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Layout of Talk

1) PREAMBLE - a gentle stroll through some

packground ideas concerning three- and four-
parameter distributions on R

2) brief INTRODUCTION to kernel smoothing

=  what??: something apparently completely
different!

3) the MAIN TALK on a particular family of
distributions with “simple exponential tails”

= with spin-offs!




PREAMBLE

« consider the univariate continuous one-sample
situation for simplicity

 of course, classical statistical modelling
Involves the fitting of parametric distributions

* these parametric models might involve, say,
four parameters: location, u, scale, g, and two
shape parameters, a and b, say, accounting
for skewness and tailweight IN SOME WAY

1 X —
Model is of the form — f( ~ ;a,bj
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Options ...

Option 1.
a controls skewness; b controls tailweight
a=0 => symmetry, tailweight changing
b=0 => asymmetry, tailweight as that of g
a=b=0 => g (a simple symmetric density)

“Obvious’, perhaps, but not always as easy as it may seem

For example, here’'s a famous three-parameter ("b=07)
asymmetric family: 2¢(x)®(ax). But a also affects
tailweight: for a>0, the right-hand tail goes as 2¢(x),

the left as 2@(X)p(ax)/(alx|).



Options ...

Option 2:
a controls left-tailweight
b controls right-tailweight
a=b => symmetry, tailweight changing
a=b=1=>g¢

Less obvious, perhaps, but easier to do and
permeating almost all my efforts in this area!



Generalised density of order statistic:

g(x)G(X)*A-G(x)"
B(a,b)

f(X) =

(a,b>0 real)

X =G™(Beta(a,b))

(Jones, 2004, Test)



Roles ofaand b

a=b=1. f=g¢g
a=Db: family of symmetric distributions
azb: skew distributions

a controls left-hand tail weight, b controls
right

the smaller a or b, the heavier the
corresponding tail



Example 1: skew t

a+1/2 b+1/2
X X
1+ 1-
f(x)[ \/a+b+x2) [ \/a+b+x2]
B(a,b)va+hb2*™

 when a=Db, f Is Student t density on 2a d.f.

» “order statistics” from t dist'n on 2 d.f.!
* density tails go as:

— left-hand tail: |x|*-(2a+1)

— right-hand tail: x*-(2b+1)



Example 2: log F

1 eaX

M= B Tre

 density of log(Y) where Y~F

 “order statistics” from logistic distribution
 density talls go as:

— left-hand talil: exp(ax)

— right-hand tail: exp(-bx)



Some log F densities

(normalised to unit variance)



BRIEF INTERLUDE: INTRODUCTION TO
KERNEL SMOOTHING
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The (bandwidth) parameter h controls the degree of smoothing
and is (i) difficult and (ii) important to specify well.

Associated with the kernel density estimate is the
lkernel distribution function estimate

F[fj:iiﬁ;‘_(
1

T =

xTr — .‘ji'_..: j
h

(where Kix) = 5 K{yldy) ...

.. and with this a kernel quantile estimate obtained
by solving




MAIN TALK!
The log F density again

f (X) B 1 eE:IX
 B(a,b) (1+e*)*"

This has the property of simple exponential tails:

X —> —o0 = f(x)~e*

X —> o= f(xX)~e™



The simple exponential tail property
IS shared by:

 the log F distribution

* the asymmetric Laplace distribution

f (X) = aa—fbexp{axl(x <0)—bxI(x > 0)!

 the hyperbolic distribution

f (X) oc exp- (a;bjx (a;bj\/1+ X°

Is there a general form for such distributions?



A general family of distributions
with simple exponential tails

Starting point: simple symmetric g with
distribution function G and

G () =[ G(t)dt

General form for density is:

f(X) oc exp{ax —(a

b)G ()|

(Jones, to appear, Statistica Sinica)




Special Cases

* G Is point mass at zero, G*[2]=xI(x>0)
o©f is asymmetric Laplace

* G s logistic, G*2]=log(1+exp(x))
ofislog F

e Gist 2, GN2]=Ya(x+\(1+x"2))

©f is hyperbolic

* Gis normal, GMN2]= x®(X)+¢(x)

* G uniform, GMN2]=22(1+x)I(-1<x<1)+I(x>1)



solid line: log F
dashed line: hyperbolic
dotted line: normal-based



Practical Point 1

« the asymmetric Laplace is a three parameter
distribution; other members of family have four;

 fourth parameter is redundant in practice:
(asymptotic) correlations between ML estimates
of o and either of a or b are very near 1,

* reason: o, a and b are all scale parameters, yet
you only need two such parameters to describe
main scale-related aspects of distribution [either
(1) a left-scale and a right-scale or (ii) an overall
scale and a left-right comparer]



Practical Point 2

Parametrise by u, o, a=1-p, b=p.
Then, score equation for u reads:

_ 1 H— X,
=2 204

This Is kernel quantile estimation,
with kernel G and bandwidth o



Includes bandwidth selection by choosing
o to solve the second score eguation:.

1

n

e A

> (X, — )] p-G[ £=2e )L

i=1 O

& )

O =

But its simulation performance is variable:

Table 1: Mean sguared errors associated with the estimation of normal guan-
tiles from samples of size n = 50 for specified p and four estimation methods.
The logistic kernel was wsed in the kernel methods., 50, 000 replicatiors

Fernel ; Foernel ;
Sample  Harrell- rmmle-of-thumb bandwidth
i quantile Drawvis bandwidth wia (11)
0. 50 032 0,027 0,032 022
0.75 OL03T 0,032 0,031 0.035
0.5 063 0,045 0,047 (RS LN
.95 0086 0,076 0,065 0075




And so to Quantile Regression

o
e — j;’ I
o / ~— _x"
o —ij"f///—:—lj”_
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The usual (regression) log-likelihood,

_n |OgO'+Zinl{(l— p)(Y' _Of_ﬂxi j_G[Z](Yi _a_ﬂxi j},

O O

IS kernel localised to point x by

Zian(X_Txij{— nlogo +(1- p)(Y‘ 1S _X))_G[Zl(Yi — 4= 1 (X, - X)j}

O O



This new version of DOUBLE KERNEL
LOCAL LINEAR QUANTILE REGRESSION
compares favourably with the earlier, quite
widely cited but more ad hoc, version of
DKLLQR due to Yu & Jones (1998, JASA).

In simulations, the new method consistently
outperforms the old method, if sometimes
by only a small amount.



Based on theoretical and (admittedly
somewhat limited) simulation evidence,
we have:

e A clear recommendation:

—replace Yu & Jones (1998) DKLLOR
method by new version (Statistical
Modelling, 2007)

 An unclear non-recommendation:
—use new bandwidth selection?



Practical Point 3

A further advantage of our general family is that we
can test for the appropriateness of the asymmetric
(or indeed the symmetric) Laplace distribution



Such a test can be based on parametrising the
(four-parameter with location 0) general family as:

f () o< expiax — (a +b)oG? (o) |

and observing that the asymmetric Laplace
distribution correspondsto o — 0

This Is work at an early stage of progress,
In collaboration with Karim Anaya-lzquierdo



POSTAMBLE

focussed attention on tailweights when
stipulating a and b

If a and b are both scale parameters, can only
really introduce skewness (i.e. 3 parameters)

away from simple exponential tails, can afford
for one of a or b to be a left- or right-scale
parameter ...

open question: Is It better to employ one or two
“true” tailweight parameters (e.g. powers) in the
presence of one, resp. no, left- or right-scale
parameters?
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