

Cherry Bud Workshop 2008

Discovery through Data Science

Importance of data science in the field of pharmacogenomics

Shigeo Kamitsuji, PhD Statistical Genetics Analysis Division

StaGen Co., Ltd.

Pharmacogenomics and Personalized medicine

🖉 StaGen

Cherry Bud Workshop 2008

PharmacoGenomiCS (PGx)

Effects of drugs are studied based on individual genomic sequences

Personalized medicine (order-made medicine)

Personalized medicine is a new concept in medical treatment that implies the delivery of drugs to the patient based on genomic variation.

Association study using the genome data

🖉 StaGen

Cherry Bud Workshop 2008

Candidate gene-based association study

the approach for evaluating the association between the phenotype and a specific genome sequence selected based previous study and medical aspects.

Genome-Wide Association Study (GWAS)

Approach for identifying the genetic variation assoicated with the phenotype from whole genome in human

- All SNPs loci in human have been identified by HapMap project (2002).
- 500K or 1 M SNPs for each person can be observed immediately and inexpensively by using DNA chips.
- Algorithms for implementing the genome-wide association analysis have been developed.

Drug document recommended by FDA in US

🖉 StaGen

drug	disease	association	Document
Herceptin	breast cancer	effect	Work for women whose breast cancer cells carry extra copies of a protein called HER2
Mercaptopurine	childhood leukemia	adverse events	Do not use to patients with TPMT deficiency
Strattera	attention deficit disorder	adverse events	Differences in genomic sequences in CYP2D6 gene cause different probabilities of adverse events
Tarceva	lung cancer	effect	Work for individualwhose lung cancer cell carry EGFR
irinotecan	cancer	adverse events	Association between genetic polymorphism of UGT1A1 gene and severe adverse reactions to irinotecan
BiDil	cardiac failure	effect	For African-American

Statistical Genetics

🧳 StaGen

Cherry Bud Workshop 2008

Statistical genetics

Laws of inheritance

Statistical model is known.

Laws of Inheritance

Objects satisfied with laws of inheritance

Allele		
Allele of an offspring are surely inherited from the parents according to the laws of inheritance		
Locus (loci)	Genotype	
A position on a chromosome two alleles exist	A pair of alleles	

	Polymorphism	alleles	levels
SNP	(Single Nucleotide Polymorphism locus)	A,T,G,C	2
STRP	(Short Tandem Repeat Polymorphism locus)	number of repeat	≧2
DIP	(insertion/deletion locus)	Ins,Del	2
VNTR	(Variable Numbers of Tandem Repeat locus)	number of repeat	≧2
CNV	(Copy Number Variation)	number of duplication	≧2

Phenotype	
Affected/Non-affected,	
quantitative bio-marker,	
amount of protein (expression)	

Failures to replicate the results of genome association study

A StaGen

Cherry Bud Workshop 2008

ANALYSIS

Systematic meta-analyses of Alzheimer disease naturegenetics genetic association studies: the AlzGene database

Lars Bertram¹, Matthew B McQueen^{2,3}, Kristina Mullin¹, Deborah Blacker^{2,4} & Rudolph E Tanzi¹

Literature searches

Studies included in AlzGene and comparison to other databases. The results presented here are based on a 'data freeze' of the AlzGene database on December 1, 2005, and they cover 789 publications reporting on 802 different polymorphisms in 277 genes (after screening ~23,500 titles and abstracts; Supplementary Fig. 1 online). Since that time, we have continued our systematic screen of the literature, and as of August 15, 2006, AlzGene included the data of 875 publications (representing 1,055 polymorphisms and 355 genes). To test our ability to capture all of the published genetic association data targeted for AlzGene, we compared the studies we identified to those in two other publicly available databases with a similar focus (HuGENet and GAD). Across ten randomly selected genes, AlzGene identified 112 publications, and HuGENet and GAD list 77 and 20 studies, respectively (Supplementary Table 1 online).

Conclusions

In this study, we have conducted the most comprehensive assessment of currently available data on the genetics of Alzheimer disease and, to the best of our knowledge, of data on any genetically complex disease. Based on the allele distributions of genetic variants with available data in at least three independent case-control samples, we systematically meta-analyzed 127 polymorphisms across 69 different putative Alzheimer disease risk genes, following recently suggested guidelines for the meta-analysis of genetic association data²²⁻²⁴ and its online curation^{8,25}. In addition to APOE- ϵ 4 and four other probably ϵ 4-related effects, we discovered 20 polymorphisms in 13 genes that yielded significant allelic summary ORs. Although these ORs were generally modest (showing average 'risk' effects of 1.25 and average 'protective' effects of 0.82), they were very similar to those estimated in previous large-scale meta-analyses across a range of different diseases^{5,6,16}. In collaboration

Three key words for SGA in StaGen

🖉 StaGen

Cherry Bud Workshop 2008

9

Services we provided

🖉 StaGen

Intellectual property Division

- This division transfers technology nurtured at Tokyo Women's medical university into thrid parties.
 - Patents in terms of the relationship between phenotype and genotype

Services of Statistical Genetics Analysis Division

- Training in SGA
- SGA on request and Temporary research personnel service
- Consultation in SGA
- System development

Intellectual property Division

🖉 StaGen

Cherry Bud Workshop 2008

Patnet No.	Registration No.3656952 (Japan)
Project Name	SAA1⁄Amyloidosis
Title	Method for Detecting Morbidity Risk of AA-Amyloidosis in Rheumatoid Arthritis Patient by
TILLE	Detecting a New SNP in SAA1 Genetic Locus
	To provide a method capable of detecting morbidity risk of AA-amyloidosis in rheumatoid
	arthritis using new oligonucleotides probes in the method. SOLUTION: In this method for
Abotroot	the detecting SAA1 (serum amyloid A1 protein) gene, the morbidity risk of AA-amyloidosis
Abstract	in rheumatoid arthritis, it is determined whether a base at the -13 of human SAA1 gene is
	thymine or cytosine. The DNA contains a base sequence GCCACCGTTC CCTGG or a base
	sequence GCCACCGCTC CCTGG.
Working example	DNA chip etc.

Patnet No.	Registration No.3839836 (Japan)	
Project Name	MTX	
Title	Method to administer methotrexate (MTX)	
Abstract	Method to estimate the effective dose of MTX for the treatment of rheumatoid arthritis. The individual effecctive dose of MTX can be estimated by the analysis of a SNP in MTHFR gene.	
Working example	DNA chip etc.	

Patents in terms of the relationship between phenotype and genotype

SGA training: Basic course

A StaGen

Fundamental knowledge about PGx

- What is the purpose of PGx? Ο
- How can we extract knowledge from PGx? Ο
- How can the results from PGx be applied? Ο

SGA technical expert

Temporary researc

Consultation

for total SGA

Basic

SGA training: Standard course

🖉 StaGen

Cherry Bud Workshop 2008

Acquisition of higher level knowledge about PGx

- Relationship between biological data and laws of inheritance
- Understanding of the mathematical aspects of SGA
- Exercise using SGA tools

SGA training: Professional course

🖉 StaGen

Cherry Bud Workshop 2008

Training for SGA managers as supervisors of PGx studies

StaGen

SGA Training service

SGA on request and temporary research ¹⁶ personnel service

StaGen

SGA on request and temporary research personnel service

StaGen

Analysis of your data by SGA specialists in either your laboratory or our laboratory

- High quality SGA based on our protocol
- Analysis based on original algorithms developed by Naoyuki Kamatani, M.D., Ph.D, Tokyo Women's Medical University

ERS (in Japan) Qualification of temporary personnel service (in Japan) PGx study system under the leadership of SGA manager

Examples of SGA			
Category		Contents	
Establishment of	Construction of the data fo	rmat	
framework	Construction of the framew	vork for SGA	
Preparation for	Designing of research stud	У	
research	Evaluation of previous researches		
		Outoff threshold for call rate	
		Evaluation by replication test	
		Evaluation by MAF	
	Removal of inappropriate	Comparison of the data between	
Data cleaning	data	different conditions	
Data oroannig		Estimation of typing error rate	
		Use of the data for sex chromosomes	
		based on biological laws	
	Fitness to the laws of inheritance	Test of goodness of fit to HWE	
	Genome−wide SNP research	Statistical test Evaluation by log QQ p-value plot or FDR (Q-Value)	
	Diplotype configurations (haplotype)association study	Determination of LD block	
Association study		Test of association based on diplotype configurations study Inference of diploype configurations	
		Haplotype inference and test of	
		association based on haplotypes	
	Pedigree data analysis; linkage analysis	Parametric linkage analysis	
		Nonparametric linkage analysis	
		TDT(Transmission Disequilibrium Test) 17	
Others	Examination of population structure		
Others	Evaluation by meta analysis		

Quality evaluation of observed genotype data

It is important to eliminate contradictions concerning Mendelian inheritance from genotypic data with pedigree information.

Hardy-Weinberg equilibrium (HWE)

The genotype frequencies in a population remain constant or are in equilibrium from generation to generation.

Analysis based on laws of inheritance for genomic variations

StaGen

Laws of inheritance (Mendelian inheritance); Laws of dominance

20

Laws of inheritance (Mendelian inheritance); Laws of dominance

🖉 StaGen

Cherry Bud Workshop 2008

21

Analysis based on laws of inheritance for genomic variations

🖉 StaGen

Cherry Bud Workshop 2008

affected or non-affected

Is this network model taking the laws of inheritance into account for SNP?

In pharmacogenomics, FDA or MHLW (Ministry of Health, Labour and Welfare, Japan) may not confirm the results obtained from complicated model leaving genetics out of consideration.

Consultation services

Consultation for study design

🖉 StaGen

Cherry Bud Workshop 2008

Study designs for candidate gene-based and genome-wide association studies

	Study designs for candidate gene-based association studies	 Evaluation using FPRP or power Integrated evaluation of previous researches using meta analysis
	Previous researches are evaluated and	
studies are designed based on the evaluation		• Simulations for sample size and
		power under various conditions

There are some reports that a mutation in a gene is associated with adverse events of a medicine. Although we plan to conduct a case-control study based on the evaluation of the previous researches, it is difficult to collect more than 30 people as the case group. How many control people are needed for the significant result?

Other business

👌 StaGen

Cherry Bud Workshop 2008

Training Staff

- Kobe University Translational Research Informatics Center (Dr Kamatani, Kamitsuji)
 - Training Unit; Clinical Genome Informatics (CGI)
- Tokyo Medical and Dental University (Kamitsuji)
 - Training Program; Bio-Omics informatics

Media

- Nikkei Business Publications, Inc. monthly PDF magazine "BTJ journal" (in Japanese)
 - [Welcome to statistical genetics!] serialized from March 2007

Our requests to educational institution and research institution

🖉 StaGen

Cherry Bud Workshop 2008

Data science is very important in the field of pharmacogenomics

- A need to promote the education and research of Data science
 - We hope to promote sufficient education of Data science in the faculty of medical sciences and pharmaceutical sciences.
- Researchers of statistics join to Genetics field
 - Statisticians should join early stage startup of genome research.
 - If you perform the data analysis of genome data, we hope you perform the analysis without leaving genetics out of consideration.

StaGen Co., Ltd. Statistical Genetics Analysis Division

4-31-10, Kuramae Orashion Building 9F, Kuramae, Taitou-ku, Tokyo, 111-0051

tel: +81-3-5835-2137 / 2138, fax: +81-3-5835-2139

URL: http://www.stagen.co.jp/, e-mail: info@stagen.co.jp