition for unimodality can be written out in terms of three parameters *r*, *ν* and *κ*.

<ロ> <四> <四> <四> <三</td>

Definition Properties

Circular skewness

A measure of skewness, s, for circular r.v. Θ (Mardia, 1972).

$$\boldsymbol{s} = \frac{\boldsymbol{E}\left[\sin\left\{2(\Theta - \alpha)\right\}\right]}{(1 - \rho)^{3/2}}; \quad \rho \boldsymbol{e}^{i\alpha} = \boldsymbol{E}(\boldsymbol{e}^{i\Theta}), \quad \rho \ge 0, \quad \alpha \in [-\pi, \pi).$$

Fig. 6. Skewness, *s*, for the distribution (1) as a function of ν for $\mu = 0$ and: (left) r = 0.5 and: $\kappa = 0.3$, $\kappa = 0.6$, $\kappa = 0.9$ and $\kappa = 1.2$, (right) $\kappa = 1.16$ and: r = 0.2, r = 0.4, r = 0.6 and r = 0.8.

Definition Properties

Random Variate Generation

First, put

$$a = 1 + (1 + 4\kappa^2)^{rac{1}{2}}, \quad b = rac{a - \sqrt{2a}}{2\kappa}, \quad ext{and} \quad \zeta = rac{1 + b^2}{2b}.$$

Then the following steps generate the variables from model (1):

Algorithm

Step 1: $U_1, U_2 \sim i.i.d. \ U(0, 1).$ Step 2: $Z = \cos(\pi U_1), \ F = (\zeta z + 1)/(\zeta + z), \ C = \kappa(\zeta - F).$ Step 3: If $C(2 - C) - U_2 > 0$, then go to Step 5. Step 4: If $\log(C/U_2) + 1 - C < 0$, return to Step 2. Step 5: $U_3 \sim U(0, 1), \ \Theta_T = \operatorname{sign}(U_3 - 0.5) \cos^{-1}(F).$ Step 6: $\Theta = \mu + \nu + 2 \arctan[\{(1 - r)/(1 + r)\} \tan\{\frac{1}{2}(\Theta_T - \nu)\}].$

See Best & Fisher (1979) for the acceptance ratio for this algorithm.

Definition Properties

Comparison with Generalized von Mises Distribution

Generalized von Mises (GvM) distribution

$$\begin{split} f_{GVM}(\theta) \propto \exp\left\{\kappa_1\cos(\theta-\mu_1)+\kappa_2\cos(2(\theta-\mu_2))\right\}, \quad \theta \in [-\pi,\pi); \\ \kappa_1,\kappa_2 \geq 0, \; \mu_1 \in [-\pi,\pi), \; \mu_2 \in [0,\pi). \end{split}$$

Common properties of Model (1) and GvM distribution

- symmetry/asymmetry and unimodality/bimodality,
- inclusion of von Mises distribution,

Model (1) only inclusion of WC distribution, simple normalizing constant,

S. Kato and M. C. Jones A

A family of asymmetric distributions on the circle

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

The Three-parameter Symmetric Special Case

We investigate detailed properties of the symmetric case of the distribution (1) corresponding to $\nu = 0$ or π .

Probability density function

In this case, the density (1) reduces to

$$f(\theta) = \frac{1 - r^2}{2\pi \mathcal{I}_0(\kappa)} \exp\left[\frac{\kappa\{(1 + r^2)\cos(\theta - \mu) - 2r\}}{1 + r^2 - 2r\cos(\theta - \mu)}\right] \frac{1}{1 + r^2 - 2r\cos(\theta - \mu)},$$
(2)

$$-\pi \le \theta < \pi,$$

where
$$-\pi \le \mu < \pi$$
, $\kappa > 0$, $-1 < r < 1$.

Clearly, this subfamily also contains the von Mises and wrapped Cauchy distributions as special cases.

・ロト ・ 同 ト ・ ヨ ト ・

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Limiting Distribution

Limiting distribution

Let $\Theta \sim Model$ (2). Then

$$\mu + \sqrt{\kappa}(\Theta - \mu) \stackrel{d}{\longrightarrow} N\left(\mu, \left(\frac{1-r}{1+r}\right)^2\right) \text{ as } \kappa \to \infty.$$

This is a generalized form of the usual result for the von Mises distribution (r = 0) given, e.g., by Mardia & Jupp (1999).

イロト イヨト イヨト ・

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Conditions for Unimodality

Conditions for unimodality

The conditions for unimodality for the density (2) can be simply expressed as

(i)
$$\kappa > \frac{-2r}{(1+r)^2}$$
 or (ii) $\kappa < \frac{-2r}{(1-r)^2}$

Fig. 7. Density (2) for $\mu = 0$, $\kappa = 1/4$, and: r = 0(i), r = -0.1(i), r = -0.2(ii) and r = -0.3(ii).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Introduction Subfamilies

The Three-parameter Symmetric Special Case

Fisher Information Matrix

Fisher information matrix

Her

Let
$$\Theta_1, \ldots, \Theta_n \sim i.i.d.$$
 Model (2).

The elements of the expected Fisher information matrix of the parameters are given as follows:

$$\iota_{\mu,r} = \iota_{\mu,\kappa} = \mathbf{0}, \quad \iota_{\kappa,\kappa} = n \left\{ 1 - \frac{\mathcal{I}_{1}^{2}(\kappa)}{\mathcal{I}_{0}^{2}(\kappa)} - \frac{1}{\kappa} \frac{\mathcal{I}_{1}(\kappa)}{\mathcal{I}_{0}(\kappa)} \right\},$$
$$\iota_{r,r} = \frac{2n}{(1 - r^{2})^{2}} \left\{ 1 + 3 \frac{\mathcal{I}_{2}(\kappa)}{\mathcal{I}_{0}(\kappa)} \right\}, \quad \iota_{r,\kappa} = \frac{n}{1 - r^{2}} \left\{ 1 - \frac{\mathcal{I}_{2}(\kappa)}{\mathcal{I}_{0}(\kappa)} \right\},$$
where $\iota_{\alpha,\beta} = -E \left[\frac{\partial^{2} log L}{\partial \alpha \partial \beta} \right].$ Hence, μ and (r, κ) are orthogonal.

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Asymptotic Correlation

The asymptotic correlation between $\hat{\kappa}$ and \hat{r} ,

$$-\frac{\iota_{r,\kappa}}{\sqrt{\iota_{r,r}\iota_{\kappa,\kappa}}}=g(\kappa),$$

is a function of κ (not r).

Fig. 8. Plot of asymptotic correlation between $\hat{\kappa}$ and \hat{r} as a function of κ .

Problem

Is there a reparameterization which reduces the asymptotic correlation?

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

We can take advantage of the special structure of the Fisher information to attempt construction of an orthogonal reparameterization (Cox and Reid, 1987).

Reparameterization

Consider a reparameterization

$$(\mathbf{r},\kappa) \longrightarrow (\mathbf{s}(\mathbf{r},\kappa),\kappa),$$

where

$$s(r,\kappa) = \sqrt{rac{1+r}{1-r}} \exp\left\{rac{1}{\sqrt{2}} an^{-1}\left(rac{\kappa}{\sqrt{2}}
ight)
ight\}.$$

Then the asymptotic correlation between \hat{s} and $\hat{\kappa}$ is approximately zero for sufficiently small κ .

・ロット (雪) (日) (日)

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Asymptotic correlation and asymptotic variance

Fig. 9.
(left) asymptotic correlations between \$\hat{k}\$ and \$\hat{r}\$ and between \$\hat{k}\$ and \$\hat{s}\$,
(right) asymptotic variances of \$\hat{k}\$ for the original parameterization and the new parameterization.

Therefore new parameterization reduces the asymptotic correlation and asymptotic variance.

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Comparison with the Jones and Pewsey Distribution

Jones and Pewsey (2005) (J&P) distribution

 $f_{JP}(\theta) \propto \{1 + \tanh(\kappa \psi) \cos(\theta - \mu)\}^{1/\psi}, \ \theta, \mu \in [-\pi, \pi), \ \kappa \ge 0, \ \psi \in \mathbb{R}.$

Common properties of Model (2) and J&P model

- symmetry and unimodality,
- inclusion of von Mises and wrapped Cauchy,

Model (2) only

 some properties vis-a-vis Möbius transformation,

J&P model only

 inclusion of the cardioid and power-of-cosine distributions.

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

A Three-parameter Asymmetric Special Case

We briefly discuss a three-parameter subfamily of the model (1) associated with $\nu = \pm \pi/2$.

Probability density function

In this case, the density (1) reduces to

$$f(\theta) = \frac{1 - r^2}{2\pi \mathcal{I}_0(\kappa)} \exp\left\{\frac{\kappa(1 - r^2)\cos(\theta - \mu)}{1 + r^2 - 2r\sin(\theta - \mu)}\right\} \frac{1}{1 + r^2 - 2r\sin(\theta - \mu)}, \\ -\pi \le \theta < \pi,$$

where
$$-\pi \leq \mu < \pi, \quad \kappa > \mathbf{0}, \quad -\mathbf{1} < r < \mathbf{1}.$$

Properties

- The density is, in general, asymmetrically distributed.
- The model includes the von Mises and wrapped Cauchy as special cases.

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Illustrative Example

Fig.10. azimuths, n = 580, of cross-beds in the rocks of the upper Kamthi river valley, India (SenGupta and Rao, 1966).

ヘロト ヘアト ヘビト ヘ

As an illustrative example, we consider a dataset which Mardia & Jupp (1999) present as "an example of an asymmetrical distribution".

3

The Three-parameter Symmetric Special Case A Three-parameter Asymmetric Special Case

Illustrative Example

Fig.10. azimuths, n = 580, of cross-beds in the rocks of the upper Kamthi river valley, India (SenGupta and Rao, 1966).

Model	$\hat{\kappa}$	ŕ	$\hat{\nu}$	$\hat{\mu}$	log L	AIC
Full model (1)	1.93	0.130	1.87	5.74	-1380.59	2769.18
3-parameter symmetric (2)	1.66	0.0428	(0)	5.99	-1385.41	2776.82
3-parameter asymmetric (3)	1.78	0.122	$\left(\frac{\pi}{2}\right)$	5.76	-1380.80	2767.60
von Mises	1.81	(0)	(<mark>0</mark>)	5.98	-1385.68	2775.36
Wrapped Cauchy	(0)	0.586	(0)	6.02	-1403.72	2811.44

S. Kato and M. C. Jones A family

3

A family of asymmetric distributions on the circle

Conclusions

A four-parameter asymmetric family

- closed form of the density, with simple normalizing constant,
- inclusion of von Mises and wrapped Cauchy distributions,
- clear conditions for symmetry/unimodality,
- wide range of indices of skewness,
- efficient algorithm for generating random variates.

The three-parameter symmetric special case

- simple form of the Fisher information matrix,
- reparameterization reducing the asymptotic correlation.

・ロット (雪) () () () ()

э.

References I

[1] BEST, D.J. & FISHER, N.I. (1979). Efficient simulation of the von Mises distribution. *Appl. Statist.*, **28**, 152–157.

[2] COX, D.R. & REID, N.I. (1987). Parameter orthogonality and approximate conditional inference (with discussion). *J. Roy. Statist. Soc. Ser.* **B** 49, 1–39.

[3] GATTO, R. & JAMMALAMADAKA, S.R. (2007). The generalized von Mises distribution. *Statist. Meth.*, **4**, 341–353.

[4] HILL, G.W. (1977). Algorithm 518. Incomplete Bessel function *I*₀: the von Mises distribution. *ACM Trans. Math. Soft.*, **3**, 279–284.

[5] JONES, M.C. & PEWSEY, A. (2005). A family of symmetric distributions on the circle. *J. Amer. Statist. Assoc.* **100**, 1422–1428.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

References II

[5] MCCULLAGH, P. (1996). Möbius transformation and Cauchy parameter estimation. *Ann. Statist.* **24**, 787–808.

[6] MAKSIMOV, V.M. (1967). Necessary and sufficient statistics for a family of shifts of probability distributions on continuous bicompact groups. *Teor. Veroyatn. Primen.*, **12**, 307–321 (in Russian). English translation: *Theory Probab. Appl.*, **12**, 267–280.

[7] MARDIA, K.V. (1972). *Statistics of Directional Data*. Academic Press, New York.

[8] SENGUPTA, S. & RAO, J.S. (1996). Statistical analysis of crossbedding azimuths from the Kamthi formation around Bheemaran, Pranhati–Godavari valley *Sankhyā* **B 28**, 165–174.