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Scientific breakthrough of the year 2007

Human genetic variation
Proof of the Poincaré Conjecture for 2006

Genome-wide association study (GWAS) boomed in 2007
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Can we identify disease-associated genes on the 

genome-wide basis?

Yes, by the Linkage Analysis

300 – 500 markers can cover the 

whole genome

since there are 3 x 109 base pairs, and 

107 base pair sequence is transmitted 

together to the next generation

However, the effect size should be 

large and family data are necessary.
The phenotype-associated locus is here!

Causes of the majority of Mendelian diseases have been elucidated.
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Can we identify disease-associated genes on the 

genome-wide basis,

Yes, by the GWAS 

(genome-wide association study)

100,000 – 1,000,000 markers can 

cover the whole genome

since

104-105 base pair sequence is 

associated with each other

even if the effect size is small or family data are unavailable?

Cases

Controls

range of linkage disequilibrium

Causes of complex diseases may be elucidated by GWAS.
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Era of GWAS has come!

1. A list of SNPs covering the whole genome was made （HapMap）

2. Chips and Beads used for the genotyping for 100,000 – 1,000,000 

individual SNPs are now commercially available.

3. Methods for analyzing the large size genotyping data are available.

GWAS: Genome-wide association study
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Odds ratio

OR (95% CI)

Ikari K 1.23 (1.09 - 1.40)

Martinez A 1.01 (0.80 - 1.27)

Harney SM 1.20 (0.78 - 1.84)

Barton A 1.16 (0.98 - 1.38)

Suzuki A 1.40 (1.20 - 1.63)

Plenge RM

Swedish 1.01 (0.89 - 1.14)

North American 1.24 (1.07 - 1.43)

1.10 (1.02 - 1.19)European descent studies

Pooled

1.14 (1.07 - 1.21)All replication studies

Japanese

UK

UK

Spanish

Japanese, the first study

ORs (proportional to sample size) with 95% CIs from each study testing the association of RA with the risk allele of PADI4 gene. The 

pooled ORs with 95% CI for overall analysis and subgroup analysis in populations of European descent were calculated with the 

Mantel–Haenszel method (diamonds). The first study by Suzuki et al. [6] is shown for reference only and was not included in the

meta-analysis.

Meta-analysis of the association between PADI4 polymorphism and RA

Meta-analysis has supported the association between a SNP and a disease

Iwamoto et al. Rheumatology 2006
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QC of large quantity of data

(500,000 SNP genotypes from > 10,000 subjects)

1. QC (quality control) is extremely laborious.

2. Mistypes lead to false significance.

3. We can use both genetics and statistics –based methods for QC.

4. Reliable conclusion from GWAS is dependent on sophisticated QC filter.

More than 1010 data points.
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an association study
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Multiple-comparison problem

1. If a test of independence is performed for 500,000 SNPs with a significance 

level of 0.05, about 2,500 SNPs will become false positive.

2. Since many SNPs are associated with each other, Bonferroni’s correction is 

too conservative.

3. Several correction methods have been proposed

(a) Use of the concept FDR (false-discovery rate)

(b) Permutation test

(c) Exact calculation of type 1 error rate

(d) Bayesian method (FPRP)
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Observed

data

A permutation 

outcome (ω)

ω（a permutation outcome）

Ω（Sample space）size n!

Number of 

cases n1

Number of 

controls n2

(A) (B)

For 500 cases and controls

There are 102568 outcomes

For 500 cases and 

controls, 10299 events

Permutation test requires long time calculation

Shuffle the phenotypes and obtain 

empirical distribution of a statistic 

under the null hypothesis.
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Problem of population structuring

1. A large sample size is necessary to identity a SNP with a 

small effect size.

2. If the sample size is large, however, the problem of 

population structuring emerges.
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p1 p2

Subpopulation 1
Subpopulation 2

q1

q2

Subpopulation 1

Subpopulation 1

case

control

Subpopulation 2

Subpopulation 2

Inflation of type I error rate by mixing two different subpopulations

OR is 1 when p1=p2, or q1 = q2

If allele or genotype frequencies are 

different between subpopulations,

and the prevalence of a disease is different 

between the subpopulations, 

then, false-positive associations will occur.
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To avoid false positive associations, we may use a clustering technique.
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Draw a line in the space with 140,000 dimension so that the variance of the 

projections of the points to the line becomes the largest.

7,000 points in a 140,000 

dimension space

A point corresponds 

to a subject

Principle component analysis

Use of the projections of the points to separate subjects

This is impossible because the calculation of covariance matrix for 140,000 x 140,000 

matrix is impossible.
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140,000 points in a 7,000 

dimension space

A point corresponds to a SNP

Principle component analysis 

(implemented in EIGENSTRAT)

Draw a line in the space with 7,000 dimension so that the variance of the 

projections of the points to the line becomes the largest.

Use of factors of Eigenvectors to separate subjects

A/G
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SNP

Subjects

Normalize for each SNP (mean p, variance 2 p (1-p))

Genotype data from 7,000 subjects with 140,000 SNPs

140,000 rows

7,000

lines
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Normalized genotype data

24,500,000 pairs

SNP

Subjects

140,000 rows

7,000

lines
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Covariance is calculated for each of 24,500,000 pairs

Subject A

S
u
b
je

c
t 
B

24,500,000 pairs each of which has 140,000 SNPs data.
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Subjects 7,000

Subjects

Covariance matrix

Calculate Eigenvectors for this table
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PCA analysis for African, European and Asian subjects
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Third component
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PCA analysis for African, European and Asian subjects
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Han-Chinese

Hondo

Okinawa

First component
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PCA analysis for Asian subjects                
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Han-Chinese cluster

Hondo cluster

Okinawa cluster

All Japanese samples + HapMap Han-Chinese and Japanese samples

Jomon?

Yayoi? (~3,000 – 1,700 years ago)

First component
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Okinawa

Kyushu

Kinki

Okai-Hokuriku

Kanto-Koshinetsu

Tohoku

Hokkaido
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Samples from Okinawa

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Samples from Kyushu

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Samples from Kinki

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Samples from Tokai-Hokuriku

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Samples from Kanto-Koshinetsu

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Samples from Tohoku

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Samples from Hokkaido

Han-Chinese cluster

Hondo cluster

Okinawa cluster

First component
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Comparison of samples from Kinki and Tohoku areas

Han-Chinese cluster

Okinawa cluster

Tohoku subpopulation

Kinki subpopulation

Comparison of Tohoku and Kinki 

subpopulations as cases and controls 

are problematic when the sample size 

is over 400

First component
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rs_number chr chr_pos P value gene

rs3827760 2 108880033 1.61E-20 EDAR

rs17822931 16 46815699 8.48E-20 ABCC11

rs4285045 4 144355168 1.23E-19 USP38

rs1799986 12 55821533 3.44E-17 LRP1

rs2274067 1 229443429 1.49E-15 C1orf131

rs2230611 19 5163482 3.49E-15 PTPRS

rs1872056 15 69827828 1.57E-14 FLJ13710

rs2298645 18 75829123 1.97E-14 LOC440498

rs3744921 18 28121686 3.03E-14 FAM59A

rs631248 1 43843808 8.79E-14 PTPRF

rs9932051 16 10482297 7.99E-13 ATF7IP2

Nonsynonymous SNPs ranked according to P values of Armitage test based 

on genotypes for Hondo and Okinawa clusters

Known to be associated with 

the thickness of the hair

Known to be associated with 

dry or wet ear wax

This method may be useful 

to identify genes that have 

been the targets of natural 

selection
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Subjects in Hondo and Okinawa clusters were mixed to construct a 500 or 1,000 size case group.

Control group consisted of only the subjects from Hondo cluster.

Inflation of type 1 error due to population structuring (expressed 

by lambda value for genomic control, mean and sd).
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p1 p2

Subpopulation 1
Subpopulation 2

q1

q2

Subpopulation 1

Subpopulation 1

case

control

Subpopulation 2

Subpopulation 2

Method for avoiding the Inflation of type I error rate by 

mixing two different subpopulations

OR is 1 when p1= p2, or q1 = q2

Adjust the proportion of subpopulation 

1 so that q1 = q2 followed by a simple chi 

square test or by Mantel-Haenzel test 
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p1 p2

Subpopulation 1
Subpopulation 2

Subpopulation 1

Subpopulation 1

case

control

Subpopulation 2

Subpopulation 2

Subpopulation 1

Subpopulation 1

case

control

Subpopulation 2

Subpopulation 2

Mantel-Haenzel test

Simply exlcude 

subpopulation 1

Method for avoiding the Inflation of type I error rate by 

mixing two different subpopulations
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Han-Chinese cluster

Hondo cluster

Okinawa cluster

Selection of matched controls at random 

from a large-size control sample

Method for avoiding the Inflation of type I error rate by 

mixing two different subpopulations
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Conclusion

The data management and statistical analysis for millions or 

billions of individual genotypes in GWAS are extremely 

laborious; however, they are a challenging world for 

statisticians.


